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Fixed Points
in Homeomorphically Convex Sets

Abstract. We obtain new fixed point theorems for the admissible class 
of multimaps defined on admissible subsets X (in the sense of Klee) of 

not-necessarily locally convex topological vector spaces. It is shown also
that X can be homeomorphically convex.

1. Introduction and preliminaries. In this paper we obtain new fixed 
point theorems for the admissible class 21* of multimaps defined on admis­
sible subsets (in the sense of Klee) of not-necessarily locally convex topo­
logical vector spaces. Our new results properly generalize a large number 
of historically well-known theorems.

A multimap, or map T : X —° Y is a function from X into the power set 
of Y with nonempty values, and x 6 T_1(t/) if and only if y e T(x).

Given two maps T : X —° Y and S :Y -°Z, their composite ST : X —° 
Z is defined by (5T)(i) = S(T(x)) for x € X.
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For topological spaces X and Y, a map T : X —o Y is said to be closed 
if its graph Gr(T) = {(x, y) : x E X, y G T(x)} is closed in X x Y, and 
compact if the closure T(A') of its range T(X) is compact in Y.

A map T : X —o Y is said to be upper semicontinuous (u.s.c.) if for 
each closed set B C Y, the set T_1(P) = {x G X : T(x) n B 0} is a 
closed subset of X; lower semicontinuous (l.s.c.) if for each open set B qY, 
the set P-1(B) is open; and continuous if it is u.s.c. and l.s.c. Note that 
composites of u.s.c. maps are u.s.c.; the image of a compact set under an 
u.s.c. map with compact values is compact; and every u.s.c. map T with 
closed values is closed.

Recall that a nonempty topological space is acyclic if all of its reduced 
Cech homology groups over rationals vanish. Note that any convex or star­
shaped subset of a topological vector space is contractible, and that any 
contractible space is acyclic. A map T : X —o Y is said to be acyclic if it is 
u.s.c. with compact acyclic values.

Throughout this paper, t.v.s. means Hausdorff topological vector spaces, 
and co denotes the convex hull. A polytope is a convex hull of a nonempty 
finite subset of a t.v.s., or a compact convex subset of a finite dimensional 
subspace.

For any topological spaces X and Y and a given class X of maps, X(X, F) 
denotes the set of maps F : X —° Y belonging to X, and Xc the set of finite 
composites of maps in X.

A class 21 of maps is one satisfying the following properties:
(i) 21 contains the class C of (single-valued) continuous functions;

(ii) each F € 2lc is u.s.c. and compact-valued;
(iii) for any polytope P, each F G 2lc(P, P) has a fixed point.

Examples of 21 are C, the Kakutani maps K (with convex values and 
codomains are convex sets), the Aronszajn maps M (with Rs values), the 
acyclic maps V, the Powers maps Vc, the O’Neill maps N (continuous with 
values consisting of one or m acyclic components, where m is fixed), the 
approachable maps A in t.v.s., admissible maps in the sense of Górniewicz, 
permissible maps of Dzedzej; for references, see [Pl,5].

We introduce two more classes:
F G 2l£(X,F) <=> for any er-compact subset K of X, there is a 
T G 2tc(A',F) such that T(x) C P(x) for each x G K.
F G 2l£(X, F) <=> for any compact subset K of X, there is a 
T G 2lc(AT,F) such that T(x) C F(x) for each x G K.

Note that K’ due to Lassonde [L] and V’ due to Park et a/.[PSW] are 
examples of 21’. An approximate map defined by Ben-El-Mechaiekh and
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Idzik [BI] belongs to 21*. Moreover, any u.s.c. compact map defined on a 
closed subset of a locally convex t.v.s. with closed values is approximate 
whenever its values are all (1) convex, (2) contractible, (3) decomposable, 
or (4) oo-proximally connected, see [BI].

Note that 21 C 2lc C 2l£ C 21*. Any class 21* will be called admissible. 
For details, see [Pl-3, PK1, 2],

A nonempty subset X of a t.v.s. E is said to be admissible (in the 
sense of Klee [K]) provided that, for every compact subset K of X and 
every neighborhood V of the origin 0 of £, there exists a continuous map 
h : K —> X such that x - fi(a;) € V for all x G K and h(K) is contained in 
a finite dimensional subspace L of E.

Note that every nonempty convex subset of a locally convex t.v.s. is 
admissible. Other examples of admissible t.v.s. are lp, Lp, the Hardy spaces 
Hp for 0 < p < 1, the space 5(0,1) of equivalence classes of measurable 
functions on [0,1], and others. Moreover, any locally convex subset of an F- 
normable t.v.s. and any compact convex locally convex subset of a t.v.s. are 
admissible. Note that an example of a nonadmissible nonconvex compact 
subset of the Hilbert space I2 is known. For details, see Hadżić [H], Weber 
[Wl,2], and references therein.

2. Main results. In our previous works [Pl, 2], it is shown that if A is a 
nonempty convex subset of a locally convex t.v.s., then any compact map in 
2l£(A, A) has a fixed point, and furthermore if A is compact, then any map 
in 2l*(A, A) has a fixed point. Those two results are extended as follows:

Theorem 1. Let E be a t.v.s. and X an admissible convex subset of E. 
Then any compact map T G 2l*(A, A) has a fixed point.

Proof. Let V be a fundamental system of neighborhoods of the origin 0 
of E and let V G V. Since T(A) is a compact subset of the admissible 
subset A, there exist a continuous function f : T(A) —> A and a finite 
dimensional subspace L of E such that x - f(x) G V for all x G T(A) 
and /(T(A)) C L n A. Let M := /(T(A)). Then M is a compact subset 
of L and hence K := coM is a compact convex subset of f nA. Note 
that / : T(A) -+ K and T\K : K -+ T(X). Since T G 2l*(A,A) and K 
is a compact subset of A, there exists a map T G 2lc( A', T(A)) such that 
T(x) C T(z) for all x G A'. Then the composite fV : K -► K belongs to 
2lc(A', K) and hence, has a fixed point xy G /T(a;y). Let xy = /(j/v) for 
some yv G r(iv) C T(A). Since T(A) is compact, we may assume that 
yv converges to some x. Then xy also converges to x and hence x G K.
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Since the graph of T is closed in K x T(A'), we have x € T(i) C T(x). This 
completes our proof.

Remark. As we have seen in our previous works [Pl,2], Theorem 1 is a far- 
reaching generalization of historically well-known results due to Brouwer, 
Schauder, Tychonoff, Mazur, Kakutani, Hukuhara, Bohnenblust and Kar­
lin, Fan, Glicksberg, Rhee, Himmelberg, Powers, Granas and Liu, Simons, 
Lassonde, and Ben-El-Mechaiekh et al. For the literature, see [P3,5].

A particular form of Theorem 1 for acyclic maps due to Park [P4] was 
applied to prove the existence of solutions of quasi-equilibrium problems.

As an application of Theorem 1, we show that the convexity of the set 
X in Theorem 1 is not essential. In fact, Theorem 1 holds for homeomor­
phically convex sets as follows:

Theorem 2. Let E and F be t.v.s. and X a subset of E which is home- 
omorphic to an admissible convex subset A of F. Then any compact map 
T 6 X) has a fixed point.

Proof. Let h : A —> X be the homeomorphism. Then the composite 
h~ATh : A —> A belongs to 2l£(A,A). Since T is compact, so is h~1Th. 
Therefore, by Theorem 1, there exists an z0 € A such that zo € h_1T'h(zo) 
or equivalently h(zo) € Th(zo). Hence x = h(z0) is a fixed point of T. This 
completes our proof.

Remark. Theorem 2 is motivated by recent works of Clarke, Ledyaev, 
and Stern [Cl,2] on the existence of zeros and fixed points of multimaps in 
nonconvex sets.

As an application of Theorem 2, we have the following new Fan-Browder 
type fixed point theorem for compact maps:

Theorem 3. Let E be a t.v.s. and X a subset of E which is homeomorphic 
to an admissible convex set. Let S,T : X —o X be compact maps such that

(1) for each x € X, coS(x) C T(x); and
(2) {Int S_1(y)}yex covers X.

Then T has a fixed point.

Proof. It is well-known that, for each compact subset K of X, the map T\k 
has a continuous selection. Then T € C£(X, X) C 2l£(X, X). Therefore, 
by Theorem 2, T has a fixed point.



Fixed Points in Homeomorphically Convex Sets 217

Remark. If X itself is compact and convex, then Theorem 3 holds without 
assuming the admissibility of X. This is usually called the Fan-Browder 
fixed point theorem and has numerous applications. For far-reaching gen­
eralizations of the theorem, see Park and Kim [PK2]. Note that Ben-El- 
Mechaiekh [B] obtained a particular form of Theorem 3 for a locally convex 
t.v.s. E.

Now, we raise the following general form of the Schauder conjecture:

Problem. Does a convex subset of a (metrizable) t.v.s. have the fixed 
point property for compact maps in 2l£?

If the answer is affirmative, then admissibility can be eliminated in The­
orems 1-3.
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