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Abstract. Let X and its dual X* be uniformly convex Banach spaces, D 
an open and bounded subset of X, and let T be a nonexpansive mapping 
defined on cl(P) and taking values in X. IfT satisfies the following condition: 
there exists z € D such that ||z—TZ|| < ||x—Ti|| for all x on the boundary of 
D, then the trajectory t —♦ zt € D, t £ [0,1) defined by zt = tT(zt) + (l — t)z 
is continuous and converges strongly to a fixed point of T as t —♦ l-. The 
paper contains some generalizations of this result.

In 1966, Browder [1] introduced a technique for approximating fixed points 
of nonexpansive mappings in Hilbert spaces. This idea arises in the context 
of approximating solutions of nonlinear variational inequalities involving 
monotone operator theory (Browder [3]). Since then, the problem has been 
extensively explored in various directions, moreover the diversity of new 
arguments of proof could be observed.

It is our interest to discuss a formulation of this technique for locally 
nonexpansive mappings defined in more general Banach spaces. We mainly 
intend to give an overview of a rather recent work done in this direction. 
Nevertheless, some new results are also discussed in this context. We should
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also mention that some of these results remain valid for families of operators 
much more general than those locally nonexpansive one. In fact, pseudo- 
conctractive mappings fall in this particular category and they will certainly 
be introduced and defined in the coming discussion.

In the meantime, we mention that throughout the paper we will assume 
that X is a real Banach space, while its dual will be denoted by X_*. In 
addition, we shall denote the closure and the boundary of D by D and 
dD, respectively, and for u,v € X we use seg[-u,u] to denote the segment 
{/u + (l — f)u : t E [0,1]}. We shall also use B(x;r) and B(x;r) to stand for 
the open ball {y E X : ||x - y|| < r}, respectively.

Formulation of the problem. Suppose T is a locally nonexpansive map
ping defined on a portion of a Banach space X. This means that for each x 
in the domain D(T) of T there exists a neighbourhood U(x) such that the 
restriction ofT to U(x) is globally nonexpansive (i.e. \\Tu - Tu|| < ||u —v|| 
for all u,v E U(x)).

Let z be an arbitrary point in D(T), and let t E [0,1). Then we may 
examine the following questions. Does the implicit equation x = <T(x) + 
(1 — t)z have a solution for each /? And if that is the case, suppose we 
denote such a solution by xt. Then the following question appears to be 
ofinterest, too. Does the net {xt} converge as t —► I - ?

We now begin with the first result of this nature, in our attempt to 
respond the questions mentioned above, throughout a recollection of some 
of the work done on this particular subject for the past 30 years. To this 
end, we start with a result of Browder.

Theorem 1 ([3]). Let H be a Hilbert space and T : H —> H a nonexpansive 
mapping. Suppose there exists a bounded closed convex subset C of H that 
is invariant under T. Let z be an arbitrary point of C. Then the equation

(1) = tT(zt) + (1 - t)z,

has a unique solution for each t € [0,1) and the strong limit limt_>i- Zt 
exists and is a fixed point of T.

The very same year, Halpern [7] proved Theorem 1 under the assumption 
that the nonexpansive self-mapping T should be just defined on the closed 
unit ball. Although Halpern’s result does not seem to be more general, its 
proof is simpler and more elegant. On the other hand, contrary to Halpern’s 
version, Browder’s proof requires that the mapping T should be defined in 
the whole space X, and this is because of the monotonicity argument used in
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his proof. Incidentally, this argument does not carry over under Halpern’s 
formulation either.

However, in an attempt to remove the self-mapping assumption and the 
convexity of the domain of T, Kirk and Morales [11] obtained in 1981 a 
significant extension of this result for locally nonexpansive mappings which 
are not necessarily self-mappings, but still valid for Hilbert spaces.

Theorem 2 ([11]). Let H be a Hilbert space, D a bounded open subset of 
H, and T : D —> H a continuous mapping which is locally nonexpansive on 
D. Suppose there exists z € D such that

(2) ||z - Tz|| < ||a: - Tx|| for all x G dD.

Then there exists a unique path t —> Zt G D, t G [0,1), satisfying 
zt = tT(zt) + (1 — , where the strong limit lim^j- Zt exists which a
fixed point for T.

We should observe that this is precisely in [11] where the notion of a 
continuous path, as defined by (1), was explicitly mentioned and proved. 
Although the notion was implicitly present in a previous work of Kirk and 
the writer [10]. Shortly after this result was known, Bruck, Kirk and Reich 
[5] obtained another important extension to a certain class of Banach spaces 
which include the ZAspaces and this can be stated as follows.

Theorem 3 ([5]). Let X be a Banach space that is both uniformly convex 
and uniformly smooth, D a bounded open subset of X and T —> D —> X 
a continuous mapping which is locally nonexpansive on D. Suppose z is a 
point of D for which ||z — Tz|| < ||a: — Ti|| for all x G dD. Then there 
exists a unique path t —> zt G D , t G [0,1), satisfying Zt — Z T(zf) + (1 — t)z, 
where the strong limit limt_i- Zt exists which is a fixed point forT.

Not until 1990, Morales [14] extended this result to locally pseudo-contra
ctive mappings for the same class of restricted Banach spaces as in the above 
mentioned Theorem 3. However, local uniform continuity on T was required, 
which, by the way, is also implicitly imposed in [5].

We now define the notion of pseudo-contractivity which was originally 
introduced by Browder [2] back in 1967. It is worth mentioning that opera
tors of this type are intimately related to the so-called accretive operators, 
independently introduced by Browder [2] and Kato [8] in the same year.

Due to the close connection between nonexpansive and pseudo-contracti
ve mappings, we recall the definition of the latter one, since our next result 
involves this family of operators.
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Let X be a real Banach space and let D be a subset of X. An operator 
T : D —> X is said to be pseudo-conctractive if for each x,y 6 D there 
exists j € J(x — y) such that

(3) <T(x)-T(2,),i><||x-j/||2,

where the mapping J : X —> 2X is the normalized duality mapping defined 
by </(*) = {j e X* :< x,j >= ||x||2, ||j|| = ||«||}.

Due to Lemma 1.1 of [8], we may derive from the inequality (3) the 
original definition of pseudo-contractive mappings T, as given by Browder 
[2]: ||x - 2/|| < ||(1 + r)(z — j/) - r(Tx - Ty)\\ holds for all x,y € D and all 
r > 0.

Furthermore, if the condition (3) holds locally, i.e., if each point x € D 
has a neighborhood J7(x) such that the restriction of T to U(x) is pseudo- 
contractive, then T is said to be locally pseudo-contractive. Under this 
framework we have the following result.

Theorem 4 ([14]). Let X and X* be uniformly convex Banach spaces, 
let D be a bounded open subset of X and let T : D —> X be a uniformly 
continuous mapping which is locally pseudo-contractive on D. Suppose there 
exists z € D such that ||z - Tz\\ < ||x - Ta;|| for all x € dD. Then there 
exists a unique path t —* zt e D , t € [0,1), satisfying zt = t T(zt) + (1 - t)z , 
where the strong limit lim(_j- zf exists and is a fixed point for T.

However, recently in 1995, Mutangadura and the author, were able to 
drop the uniform continuity condition on the operator T, and replace this 
merely by continuity. We succeeded in proving the following

Theorem 5 ([16]). Let X and X* be uniformly convex Banach spaces, let 
D be a bounded open subset of X, and let T : D —> X be a continuous 
mapping which is locally pseudo-contractive on D. Suppose there exists 
z E D such that ||z - Tz|| < ||x - Tx|| for all x e dD. Then there exists a 
unique path t Zt E. D , t € [0,1) satisfying

(4) zt =/T(zt) + (1 - t)z,

where the strong limit limt_i- Zt exists and is a fixed point for T.

As we said earlier, the existence of the path t —> zt was previously estab
lished by Kirk-Morales [10] for general Banach spaces. Therefore it is the 
strong convergence of this path which is actually at stake.
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The proof of Theorem 5 requires a different type of argument and in 
that process we have discovered the following result which appears to be 
interesting for its own sake and is at the same time quite useful in the 
localized theory of accretive operators.

Proposition 1. Let X be a Banach space, let D be a connected open 
subset of X, and let T : D —> X be a continuous mapping which is locally 
pseudo-contractive on D. Then the mapping Fx = 2x — Tx is globally 
one-to-one on D.

The detailed proof of this proposition can be found in [16]. On the other 
hand, concerning the convergence of the path described by (4), we should 
mention that recently in 1996, the author obtained, perhaps one of the most 
general results of this type for locally nonexpansive mappings, which can 
be stated as follows:

Theorem 6. Let X* be a uniformly convex Banach space, let D be a 
bound
ed open subset of X, and let T : D —> X be a continuous mapping 
which is locally nonexpansive on D. Suppose there exists z 6 D such that 
\\z - Tz\\ < ||x - Ta:|| for all x € dD. Then there exists a unique path 
t —>■ zt E D , t € [0,1) satisfying 

(4) zt = tT(zt) + (l-t)z,

where the strong limit lim^x- Zt exists and is a fixed point for T.

Actually the latter result is used to obtain, under the same framework, 
an even further extension for locally pseudo-contractive mappings and the 
reader can find such a discussion in [15]. However, we now turn around and 
we ask ourselves whether it is possible to obtain a convergence result of this 
nature for operators defined on domains whose interior is not necessarily 
non-empty,

and the answer is tak!

Theorem 7. Let X" be a uniformly convex Banach space. Suppose K is 
a closed and convex subset of X and let T : A —> X be a nonexpansive 
mapping on R with T(K) bounded and T(dA) C A- Then for each z E R 
there exists a unique path t —* Zt 6 A , t € [0,1), satisfying Zt = tTzt + 
(1 — t)z, where the strong limit limj_»i- z^ exists and is a fixed point ofT.

Nevertheless, in 1990 (see [14]), we obtained a quite significant exten
sion of Theorem 7, for pseudo-contractive mappings under an even weaker
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boundary condition than T(dK) C K. This condition is known as the weakly 
inward condition, which can be formulated as follows:

A mapping T : K —> X is said to satisfy the weakly inward condition 
if Tx € /d(z) for all x € D, where Id(%) is the inward set relative to D 
defined as:

Id(x) = {(1 - A)x + Ay : A > 0, y € D} .
Then we have

Theorem 8 ([14]). Let X be a Banach space and let X* be uniformly 
convex. Suppose K is a bounded closed and convex subset of X, and let 
T : K —> X be a pseudo-contractive mapping satisfying the weakly inward 
condition. Then for each z £ K there exists a unique path t —> Zt € K, 
t 6 [0,1), satisfying zt = tTzt + (1 — t)z, where the strong limit limt_,i- zt 
exists and is a fixed point of T.

Perhaps, we should use this opportunity to mention that [14] has been 
apparently overlooked by some of the specialists in the area. Recently a 
result on Hilbert spaces, which is a particular case of Theorem 5 of [14], has 
been published in [18, Theorem 1], and followed by an additional extension 
of the same author (see [19]), which is still a particular case of Theorem 5 
of [14].

Let us go back to Theorem 6 for a comment concerning its proof. Inciden
tally, results of this type normally require the existence of a fixed point to 
prove the convergence of the path described by (4). Nevertheless, the proofs 
of Theorems 7 and 8 do not explicitly need the existence of a fixed point. 
However, in the case of Theorem 6, we do require an existence theorem, 
which can be stated as follows:

Theorem 9. Let X* be a uniformly convex Banach space, let D be a 
bound- ed open subset of X, and let T : D —> X be a continuous mapping 
which is locally nonexpansive on D. Suppose there exists z € D such that 
||z — Tz\\ < ||a; - Tx|| for all x € dD. Then T has a fixed point in D.

We should point out that Theorem 9 holds true for pseudo-contractive 
mappings where the closed unit ball of the Banach space X enjoys the F.P.P. 
for nonexpansive self-mappings. In fact, this is a corollary of Theorem 1 of 
[15]-

As a consequence of Theorem 9 and this observation, we can state and 
prove the very same result in a slightly more general fashion, as it can be 
seen in our next result.
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Theorem 10. Let X be a Banach space for which the closed unit ball 
has the fixed point property for nonexpansive self-mappings, let D be a 
bounded open subset of X and let T : D —> X be a closed mapping which is 
locally nonexpansive on D. Suppose there exists z £ D such that 
||2 - Tz|| < ||a: — Till for all x 6 dD. Then T has a fixed point in D.

Proof. Due to Corollary 1 of [17] we derive that inf{||x — Ta;|| : x € D} = 0. 
Then we may choose w 6 D such that ||w - Tw|| < ||2 - TzH.

We now define the set Do = {x € D : ||x - Tx|| < ||z - T2||}. Therefore 
Do / 9 (since w € Do) and dDo C D. In adition, ||w — Tw|| < ||i — Ta;|| 
for all x E dDo- This means, we are in position of applying Theorem 9 to 
T defined on dDo- Therefore T has a fixed point in Dq.

Perhaps a more interesting question is, whether under the same assump
tions on T as in Theorem 10, the path described by (4) converges to a fixed 
point of T, while z satisfies the equation (2). The answer is yes, provided 
the space X enjoys some kind of smoothness.

Theorem 11. Let X* be a uniformly convex Banach space, let D be a 
bounded open subset of X, and let T : D —> X be a closed mapping 
which is locally nonexpansive on D. Then there exists a unique path t 
zt € D , t € [0,1), satisfying

(5) zt = tTzt + (1 - t)z,

where the strong limit lim(_j- zt exists and is a fixed point ofT.

The proof of Theorem 11 rests upon some preliminary facts which are 
similar to those obtained, when T is assumed to be continuous on all D. We 
should also mention that these facts will be stated and proven for pseudo- 
contractive mappings.

Proposition 2. Let X be a Banach space, D a bounded open subset of X, 
and T : D —► X be a closed mapping which is continuous and locally pseudo- 
contractive on D. For a fixed z 6 D, suppose sT(zt) + (1 - s)z = z, for some 
za e D and s € (0,1), and suppose for 0 < o < \\Tza - z||, B(za; ct) C D. 
Then for each t € (0,1) satisfying

(6) |t-s| < as(l - s)/2||z, - z||,

there exists a unique point Zt € B(za;a) such that Zt = tTZt + (I — t)z and 
moreover, this point satisfies

||2t - < II*. - *|| |< - ■s|/s(l - ■(7)
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Proof. Let B = B(zs;ct). Since T is globally pseudo-contractive on B, we 
shall show that the mapping Tt(x) = tTx + (1 - t)z satisfies the Leray- 
Schauder condition on dB for those t satisfying (6). To see this, suppose 
that for some a > 0 and x G dB we have Tt(x) — za = a(a: — za). Then there 
exists j G J(x — Zg) such that < tT(x) — tT(z,),j > < f||a; — z,||2 , which 
implies

(8) (q-/)||i-zs||2 < (1 -is-1) < >< \t - s| ||z-z,|| ||x-zs||/5.

Therefore, (a — t)o < |t — s| ||z — z,||/.s.
Due to the choice of o and the fact that t satisfies (6), we derive that 

a - t < (1 — s)/2 and thus a < 1. Therefore, by Theorem 1 of [12], the 
mapping Tt has a fixed point in B. This means equation (5) has a solution 
which can be denoted by zt. Now, by selecting a = 1 and x = Zt in (8), we 
easily see that zt satisfies (7) and the proof is complete.

W should observe that the next proposition is in some sense slightly 
more general than Lemma 3 of [14], although, for the sake of completion we 
include its proof.

Proposition 3. Let X be a Banach space, D be a bounded open subset 
of X, and T : D —* X be a closed mapping, which is continuous and 
locally pseudo-contractive on D. Suppose there exists z € D such that 
||z —Tz|| < ||x-Ti|| for all x G dD. Then there exists a unique continuous 
path t —> zt G D , t G [0,1), satisfying

(9) zt = tTzt + (l- t)z.

Proof. For t G [0,1), let Tt : D —> X be defined by Tt(x) = tTx + (1 — t)z. 
Since T is continuous at z, for an arbitrary £ > 0 we may select 6 > 0 so 
that T(B(z;ó)) C B(Tz;e). Hence we may choose o G (0,1) such that Tt 
maps the closed ball B(z;ó) into itself for all t G [0, cr). This implies that 
Tt has a unique fixed point zt G fl(z;ó) (see Theorem 1 of [12], and also 
Proposition 1 of [10]) satisfying the equation (9) for t G [0, cr). In the light 
of Proposition 2, it remains to show that (9) has a solution for t = cr. To 
see this, let tn -+ o such that ztn = tnTztn + (1 - tn)z. Since T is globally 
pseudo-contractive and continuous on dB(z-,6) (see Proposition 1 of [10]), 
there exists j G J(ztn - ztm) such that

< ztn ~ ztm,j > =< tnTztn - tmTztm -I- (tm - t„)z,j >
= (tn - tm) <Tztn- z,j> +tm <Tzt, - Tztn- Tztm, j> 
< Hill [l*n-fmlllTzt. -z|| + tm||zfn -ZtJl].
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Therefore ||ztn — 2tm|| < |/n — /„J ||Tz<b — -z||/(1 -<t) and since the sequence 
{Tztn - z} is bounded, we infer that {ztn} is a Cauchy sequence, which 
must converge to a point z„. Since £(z;ó) C D and T is continuous on D, 
we conclude that za = aT(za) + (1 - a)z.

Proof of Theorem 11. As we point out in the proof of Theorem 10, we 
allude to Corollary 1 of [17] to derive that inf{||x - Tx|| : x G D} = 0. Then 
we may choose w G D such that

(10) ||w — Tw|| < ||z — Tz||.

We now define the set Do = {x £ D : \\x - Ta;|| < ||z - Tz||}. Therefore 
Do 0 (since w G £>o) and 3Dq C D. In addition, ||w — Tw|| < ||z — Ta;|| 
for x G 3 Do- This means that T is continuous on Do, and therefore by 
Theorem 6, the path t —> wt (defined by (9) after substituting z by w) for 
which w satisfies (10) exists, and is uniquely defined on [0,1), and hence 
the strong lim^!- wt also exists. Since this holds for every w G Do which 
satisfies (10), we choose a sequence {zn} in Do such that zn —> z.
Then for each zn, the corresponding path can be written as z” = ZT(z")+ 
(1 - t)zn , t G [0,1]. From here we follow the argument used in the proof 
of Theorem 1 of [16] to prove the convergence of the path t —> zt, which 
satisfies (9), to a fixed point of T, as t —> l-.
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