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for Multifunctions

Abstract. In this paper, we consider a generalized vector variational in
equality and a generalized vector quasivariational inequality for multifunc
tions, and give some existence theorems of solutions for our inequalities.

1. Introduction and preliminaries. Recently, Giannessi [8] firstly in
troduced a vector variational inequality for vector-valued functions in a 
finite-dimensional Euclidean space. Since then, many authors (Chen et al. 
[2-7], Lee et al. [9-10], Lee et al. [11-16], Siddiqi et al. [19] and Yang. [22- 
24]) have intensively studied several kinds of vector variational inequalities 
for vector-valued functions or multifunctions in abstract spaces. In paricu- 
lar, Chen et al. [7] and Lee et al. [16] obtained some existence theorems of 
solutions of vector quasivariational inequalities for vector-valued functions 
in abstract spaces. Lee et al. [9] and Lee et al. [13-14] obtained existence 
theorems of solutions for vector variational inequalities for multifunctions 
with vector values in abstract spaces.
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In this paper, we will consider the following generalized vector variational 
inequality and generalized vector quasivariational inequalities for multifunc- 
tions. Our generalized vector variational inequality is a more general form 
than that of many authors [2, 5, 11, 14, 22-23]. Also, our generalized vector 
quasivariational inequality is a more general form than that of Chen et al. 
[7] and Lee et al. [16]

Let X be a nonempty convex subset of a Hausdorff topological vector 
space, Y be a Hausdorff topological vector space and Z be a Hausdorff 
topological vector space with a convex cone C such that intC / </>, where int 
denotes the interior. Let S : X —> 2X, T : X —> 2Y, and G : X x N x X —> 
2Z be multifunctions, where A is a subset of Y containing T(X).

Consider the following generalized vector variational inequality (GVVI) 
and generalized vector quasivariational inequality (GVQVI) for multifunc
tions;

(GVVI) • Find x E X and y 6 T(x) such that for any x € X and any 
z G G(x,y,x), z -intC.

(GVQVI) Find x € S(x) and y G T(x) such that for any x G S(x) and any 
z G G(x, y, x), z —intC.

In this paper, we give an existence theorem of solutions for (GVVI), using 
Fan-Browder fixed point theorem, and an existence theorem of solutions for 
(GVQVI), using Fan-Glicksberg-Kakutani fixed point theorem.

Now we give some definitions and preliminary results needed in the later 
sections.

Definition 1.1 [17,21]. Let X be a convex subset of a Hausdorff topological 
vector space and Z be a Hausdorff topological vector space with a convex 
cone C . Let f : X —> Z be a vector-valued function.

(1) f is said to C-convex if for any , x2 G X and A G [0,1],

/(Axi + (1 - A)x2) e A/(n) + (1 - A)/(x2) - C.

(2) / is said to be quasi C-convex if for any z G Z, the set 5(xr) := {x € 
X|z — /(x) 6 C} is convex.

Now we extend the above definition to the multifunction case.

Definition 1.2 [18] Let X be a convex subset of a Hausdorff topological 
vector space and Z be a Hausdorff topological vector space with a convex 
cone C. Let F : X —* 2Z be a multifunction.
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(1) F is said to be C-convex if for every £1,2:2 6 X, A G [0,1], 1/1 € F(xi) 
and 2/2 6 ^(2:2), there exists 3/3 € F(\xi + (1 — A)2:2) such that

Aj/i + (1 - A)jz2 - 2/3 € C.

(2) F is said to be quasi C-convex if for any z € Z, the set B(z) = {x 6 X : 
there is a y G F(x) such that z — y G C) is convex.

Remark 1.1. If F is C-convex, then F is quasi C-convex.

Definition 1.3. Let F be a multifunction from a Hausdorff topological 
space X to a Hausdorff topological space Y.

(1) F is said to be upper semi-continuous (shortly, u.s.c.) at S A if for 
every open set U in Y containing F(xq), there is a neighborhood V of 2:0 
in X such that F(x) C U for all x G V.

(2) F is said to be lower semi-continuous (shortly, l.s.c.) at xo G X if for 
every open set U in Y with F(2:o) fl U 0 </>, there is a neighborhood 
V of 2:0 in X such that F(x) ft U for all x G V. This definition 
is equivalent to: for any net {2:^} in X converging to 2:0 in X and any 
2/0 G F(x0), there exists a net {i/a} in Y such that ya € F(xa) for any a 
converging to yo.

(3) F is said to be continuous at 2:0 € X if F is u.s.c. and l.s.c. at 2:0 € X. 
Also, F is called continuous on X if it is continuous at every point x G X.

(4) F is said to be closed if the graph of F, graph(F) := {(2:, y) G X x Y : 
y G F(x)}, is closed.

Lemma 1.1. Let X be a convex subset of a Hausdorff topological vector 
space and F : X be a multifunction, where R is the real number
system.

(1) If F is quasi R+ -convex, then for any A E R, the set {2: G X : 3s G 
F(x) such that s < A} is convex, where R+ = {a G R : a > 0}.

(2) If F is compact-valued, the converse holds.

Proof. (1) is clear.
We will prove that (2) holds. Let A G R. Then we have 

{x G X :3s G F(F) such that s < A}
OO 1 >

cQ^2:GA:3sG F(x) such that s < A + - j. 
n=l

Suppose that
OO ll

(1-1) £ G Q 12: G x : 3s G F(x) such that s < A + - J
n=l
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and

(1.2) x {z € X : 3s € F(z) such that s < A}.

Then from (1.1), for each n G N, there exists a sequence {sn} in F(z) 
such that s„ < A + T. Since F(z) is compact, there exists a subsequence 
{sn.} of {sn} such that sni converges to s* G F(x). Hence s» < A and 
s„ G F(z). This is a contradiction to the fact that for any s G F(z), s > A 
from (1.2). Therefore we have

{x € X :3s G F(z) such that s < A}
OO |

= Q^zGX:3sG F(x) such that s < A + — j. 
n=l

By assumption, {z G X : 3s G F(z) such that s < A) is convex.

Lemma 1.2. Let X be a convex subset of a Hausdorff topological vector 
space and Z be a Hausdorff topological vector space with a convex cone C 
such that intC / </>. Let F : X —> 2Z be a multifunction.

(1) For any fixed e G intC and any fixed a G Z,

£(j/) := min{t GKiJ/Ga + te-C}

is a continuous and strictly monotonically increasing function from Z to 
R, that is, £(a) > £(b) if a - b G intC, where C is the closure of C.

(2) If F is quasi C-convex, then the composite multifunction £F : X —► 2R 
is quasi R+ -convex.

Proof. (1) By the argument similar to the proof of Theorem' 1.6 in 
[17, pp 83-85], we can obtain the conclusion of (1).

(2) By the argument similar to the proof of Proposition 2.3 in [18], we 
can obtain the conclusion of (2).

Lemma 1.3 [1]. Let X and Z be two Hausdorff topological spaces, and 
F : X —> 2Z be a multifunction.

(1) If F is u.s.c. and compact-valued, then F is closed.
(2) If Z is compact and F is closed, then F is u.s.c. and compact-valued.
(3) If X is compact, and F is u.s.c. and compact-valued, then F(X) is 

compact, where F(X) = (Jxex F(x).

We can easily prove the following lemma:
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Lemma 1.4. Let £ be a continuous function from a Hausdorff topological 
space Z to R and F be a multifunction from a Hausdorff topological space 
X to2z.

(1) If F is u.s.c., then the composite multifunction £F : X —> 2R is u.s.c..
(2) If F is l.s.c., then the composite multifunction £F : X —> 2R is l.s.c..

Lemma 1.5 [20]. Let X, Y and Z be Hausdorff topological spaces, A and 
B nonempty subsets of X and Y, respectively. Suppose that

(1) the set A is compact;
(2) a multifunction F : A X B —> 2Z is u.s.c.; and
(3) a multifunction y —* F(x,y) is l.s.c..

Then a multifunction T : B —> 2Z defined by T(y) = F(A,y), is contin
uous, where F(A, y)
=

Theorem 1.1 (Fan-Browder fixed point theorem). Let X be a compact 
convex subset of a Hausdorff topological vector space and T : X —► 2X a 
multifunction such that

(1) for each x € X, T(x) is a nonempty convex set; and
(2) for each y E X, T~1(y) := {x E X | y E T(x)} is open.

Then there exists an x E X such that x E T(x).

Theorem 1.2 (Fan-Glicksberg-Kakutani fixed point theorem). Let X be 
a compact convex subset of a locally convex Hausdorff topological vector 
space and T : X -+ 2X a multifunction such that

(1) for each x E X, T(x) is a nonempty convex and closed set ; and
(2) T is u.s.c..

Then there exists an x E X such that x E T(x).

2. Existence Theorem of Solutions for (GVVI). Now we give an 
existence theorem for the generalized vector variational inequality (GVVI) 
for multifunctions, using the Yannelis-Prabhakar selection theorem and the 
Fan-Browder fixed point theorem.

Theorem 2.1. Let X be a compact convex subset of a Hausdorff topo
logical vector space, Y be a Hausdorff topological vector space and Z be a 
Hausdorff topological vector space with a convex coneC such that intC (j). 
Suppose that

(1) T : X —> 2y is a multifunction with convex values and T 1 : F —> 2X is 
open-valued; and
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(2) G : X X Y x X —♦ 2Z is a multifunction satisfying
(i) G(x,y,x) C C for any x G X and y E T(x);

(ii) the multifunction G is u.s.c. and compact-valued, and the multifunc
tion (x,y) G(x,y,u) is l.s.c.; and

(iii) the multifunction u G(x,y,u) is quasi C-convex.
Then (GVVI) is solvable.

Proof. By Lemma 1.2, there exists a continuous and strictly monotonically 
increasing function £ from Z to R. By Yannelis-Prabhakar selection theorem 
in [25], there is a continuous function f : X —* Y such that f(x) G T(x) for 
all x G X. Define a multifunction Fn : X 2X, n = 1,2,•••, by F„(x) = 
{z E X :3s E £G(x, f(x),z);s < min £G(x,/(x),X) + ^}, for any x E X.

By Lemma 1.4, £G is u.s.c. and compact-valued, and by Lemma 1.3 
£G(x,/(x),X) is compact. Thus min £G(x,/(x), X) G £G(x,/(x),X) and 
hence F„(x) is nonempty for any x G X. Also, by Lemma 1.2, the mul
tifunction u £G(x,y,u) is quasi R+-convex and hence by Lemma 1.1, 
Fn(x) is convex for any x G X.

Furthermore, for any z E X, we have

•f’n V2) = {* G X : z G F„(x)}

= |x G X : [£G(x,/(x),z) - min£G(x,/(x),X)] n Q - intR+) / </>}.

By Lemma 1.4, the multifunction (x,z) £G(x,/(x),z) is u.s.c. and the 
multifunction x > £G(x,/(x),z) is l.s.c. and hence by Lemma 1.5, the 
multifunction x i-» £G(x, /(x), X) is continuous and compact-valued. Hence 
we can easily check that the function x i-+ min £G(x,/(x), X) is continuous. 
Since the multifunction x i-+ min£G(x,/(x),z) is l.s.c., the multifunction 
x £G(x,/(x),z) — min£G(x,/(x),X) is also l.s.c. and hence F“1(z) is 
open for z G X.

Consequently, for each n = 1,2, • • •, Fn : X —► 2X is a nonempty convex
valued multifunction such that F~J(z) is open for any z G X. Hence by 
Fan-Browder fixed point theorem, there exists xn G X such that 

(2J) xnEFn(xn), n = l,2,---.

Since X is compact, we may assume that xn —> x G X and so f(xn) —> 
/(x) G T(x). Moreover, it follows from the definition of Fn and (2.1) that 
for each n = 1,2,---, there exists sn E £G(x„,/(xn),xn) such that

sn < min<G(x„,/(x„),X) + -.n
(2.2)
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Since £G is u.s.c. and compact-valued, by Lemma 1.3, (,G(X x /(X) x X) is 
compact and hence we may assume that sn —► ś € £G(X x /(X) x X). Since 
the multifunction (z,z) •-> £G(z,/(z),z) is u.s.c. and compact-valued, 
by Lemma 1.3, its graph is closed and hence s 6 ^G(z, /(z),z). Again 
since the function x min £G(x, f(x), X) is continuous, from (2.2), s < 
min£G(ż,/(ź),X) and hence s = min£G(x, /(z),X). Moreover we have 
min^G(z,/(z),X) G £G(z, /(z),z). Thus there exists ź G G(ź,/(ż),ż) 
such that £(z) = min £G(ź,/(z)> X). Since f is strictly monotonically in
creasing, for any x G X and any z G G(z,/(z),z),

(2.3) z — z £ —intC.

Finally we prove that z — intC. Indeed, suppose the contrary, z € —intC. 
Since z G G(z,/(z),z), by assumption (2)(i) z £ C. Hence z - z G 

(—intC) + (—G) = -intC, which contradicts (2.3).
Let y = f(x). Consequently, there exist x G X and y G T(z) such that 

for any x G X and any z G G(x,y, z), z -intC.
This completes the proof of Theorem2.1.

3. Existence Theorem of Solutions for (GVQVI). Now we give 
an existence theorem for the generalized vector quasivariational inequal
ity (GVQVI) for multifunctions, using the Fan-Glicksberg-Kakutani fixed 
point theorem.

Theorem 3.1. Let X be a compact convex subset of a locally convex 
Hausdorff topological vector space, Y a locally convex Hausdorff topological 
vector space and Z a Hausdorff topological vector space with a convex cone 
C such that intC ^ </>. Let S : X -> 2X be a continuous multifunction 
with convex and compact values, T : X —> 2} a closed multifunction with 
convex values, and G:XxNxX—>2z a continuous multifunction with 
compact values, where N is a compact convex subset ofY containing T(X). 
Suppose further that

(i) G(x,y,x) C C for any (z,y) G X X N ; and
(ii) the multifunction u t-> G(x,y,u) is quasi C-convex.

Then (GVQVI) is solvable.

Proof. By Lemma 1.2, there exists a continuous and strictly monotonically 
increasing function £ from Z to R. By Lemma 1.4, (G is a continuous 
compact-valued multifunction. Also, by Lemma 1.3, T : X —> 2 is u.s.c.. 
Define a function hi : X X N —♦ R by

M(x,y)= min ĘG(x,y,s), (z,y)GXxlV. 
iGS(i)
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Now we show that M is continuous. Indeed, suppose that M is not con
tinuous at (xo,j/o)- There exist a neighborhood U of M(xo,yo) and a net 
(xj, yj)jeJ in X x N such that (xj, yj) —► (xo, j/o) and A/(xj, j/j) $ U, for all 
j G J. Since M(xj,yj) = mins6S(x,) £G(xj, t/j, s), there exists Sj G 6'(xJ) 
such that M^Xj,yj) G £G(xj, yj, Sj). Since 5(X) and £G(X X N X X) is 
compact, we may assume that Sj —> s0 G X and Af(xj, t/j) -> zo G R. Since 
S and £G are closed multifunctions, so € S(xo) and zq G £G(io, yo, so)-

Suppose that z0 Af(xo,JZo)« Then there exist s* G S(xo) and z* G 
^G(xo,J/o,-s*) such that z* < zq, i.e.,

(3.1) zo — z* E intR+.

Since the multifunction (x,i/) •-» £G(x,y, 5(x)) is l.s.c., there exists a net 
{z*} in R such that z* G £G(xj, yj, S(xj)) and z* —♦ z*. By (3.1), for j 
large enough Af(xj, j/_,) —z* G in/R+, i.e., M(xj, yj) > z*, which contradicts 
the definition of M(xj,yj). Hence Zo = A/(xo,j/o)- Therefore Af(xj,yj) —» 
Af(xo,?Zo), which contradicts the fact that Af(xj,j/j) £ U, for all j G J. 
Thus M is continuous.

Next we define a multifunction V : X x N —* 2X by

V(x,y) = {u G 5(x): min £G(x,i/,s) G £G(x,y,u)}, (x,y)EXxN. 
sES(x)

Since S(x) is compact, and £G is u.s.c. and compact-valued, for any 
x G X, fG(x, j/,S(x)) is compact in R and hence V(x,y) is nonempty 
for any (x,j/) G X X N. Now we show that graph(V) is a closed sub
set of X X N x X. Indeed, let {(xj, yj, Uj)}jęj be a net in graph(V) 
such that (xj,yj,Uj) —> (xo,2/o,«o) £ X x N x X. Then we have Uj G 

5(xj) and min46S(x.)^G(xj,j/j,s) = Af(xj,yj) G ^G(x_,-, yj, u_,). Since 5 
is a closed multifunction, uo G S(xq). Since M is a continuous function, 
^(xj,3/j) -* Af(x0,y0). Again since £G is a closed multifunction, we have 
Af(xo,j/o) = minj6S(xo)fG(xo,j/o,s) € <G(x0, yo, u0). Thus u0 G V(xo,j/o) 
and hence graph(V) is a closed subset of X X N X X.

Therefore, by Lemma 1.3, V is u.s.c.. It can be easily checked that V is 
closed-valued.

Now we show that V(x,j/) is a convex subset of X. For any ui,U2 G 

V(x,j/) and A G [0,1], let t0 = minseS(x) ^G(x, t/,s), then t0 G fG(x,y,tti), 
i = 1,2. Since S’ is convex- valued, A«! + (1 - A)u2 G 5(x). By Lemma 1.2, 
for each fixed (x,y) G X x N, the multifunction u i-* £G(x,j/,u) is quasi 
R+ -convex and hence by Lemma 1.1 the set

A := {u G X : there is a t G £G(x,j/,u) such that t < t0}
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is convex. Since Ui,U2 E A, Auj + (1 — A)ti2 € A and hence there exists 
t € £G(x, y,\u\ +(1 — A)«2) such that t < t0- By the definition of to, t = t0. 
This implies that mm3es^(G(x,y,s') E £G(x, y, Aui+(1-A)u2), and hence 
Aui + (1 - A)u2 E V(x,y). Thus V(x,y) is a convex set.

Therefore V is a nonempty, convex-valued, closed-valued and u.s.c. mul
tifunction.

Next we define a multifunction W : X x N —> 2XxN by

W(x,j/) = V(x,y) x T(x), (x,y)€XxN.

Then W is a nonempty, convex-valued, closed-valued and u.s.c. multifunc
tion. By Fan-Glicksberg-Kakutani fixed point theorem, there exists (x, y) E 
!V(x,y). Hence we have x E S(x), mmaeS(x) £G(x,y, s) E £G(x, y,x) and 
y E T(x). It follows from minseS(£)^G(x,y,s) E £G(x,y,x) that there ex
ists z E G(x, y, x) such that £(z) = minieS(£)f<7(x,j/,s). Since £ is strictly 
monotonically increasing, we can check that for any x E S(x) and any 
z E G(x,y, x), z — intC. The desired assertion is proved.

Consequently, there exist x E 5(x) and y E T(x) such that for any 
x E S(x) and any z E G(x, y, x), z £ -intC. This completes the proof of 
Theorem 3.1.
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