ANNALES UNIVERSITATIS MARIAE CURIE – SKŁODOWSKA LUBLIN – POLONIA

VOL. LI.2, 16

SECTIO A

1997

ANDRZEJ KRYCZKA and TADEUSZ KUCZUMOW

The Denjoy - Wolff - Type Theorem for Compact $k_{B_{H}}$ - Nonexpansive Maps on a Hilbert Ball

ABSTRACT. In this note we establish the metric character of the Denjoy-Wolff -type theorem for compact maps on a Hilbert ball.

1. Introduction. In [2], C.-H. Chu and P. Mellon proved the Denjoy-Wolff-type theorem for compact holomorphic maps on a Hilbert ball. In our short note we show that the above mentioned result has a strictly metric character.

2. Basic facts. Let (X, d) be a metric space. Then (X, d) is called finitely compact if each nonempty, bounded and closed subset of X is compact. We say that $f: X \to X$ is nonexpansive if $d(f(x), f(y)) \leq d(x, y)$ for each $x, y \in X$. The basic result due to A. Calka determines the behavior of a sequence of iterates of a nonexpansive mapping in a finitely compact space X.

¹⁹⁹¹ Mathematics Subject Classification. 46 G 20, 32 A 10 and 47 H 10.

Key words and phrases. The Kobayashi distance, kg-nonexpansive maps, fixed points, iterates of maps.

Theorem 2.1 [1]. Let f be a nonexpansive mapping of a finitely compact metric space X into itself. If for some $x_0 \in X$ the sequence $\{f^n(x_0)\}$ contains a bounded subsequence, then for every $x \in X$ the sequence $\{f^n(x)\}$ is bounded.

We recall now a few facts about the Kobayashi distance k_{B_H} on the Hilbert ball B_H . It is known that $k_{B_H}(w, z) = \arctan(1 - \sigma(w, z))^{1/2}$ for $w, z \in B_H$, where

$$\sigma(w, z) = \left[\left(1 - \|w\|^2 \right) \left(1 - \|z\|^2 \right) \right] / \left(|1 - (w, z)| \right)^2$$

[7], [8]. Directly from the above formula for k_{B_H} we get

Lemma 2.2. If $w_n, z_n \in B_H$ for $n = 1, 2, ..., \lim_n ||w_n|| = 1$ and $\sup_n k_{B_H}(w_n, z_n) < \infty$, then $||w_n - z_n|| \to 0$.

The most important result for k_{B_H} -nonexpansive mappings on B_H is due to K. Goebel, T. Sękowski and A. Stachura.

Theorem 2.3 [7], [8]. A k_{B_H} -nonexpansive mapping $f: B_H \to B_H$ has a fixed point if and only if there exists $z \in B_H$ with $\sup_n ||f^n(z)|| < 1$.

We also have

Theorem 2.4 [5], [7]. If a k_{B_H} -nonexpansive mapping $f : B_H \to B_H$ is fixed-point free, then there exists a unique point ξ of norm one such that all "ellipsoids"

$$E\left(\xi,\lambda
ight)=igg\{z\in B_{H}:rac{\left|1-(z,\xi)
ight|}{\left|1-\left|\left|z
ight|
ight|^{2}}<\lambdaigg\},$$

 $\lambda > 0$, are invariant under f and $\overline{E(\xi, \lambda)} \cap \partial B_H = \{\xi\}$ (here $\overline{E(\xi, \lambda)}$ denotes the norm closure of $E(\xi, \lambda)$). Moreover, for every $z \in B_H$ there exists $\lambda > 0$ such that $z \in E(\xi, \lambda)$.

If we consider the unit open ball B in a Banach space X and if k_B is the Kobayashi distance on B, then the following facts are important: i) the following formula

(2.1) $k_B(0,z) = \arctan ||z||$

is valid for each $z \in B$ [7];

ii) for $z_1, z_2, w_1, w_2 \in B$, $0 \le t \le 1$, and $r \ge 0$, inequalities $k_B(z_1, z_2) \le r$ and $k_B(w_1, w_2) \le r$ imply

(2.2)
$$k_B((1-t)w_1 + tz_1, (1-t)w_2 + tz_2) \le r$$

[10];

iii) every holomorphic self-mapping of B is nonexpansive in k_B [7].

Finally, we recall

Theorem 2.5 (The weakened version of the Earle-Hamilton theorem) [3]. For every $0 \le t < 1$ and for each k_B -nonexpansive mapping $f: B \to B$ the mapping $tf: B \to B$ is a k_B -contraction and therefore has a unique fixed point.

3. Iterates of compact k_B -nonexpansive maps with fixed points. In this part of our note we prove the theorem analogous to Theorem 2.3 for a compact k_B -nonexpansive self-map on the unit open ball B in a Banach space X. We say that the mapping $f : B \to B$ is compact if $\overline{f(B)}$ is compact in X.

Theorem 3.1. Let B be the open unit ball in a Banach space X and let $f : B \rightarrow B$ be a compact k_B -nonexpansive mapping. The following statements are equivalent

- i) f has a fixed point;
- ii) there exists $z \in B$ and a subsequence of its iterates $\{f^{n_i}(z)\}$ such that $\sup_i ||f^{n_i}(z)|| < 1$;
- iii) there exists $z \in B$ such that $\sup_n ||f^n(z)|| < 1$;
- iv) for each $z \in B$ we have $\sup_n ||f^n(z)|| < 1$;
- v) there exists a nonempty, closed, convex and f -invariant subset A of B such that $\sup_{z \in A} ||z|| < 1$;
- vi) there exists a nonempty f-invariant subset A of B such that $\sup_{z \in A} ||z|| < 1$;
- vii) there exists a sequence $\{z_n\}$ such that $z_n f(z_n) \to 0$ and $\sup_n ||z_n|| < 1$.

Proof. The implication $i) \rightarrow ii$) is obvious.

ii) \rightarrow iii). By (2.1) the assumption $\sup_{i} ||f^{n_{i}}(z)|| < 1$ implies

$$\sup k_B\left(0, f^{n_i}\left(z\right)
ight) = \sup \operatorname{artanh} \left\|f^{n_i}\left(z\right)
ight\| < \infty.$$

By the finite compactness of $(\overline{f(B)} \cap B, k_B)$ we can apply Theorem 2.1 and therefore $\sup_n k_B(0, f^n(z)) = \sup_n \arctan ||f^n(z)|| < \infty$. Hence $\sup_n ||f^n(z)|| < 1$. iii) \rightarrow iv). Let us take an arbitrary $w \in B$. Then we have $\sup_{n} x \tanh \|f^{n}(w)\| = \sup_{n} k_{B}(0, f^{n}(w))$ $\leq \sup_{n} [k_{B}(0, f^{n}(z)) + k_{B}(f^{n}(z), f^{n}(w))]$ $\leq \sup_{n} k_{B}(0, f^{n}(z)) + k_{B}(z, w) < \infty$

which gives $\sup_{n} \|f^{n}(w)\| < 1$.

 $iv) \rightarrow v$) Let us take an arbitrary $z \in B$. By iv) $\sup_n k_B(0, f^n(z)) < \infty$. It allows us to apply the method of an asymptotic center [4], [6], [7]. For every $w \in B$ the number $r(w) = \limsup_n k_B(f^n(z), w)$ is called an asymptotic radius of $\{f^n(z)\}$ at w and the number

$$r = \inf_{w \in \overline{convf(B)} \cap B} r(w)$$

is an asymptotic radius of $\{f^n(z)\}$ with respect to $\overline{convf(B)} \cap B$. Finally, the set $A = \{w \in \overline{convf(B)} \cap B : r(w) = r\}$ is an asymptotic center of $\{f^n(z)\}$ in $\overline{convf(B)} \cap B$. First we show that A is nonempty, compact and convex subset of B. Indeed, for each $\epsilon > 0$ the set

$$A\left(\epsilon\right) = \left\{w \in \overline{convf\left(B\right)} \cap B : r\left(w\right) \le r + \epsilon\right\}$$

is nonempty, k_B -closed and by (2.2) it is also convex. $A(\epsilon)$ lies strictly inside B because at $\tanh \|w\| = k_B(0, w) \le r(0) + r(w) \le r(0) + r + \epsilon$ for every $w \in A(\epsilon)$. Hence $A(\epsilon)$ is compact for each $\epsilon > 0$ and $A = \bigcap_{\epsilon > 0} A(\epsilon)$ is nonempty, compact and convex. Next we have $f(A) \subset A$.

The implications $v \rightarrow vi$ and $vi \rightarrow iii$ are obvious.

 $v \rightarrow i$). Since we have $\sup_{z \in A} ||z|| < 1$ the set $\overline{convf(A)}$ is compact and f-invariant. After applying either the Schauder theorem [11] or Theorem 2.5 we get an existence of a fixed point of f in B.

i) \rightarrow vii). Obvious.

vii) \rightarrow i). Since f is compact, the sequence $\{f(z_n)\}$ contains a subsequence $\{f(z_{n_m})\}$ which is convergent to $z \in B$. The point z is a fixed point of f.

100

Remark. The assumption that f is a compact map is essential because there exists a Banach space X with the open unit ball B and a fixed-pointfree holomorphic map $f: B \to B$ with $\sup_n ||f^n(z)|| < 1$ for each $z \in B$ (see [9]).

4. Denjoy-Wolff-type theorem. Now we are ready to prove

Theorem 4.1. Let H be a Hilbert space with the open unit ball B_H and let k_{B_H} be the Kobayashi distance on B_H . For each compact, k_{B_H} nonexpansive and fixed-point-free mapping $f : B_H \to B_H$ there exists $\xi \in \partial B_H$ such that the sequence $\{f^n\}$ of iterates of f converges locally uniformly on B_H to the constant map taking the value ξ .

Proof. Let us choose $z \in B_H$ and next $\lambda > 0$ such that $f^n(z) \in E(\xi, \lambda)$ for n = 1, 2, The mapping f is fixed-point-free and therefore Theorem 3.1 implies $\lim_n ||f^n(z)|| = 1$. Now it is sufficient to apply Theorem 2.4 to get $\lim_n f^n(z) = \xi$. By Lemma 2.2 we obtain locally uniform convergence of $\{f^n\}$ to ξ .

REFERENCES

- Calka, A., On conditions under which isometries have bounded orbits, Colloq. Math. 48 (1984), 219-227.
- Chu, C. H. and P. Mellon, Iteration of compact holomorphic maps on a Hilbert ball, Proc. Amer. Math. Soc. 125 (1997), 1771-1777.
- [3] Earle, C. J. & R.S. Hamilton, A fixed point theorem for holomorphic mappings, Proc. Symp. Pure Math. . 16 Amer. Math. Soc., Providence, R.I. (1970), 61-65.
- [4] Edelstein, M., The construction of an asymptotic center with a fixed point property, Bull. Amer. Math. Soc. 78 (1972), 206-208.
- [5] Goebel, K., Fixed points and invariant domains of holomorphic mappings of the Hilbert ball, Nonlinear Anal. 6 (1982), 1327-1334.
- [6] Goebel, K. & W.A. Kirk, Topics in metric fixed point theory, Cambridge University Press, 1990.
- [7] Goebel, K. & S. Reich, Uniform convexity, hyperbolic geometry and nonexpansive mappings, Marcel Dekker, 1984.
- [8] Goebel, K., T. Sękowski & A. Stachura, Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball, Nonlinear Anal. 4 (1980), 1011-1021.
- [9] Kuczumow, T., S. Reich & A. Stachura, Holomorphic retracts of the open unit ball in the l_∞-product of Hilbert spaces, Recent Advances on metric fixed point theory, (T. Dominguez Benavides, Ed.), Universidad de Sevilla, Serie: Ciencias, Núm. 48 (1996), 99-110.
- [10] Kuczumow, T. & A. Stachura, Iterates of holomorphic and k_D-nonexpansive mappings in covex domains in Cⁿ, Adv. Math. 81 (1990), 90-98.
- [11] Schauder, J., Der Fixpunktsatz in Funktionalräumen, Studia Math. 2 (1930), 171-180.

Institute of Mathematics Maria Curie Skłodowska University 20-031 Lublin, Poland e-mail: akryczka@golem.umcs.lublin.pl e-mail: tadek@golem.umcs.lublin.pl

183