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Strong Convergence Theorems for Nonexpansive 
Mappings and Nonexpansive Semigroups

Abstract. Let C be a closed, convex subset of a Banach space, let T 
be a nonexpansive mapping from C into itself such that the set F(T) of 
fixed points of T is nonempty and let {T(t) : t > 0} be a nonexpansive 
semigroup on C such that the set F(T(t)) of common fixed points of
{T(<) : t > 0} is nonempty. Let x be an element of C. In this paper, we 
study strong convergence theorems of sequences generated by x and T. We 
also study strong convergence theorems of sequences generated by x and 
{T(t) : t > 0}.

1. Introduction. In 1975 Baillon [2] established the first nonlinear ergodic 
theorem in a Hilbert space. Bruck [6], [7] extended it as follows:
Theorem A (Bruck). Let C be a closed, convex subset of a Banach space 
E and let T be a nonexpansive mapping from C into itself such that the set 
F(T) of fixed points ofT is nonempty. If E is uniformly convex and the norm 
of E is Frechet differentiable, then for each x G C, {l/(n+ 1) T'x} 
converges weakly to an element of F(T).

If C = E and T is linear, {l/(n + l)lXoT"a:} converges strongly. So it 
has been a problem whether there is a natural strong convergence theorem
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which generalizes linear ergodic theorem. As a strong convergence theorem 
for a nonexpansive mapping is concerned the following is well known, see 
[15], [32]:

Theorem B (Reich, Takahashi and Ueda). Let C, E and T be as in The­
orem A. Assume that E is uniformly smooth or that E is uniformly convex 
Banach space and the norm of E is uniformly Gateaux differentiable. Then 
there exists a sunny, nonexpansive retraction P from C onto F(T). More­
over, let {an} be a real sequence such that 0 < an < 1 and an —> 0. Let x 
be an element of C and let {xn} be the sequence defined by

xn = anx + (1 — an}Txn for each n € N.

Then {xn} converges strongly to Px.

Since the sequence {xn} converges to a fixed point of T, Halpern [8] and 
Reich [16] considered the iteration process

(1.1) j/o G C, yn+i = bnx + (1 - bn}Tyn for each n 6 N, 

and Reich [16] posed the following problem:

Problem (Reich). Let E be a Banach space. Is there a sequence {hn} such 
that whenever a weakly compact, convex subset C of E possesses the fixed 
point property for nonexpansive mappings, then the sequence {j/n} defined 
by (1.1) converges to a fixed point ofT for all x in C and all nonexpansive 
T :C —> C?

On the other hand, Miyadera and Kobayasi [13] obtained the following 
convergence theorem for a family of nonexpansive mappings:

Theorem C (Miyadera and Kobayasi). Let C be a closed, convex subset 
of a uniformly convex Banach space E whose norm is Frechet differen­
tiable. Let (T(t) : t > 0} be a nonexpansive semigroup on C such that 
the set n,>0 F(T(t}} of common fixed points of {T(t} : t > 0} is nonempty. 
Then for each x € C, {1/t T(t)x dt} converges weakly to an element of
n,>„r(r(i)).

Generally, {1/t T(t)x dt} does not converge strongly. So it also has 
been a problem whether there is a natural iteration process which converges 
strongly to an element of f\>o
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In this paper we study strong convergence theorems for a nonexpansive 
mapping and a nonexpansive semigroup. First, we give an answer to Reich’s 
problem which extends Wittmann’s result in [33]. Next, using Shimizu and 
Takahashi’s ideas in [19], [20] and the methods employed in the study of 
nonlinear ergodic theorems [10], [11], [18], [29], 30], we show strong conver­
gence theorems for a nonexpansive semigroup which extend Shimizu and 
Takahashi’s results in [19], [20].

This paper is organized as follows: Section 2 is devoted to some pre­
liminaries. In Section 3 we show our strong convergence theorems and we 
investigate some corollaries which can be deduced from our results. In the 
final section we prove our results.

2. Preliminaries. Throughout this paper all vector spaces are real and 
we denote by N the set of all nonnegative integers.

Let £ be a Banach space, let C be a subset of E and let T be a mapping 
from C into itself. We denote by coC the closed, convex hull of C, and we 
denote by F’(T) the set {x € C : x = Tx}. T is said to be nonexpansive if 
||Tx - Ty\\ < ||a: - y|| for each x,y 6 C.

For r > 0 we denote by Br the closed ball in E with center 0 and radius 
r. E is said to be uniformly convex if for each £ > 0 there exists 6 > 0 such 
that ||(a: + j/)/2|| < 1 - 6 for each x,y € B\ with ||a: — y|| > £. We know 
that E is uniformly convex if and only if the function x >-> ||a;||2 is uniformly 
convex on each bounded subset of E, i.e., for each r > 0 and £ > 0 there 
exists 6 > 0 such that ||(z + j/)/2||2 < (||a:||2 + ||y||2)/2-0 for each x, y e Br 
with ||a; — y|| > £; see [28], [34].

Bruck [7] obtained the following nice properties for a nonexpansive map­
ping in a uniformly convex Banach space:

Proposition (Bruck). Let D be a bounded, closed, convex subset of a 
uniformly convex Banach space. Let N(D) be the set of all nonexpansive 
mappings from D into itself, and for each tj > 0 and T e let FV(T}
be the set {x € D : ||Tx - x|| < tj}. Then

(i) for each £ > 0, there exists 6 > 0 such that cóFglfT} C Ee(T) for all
T e N(D};

(H) lim
n—>oo

sup
y£D

TeN(D)
t=0

= 0.1
n + 1

Let E* be the topological dual of E. The value of x* e E* at x € E 
will be denoted by (x,x*). We also denote by J the duality mapping from
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E into 2e , i.e., Jx = {i* € E* : (x,x*) = ||a:||2 = ||a?*||2} for each x 6 E. 
We know that 2 J is the subdifferential of the mapping x i-> ||a;||2, i.e., 
||j/||2 - INI2 + 2(j/ - x,Jx) for each x,y € E. Let U = {x € E : ||x|| = 1}. 
E is said to be smooth if for each x,y E U the limit

(2-1) lim Ik + NI - INI
«->0 t

exists. The norm of E is said to be uniformly Gateaux differentiable if for 
each y € U the limit (2.1) exists uniformly for x € U. The norm of E 
is said to be Frechet differentiable if for each x € U the limit (2.1) exists 
uniformly for y 6 U. E is said to be uniformly smooth if the limit (2.1) 
exists uniformly for x, y € U. We know that if E is smooth then the duality 
mapping is single-valued and norm to weak star continuous and that if the 
norm of E is uniformly Gateaux differentiable then the duality mapping is 
norm to weak star uniformly continuous on each bounded subset of E.

Let C be a convex subset of E, let K be a nonempty subset of C and 
let P be a retraction from C onto A', i.e., Px = x for each x 6 K. P is 
said to be sunny if P(Px + t(x — Px)) = Px for each x € C and t > 0 with 
Px+t(x — Px) € C. We know from [5, Theorem 3] or [14, Lemma 2.7] that if 
E is smooth, then a retraction P from C onto K is sunny and nonexpansive 
if and only if

{x — Px,J(y — Px)) < 0 for each x € C and y £ K

and hence there is at most one sunny, nonexpansive retraction from C onto 
K. We know that in the case when A is a Hilbert space and K is a convex 
subset of C, P is a sunny, nonexpansive retraction if and only if P is a 
metric projection, i.e., ||a: — Px\\ = minye/c ||a: - y\\ for each x € C.

Let S be a semigroup. Let B(S) be the space of all bounded real-valued 
functions defined on S with supremum norm. For s € S’ and f € B(S) we 
define an element lsf in B(S) by

(G/)(f) = /N) for each t € S.

Let X be a subspace of B(S) containing 1 and let X* be its topological 
dual. An element p of X* is said to be a mean on X if ||/z|| = /z(l) = 1. We 
know that p is a mean on X if and only if inf f(S) < p(f) < sup f(S) for 
each f € X. We often write pt(J(t)) instead of p(f) for p € X* and f 6 X. 
Let X be /s-invariant, i.e., ls(X) C X for each s 6 S. A mean p on X is said 
to be left invariant if p(lsf) = m(/) f°r each s 6 S and / € A. A sequence 
of means {//„} on X is said to be strongly left regular if ||/zn — l*pn || —► 0 
for each s £ S, where I* is the adjoint operator of ls. In the case when S is
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commutative, a left invariant mean is said to be an invariant mean and a 
strongly left regular sequence is said to be a strongly regular sequence [10], 
[12]. We call an invariant mean on B(N) a Banach limit [3].

Let £ be a reflexive Banach space, let X be a subspace of B(S) containing 
1 and let p be a mean on X. Let f be a function from S into E such that 
/(£) is bounded and the mapping t (/(<),!*) is an element of X for each 
x* G E*. It is easy to see that there exists a unique element xo 6 E such 
that (xo,x*) = pt(f(t),x*) for each x* G E*. We remark that this definition 
is like that of Pettis integral; see [9]. Following [10], we denote such a?o by 
//(/)dp(t).

3. Strong convergence theorems. First, we give an answer to Reich’s 
problem as in [21]. In the case when E is a Hilbert space, this result was 
obtained by Wittmann in [33].

Theorem 1 (Shioji and Takahashi). Let C be a closed, convex subset of a 
Banach space E. Assume that E is uniformly smooth or that E is uniformly 
convex and the norm of E is uniformly Gateaux differentiable. Let T be 
a nonexpansive mapping from C into itself such that E(T) is nonempty 
and let P be the sunny, nonexpansive retraction from C onto E(T). Let 
{hn} be a real sequence satisfying 0 < bn < 1, bn —► 0, bn = oo and

l&n+t— < °°- Let x be an element of C and let {yn} be the defined
by (1.1). Then {y„} converges strongly to Px.

If T is linear, bn = l/(n + 2) and y0 = x, then yn defined by (1.1) is 
exactly l/(n + 1) Z^=o T'x. So this theorem is a natural generalization of 
a linear ergodic theorem.

We next show strong convergence theorems for a nonexpansive semi­
group. Before that, we state definitions of a nonexpansive semigroup and 
an operator TM.

Let S be a semigroup and let C be a closed, convex subset of a reflexive 
Banach space E. A family {Tt : f € 5} is said to be a nonexpansive 
semigroup on C if Tt is a nonexpansive mapping from C into itself and 
Tta = TtTs for each t,s G S. Let {Tt : f G 5} be a nonexpansive semigroup 
on C such that {Ttu : t G 5} is bounded for some u G C and let X be 
a subspace of 5(5) such that 1 G X and the mapping t (T(X,i*) is an 
element of X for each x G C and x* G E*. Following [Rode:ergodic], we also 
write T^x instead of / Ttx dp(f) for a mean p on X and x G C, i.e., TMx is an 
element of C satisfying (TM3,x*) = /ze(Ttx,x*) for all x* G £*. We know that 
Tm is a nonexpansive mapping from C into itself and D(GSF(Tt) C F(TM) 
for each mean p on X.
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We give typical examples for a semigroup S, a subspace X of B(5), a 
strongly regular sequence {/zn} of means, a nonexpansive semigroup {Tt : 
t 6 S} on C and an operator TM.

Example 1. Let S = N and let X = B(N). For each n £ N let /xn be a 
mean on B(N) defined by

1 ”= —-7 V fi for each (/0, A, ♦ • •) e X.
i=o

Then {/zn} is strongly regular. Let T be a nonexpansive mapping from a 
closed, convex subset C of a reflexive Banach space into itself with F(T) 0. 
Let {Tt : t 6 N} = {/,T,T2, • • •}. Then {Tt : ( 6 N} is a nonexpansive 
semigroup on C and

1 nTu x = -------V' T'x for each x E C.
»+*«

Example 2. Let S — [0, oo) and let X be the set of all measurable functions 
from S into the set of real numbers. From the definition of measurability, 
we know 1 g X and X is shift invariant, i.e., /S(X) C X for each 5 g S. For 
each n g N let //„ be a mean on X defined by

(Mn)t(/(0) = — f f(t)dt for each f € X,
7n JO

where {7„} is a positive real sequence with 7„ —► oo. Then {/xn} is strongly 
regular. Let {T(Z) : t > 0} be a nonexpansive semigroup on C = D(A) 
generated by —4, where A is an m-accretive operator on a uniformly convex 
Banach space E whose range contains 0. In this case, we know that C is 
convex and there is an element u € C whose orbit is bounded. We also 
know

1 P"T^nx = — / T(i)xdt for each x g C.
In Jo

We now present a nonexpansive semigroup version of Theorem B which 
is obtained in [27].
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Theorem 2 (Shioji and Takahashi). Let C be a closed, convex subset 
of a uniformly convex Banach space E whose norm is uniformly Gateaux 
differentiable. Let S be a semigroup and let {Tt : t 6 S} be a nonexpansive 
semigroup on C such that Cites F(Tt) is nonempty. Let X be a subspace 
of B(S) such that 1 £ X, X is ls-invariant for each s £ S and the mapping 
t (Ttx,x*) is an element of X for each x 6 C and x* £ E*. If there 
is a left invariant mean on X, then there is a unique sunny, nonexpansive 
retraction from C onto fl^s^Tj). Further, let {pn} be a strongly left 
regular sequence of means on X and let P be the sunny, nonexpansive 
retraction from C onto T(Tt). Tet {fln} be a real sequence satisfying 
0 < < 1, an —» 0. Let x be an element of C and let {i„} be the sequence
defined by

(3.1) xn = anx + {1 - an)T^nxn for each n £ N.

Then {in} converges strongly to Px.

Remark 1. By the Banach contraction principle there exists a unique point 
xn £ C satisfying (3.1) for each n £ N.

Remark 2. By [31] we know that the condition f)(eS ^(^t) ® can be
replaced by the condition that there exists a bounded orbit, i.e., there exists 
u £ C such that {Ttu : t £ S'} is bounded.

We next show another strong convergence theorem for a nonexpansive 
semigroup. Before that, we need to define a mean to be monotone conver­
gent.

Let S be a semigroup and let X be a subspace of B{S) such that for 
each bounded subset {/„ : n £ N} of X the mapping t supn /„(t) is 
an element of X. A mean p on X is said to be monotone convergent if 
pt(limn /n(t)) = bmnpt(/n(l)) for each bounded sequence {/„ : n £ N} of 
X such that 0 < < f2 <•■•. We remark that the space X and each mean
pn in Example 2 satisfy the conditions mentioned above by the definition 
of measurability and the standard monotone convergence theorem.

We now show a nonexpansive semigroup version of Theorem 1 which is 
also obtained in [27].

Theorem 3 (Shioji and Takahashi). Let C, E, S, {Tt : t £ 5} and X be 
as in Theorem 2. Assume that for each bounded subset {f„ : n £ N} of 
X the mapping t e-> supn /„(t) is an element of X. Let {pn} be a strongly 
left regular sequence of monotone convergent means on X and let P be the 
sunny, nonexpansive retraction from C onto F(Tt). Let {&„} be a real
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sequence satisfying 0 < bn < 1, bn —* 0 and b„ = oo. Let x be an
element of C and let {y„} be the sequence defined by

2/o G C, 2/n+i = M + (1 - bn)Tpnyn for each n e N.
Then {?/„} converges strongly to Px.

Remark 3. In the case when £ is a Hilbert space, we don’t need either the 
additional assumption for X or the assumption that each /xn is monotone 
convergent; see [24].

As direct consequences of Theorem 2 and Theorem 3 we have the fol­
lowing which are related to Example 1 and Example 2, respectively. These 
results are obtained in [22], [23], [25].

Corollary 1. Let C be a closed, convex subset of a uniformly convex Ba­
nach space E whose norm is uniformly Gateaux differentiable. Let T be a 
nonexpansive mapping from C into itself with F(T) / 0 and let P be the 
sunny, nonexpansive retraction from C onto F(T). Let {an} and {&„} be 
real sequences such that 0 < an < 1, an —> 0, 0 < bn < 1, bn —► 0 and

0 = °°- Let x be an element of C and let {x„} and {?/n} be the
sequences defined by

for eachn € N,

2/o G C, 2/n+l = bnx -I- (1 - bn) for eachn € N,
j=0

1
n + 1

respectively. Then both {x„} and {y„} converge strongly to Px.

Corollary 2. Let C and E be as in Corollary 1. Let {T(t) : t > 0} be as 
in Example 2. Then there exists a unique sunny, nonexpansive retraction P 
from C onto Q(>0 F(T(t)). Moreover, let {o„} and {bn} be as in Corollary 
1, and let {7„} be as in Example 2. Let x be an element of C and let {xn) 
and {yn} be the sequences defined by

x 1 C"xn = anx -1- (1 - an)— / T(t)x„ dt for each n € N,
7n Jo

1 P-
2/o G C, yn+i = bnx + (1 - bn)— / T(t)yn dt for each n € N,

7n Jo
respectively. Then both {xn} and {y„} converge strongly to Px.

Since we use abstract means in Theorem 2 and Theorem 3, we can also 
obtain the following



Strong Convergence Theorems ... 269

Corollary 3. Let C, E, {T(t) : t > 0}, P, {a„} and {bn} be as in 
Corollary 2. Let {An} be a sequence of positive real numbers with An —* 0. 
Let x be an element of C and let {xn} and {t/n} be the sequences defined 
by

[OO
xn = anx + (1 — dn^Xn e~XnłT(t)xndt for each n 6 N,

Jo
and

yo€C, yn+i = bnx + (1 - b„)An / e~XntT(t)yndt for each n € N, 
Jo

respectively. Then both {xn} and {yn} converge strongly to Px.

4. Proofs of Theorems. First, we give the proof of Theorem 1. The 
proof of next lemma is different from that in [21]. To prove it, we used a 
lemma concerning a Banach limit in [21]. Here, we prove it directly.

Lemma 1. lim (x — Px,J(yn — Px)) < 0. 
n—>oo

Proof. Let {am} be a real sequence such that 0 < am < 1/2 and am —► 0. 
Then there exists a unique point xm of C satisfying

xm = amx + (1 - am)Txm for each m 6 N.

We know that {zm} converges strongly to Px by Theorem B. Set

R = SUP ({\\Txm II} U {||Xm||} U {||Tt/n||} U {||jln||}).

From (1 — am)(Txm — yn) = (xm ~ yn) Omf® J/n), we have

(1 am) ||Ta;m — ?/n|| > |km J/n|| 2flrn(x — yniJ(xm ~ Z/n))

= (1 2CLm )11Xm — J/n|| + 2flm(x xm,J (yn xm))

for each m,n 6 N. Then we get

(x — Xm,J(yn ~ xm))< n ((1 — — Z/n||2 — (1 ~ 2am)||a:m ~ J/n|| )

= - !Z„||2 - ||X„ - J/n(|2) + Vll7’*” - »»H2

< l^_2^((||Ta;m - Tj/n|| + ||Tj/n - sz„||)2 - Ikm - Z/nII2) + 2R2am 
~ 2am
< l-2am . 67?||Tj/n _ J,n|| + 2R2am 
“ 2nm
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for each m, n £ N. Since we can infer lim„_>oo \\Tyn - j/„|| = 0 from 
ZXo l&n+i - bn| < oo, we have limn^oo (x - xm,J(yn - xm)) < 2R2am for 
each m € N. Since {zm} converges strongly to Px and the norm of E is 
uniformly Gateaux differentiable, we obtain the conclusion.

□

We can now prove Theorem 1 by the method employed in [21], [33].

Proof of Theorem 1. Fix e > 0. By Lemma 1 there exists m £ N such 
that 2(x - Px,J(yn - Px)} < £ for each n > m. Since (l-bn)(Tyn- Px) = 
(yn+i — Px) — bn{x — Px), we have

(1 - bn)2\\Tyn - Px||2 > ||2/n+1 - Px\\2 - 2bn(x - Px,J(j/n+1 - Px))

for each n 6 N. So we get ||jZn+i - Pz||2 < M + (1 - 6n)||y„ - Px||2 for 
each n > m. By induction we have

lll/n+m ~ P^H2 < bm+j)^ ||z/tn P®|| +

< exp IIj/tzx - Padl2 +£
' j=0 '

for each n £ N. From bn = oo, we get limn ||yn - Px||2 < e. Since e > 0 
is arbitrary, {pn} converges strongly to Px.

□

We next give the proofs of Theorem 2 and Theorem 3 as in [27]. Since we 
gave the proofs for the case of an asymptotically nonexpansive semigroup, 
the proofs here are simpler than those in [27],

The following lemma is crucial in proving Theorem 2 and Theorem 3. It 
also plays important roles in [1], [11]. Using this lemma, we solved an open 
problem on the existence of an ergodic retraction for an amenable semigroup 
of nonexpansive mappings; see [11]. The idea of the proof is inspired by the 
existence proof of a Banach limit via nonstandard analysis; see [17].

Lemma 2. Let C be a closed, convex subset of a uniformly convex Banach 
space E. Let S be a semigroup and let {Tt : t € 5} be a nonexpansive 
semigroup on C such that DteS F(Tt) is nonempty. Let X be a subspace 
of B(S) such that 1 € X, X is ls-invariant for each s £ S and the mapping 
t >-► (Ttx,x*) is an element of X for each x € C and x* £ E*. Let {p„} be
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a strongly left regular sequence of means on X. Then for each r > 0 and 
t e S,

lim sup ||Tgnu - Tt(TMnu)|| = 0. 
n—'°° «6CnBr

Proof. Let r > 0 and let 16 5. Let z be an arbitrary point of Qfe5 F1 * * *(Tt). 
Set D = {z € C : ||a: — z|| < r + ||z||}. We remark that C D Br C D, 
Tt(D) C D and ||z|| < r + 2||^|| for each x 6 D. For q > 0 we denote by 
7s,(Tt; D) the set {z € D : ||x — Tti|| < q}. Fix £ > 0. By Proposition in 
Section 2 there exist 6 > 0 and N 6 N such that

(4.1) (coF4(Tt;/)) + B5)nZ)cF£(Tt;P)

and IIn+T 5Xo(T<)<a: “ t«(/v+T EiIo(Tt),a:)|| < 6 for each x € D.
So we have

^£(r,y(T.»)-r,(^£(W(T.«)) <«

<=0 ' i=0 7

for each s 6 5 and u € C D Br. Hence, for each mean n on X, we have 
(4-2)

r , N f 1 N 1
/ aTH S3 T<iiU € “ 1 AMU S3 Tv,u ' s 6 5 ( C coFs(Tt''

for each u € Cr\Br, where t°s represents s. From the strong left regularity of 
{Mn} it follows that there exists no 6 N such that ||/x„ — < ^/(r+2||^||)
for each n > no and i = I,... , N. So we have

f 1 N
[\inu ~ / Y I ,S. T’i'MW'5)

J ' 1 t=0
I 1 N

= sup (/in),(TsU,tt*) - ——— V(Mn)*(Tti4U,«*)
M=il jV + 1^o

1 N
< v , 7 S3 sup |(Mn)s(T,w,u’)-(/;./xn)»(7’iu,u*)|

N +1 ll«*ll=l

•(>•+«)<«

for each u 6 C D Br and n > no- The inequality above, (4.1) and (4.2) 
yield Tllnu € Fc(Tt; D) for each u € C Pl Br and n > n0, which implies
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lim„ supu6CnBr ||TMn« - Tt(TMnu)|| < £. Since e > 0 is arbitrary, we obtain 
the conclusion.

□

Till the end of Lemma 5 we assume that C, F, 5, {Tt : t e 5}, X, {//„}, 
{an}, x and {a:n} are such as in Theorem 2.

Lemma 3. For each subsequence {xni} of {xn} there exists an element z 
Cites satisfying

(4.3) lim (y — z,J(xni - z)) < 0 for each y £ C.

Proof. Let {xni} be a subsequence of {xn}. From the uniform convexity 
of the function u ||u||2 on each bounded subset of E, we conclude that 
there exists a unique point z of C which satisfies

(4.4) lim ||ini - z||2 = min lim ||znj - j/||2.
*oo y€C t—*oo

We shall show that z € f)(eS F(Tt). Suppose this is not true. Then there 
exists t e S such that Ttz z. From the uniform convexity of the function 
u ||u||2 on each bounded subset of E and Lemma 2 we have

lim 
i—>oo

Ttz + z 
2

< ll^n; -Ttz^2 + lim ||xn< - z||2)
Z t—*oo t—*oo

< lim ||a;nj - z||2.
I—>oo

Since z is a unique point of C satisfying (4.4), we get a contradiction. Hence 
we obtain z 6 QteSF(7t). We next show that z satisfies (4.3). Since 

||*ni - *H2 > ||®n< - (fy + (1 - ^)^)||2 + 2ó(y - 2,J(xn, - (ÓJZ + (1 - 0)z))) 

for each y € C, i G N and 6 with 0 < 6 < 1, this inequality and (4.4) yield

Um (y - 2,</(xnj - (6y + (1 - 0)z))) < 0 
t—*oo

for each y G C and 6 with 0 < 6 < 1. Since the norm of E is uniformly 
Gateaux differentiable, we obtain (4.3).
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Lemma 4. (xn — x,J(xn - z)) < 0 for each n 6 N and z G Q(es F(Tt). 

Proof. Let n G N and let z G Digs F(Tt). From

an(xn- x) = (1 - an)(TMnxn - i„) and T^z = z,

we have

(xn - x,J(xn — z)) = (T^xn — zn,</(xn — z))
«n

_ _—_ j'^z^jęXn _ zy> + (z-xn,J(xn - z)))
®n

<  --- — (||®n ~ 2||2 - Ikn ~ 2||2) = 0.an
□

Lemma 5. {a:n} converges strongly to an element ofQteSF(Tt).

Proof. Let {x„.} be a subsequence of {zn}. By Lemma 3 there exists 
z Cites ^(T)) satisfying lim i(x — z,J(xni — z}} < 0. Hence by Lemma 4 
we get lim,-||®nj -z||2 < lim.^oo (xn> - x,J(xni - z}) < 0, which implies 
that there exists a subsequence of {x„.} converging strongly to z. So each 
subsequence {xn,} of {zn} contains a subsequence of {zn.} which converges 
strongly to an element of Qtes Let {^ru } and {xmi} be subsequences
of {zn} converging strongly to elements z and w of PlteS F(Tt), respectively. 
From Lemma 4 we have (z — x,J(z — w)) < 0 and (w — z,J(w — z)) < 0. 
Adding these inequalities we get z = w. Consequently {zn} converges 
strongly to an element of HteS F(Tt).

□
We can now prove Theorem 2.

Proof of Theorem 2. Assume that there is a left invariant mean /z on X. 
Put nn = n for each n G N. Then {/zn} is strongly left regular. Let {an} 
be a real sequence such that 0 < an < 1 and an —► 0. For each x G C, set 
Px = limna:n, where {zn} is a sequence defined by (3.1). From Lemma 5 
and Lemma 4 it follows that P is well defined, Px G Dtes^(^) f°r eac^ 
x G C and (z — Px,J(z — Px)} < 0 for each z G F(TJ. So P is a 
unique sunny, nonexpansive retraction from C onto DteS F(Tt). The latter 
part of the theorem is obvious by Lemma 5. □

Remark 4. We can also prove that if {aQ} is a net of real numbers with 0 < 
aa < 1 and aa —* 0, {/zQ} is a net of means on X with lima ||/za - Z*/za|| = 0
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for each s € S and {a:a} is a net defined by xa = aax + (1 - a„)TMQa;a for 
each a, then {xo} converges strongly to Px.

We next give the proof of Theorem 3. Till the end of Lemma 7 we 
assume that C, E, S, {Tt : t £ S} , X, P, {//„}, {&n}, x and {j/n} are as 
in Theorem 3.

Lemma 6. For each monotone convergent mean y. on X

lim ||TMy„ - j/n|| = 0. 
n

Proof. Let be a monotone convergent mean on X. By a standard measure 
theory argument, we have that for each bounded sequence {fn : n € N} of 
X, limn/n e X and lim„/z((/„(t)) < //f(limn/n(f)). From Lemma 2 and 
the definition of {yn} we have limn ||Ti?/n - yn|| = 0 for each t G S. Hence 
we obtain

lim \\T^yn - = lim Ht(Ttyn - yn,J(T^yn - yn))
n—*oo n—>oo

- ^TtVn ~ yn'J^T^n - y*)}) - °-

□

The following is crucial to prove Theorem 3.

Lemma 7. lim (x — Px,J(yn — Px)) < 0.n—*oo

Proof. Let {am} be a real sequence such that 0 < am < 1/2 and am —> 0. 
By Remark 1 there exists a unique point xm of C satisfying

= amx + (1 - am)T^mxm for each m £ N.

We know that {xm} converges strongly to Px by Theorem 2. Set R = 
suP({||^Mma:rn||} u {||xm||} U {||TMmyn||} u {||!Zn||}). Since each TMm is non­
expansive, we can obtain

1 _  2fl
(i — xm,J(yn — xm)) < —— • 6F||TMmyn — yn|| + 2R2am

for each m, n £ N by the same lines as those in the proof of Lemma 1. 
Hence we obtain the conclusion from Lemma 6 and the uniform Gateaux 
differentiability of the norm of E.

□
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We can now prove Theorem 3 similarly as in the proof of Theorem 1.

Proof of Theorem 3. Fix £ > 0. By Lemma 7 there exists m E N 
such that 2(a; - Px,J(yn — Px)} < £ for each n > m. Then we get 
l|2/n+i - Pz||2 < bne + (1 - 6„)||jzn - Pz||2 for each n > m, which yields 
||2/n+m-Pz||2 < exp(- 6m+>)||jZm-P^||2+£ for each n G N. Thus we
get limn ||t/n - Px||2 < e. Since £ > 0 is arbitrary, {j/n} converges strongly 
to Px.

□
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