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Abstract. We present characterizations of complex dynamical systems on 
homogeneous open unit balls in Banach spaces. More precisely, using holo- 
moprhic fixed point theory and a Hille-Yosida type characterization of holo
morphic generators of one-parameter semigroups on convex bounded do
mains, we establish a criterion for holomorphic mappings on homogeneous 
balls to be semi-complete vector fields in terms of one-sided interior esti
mates.

Let D be a domain in a complex Banach space X, and let Ho^DjX) 
denote the set of holomorphic mappings from D into X.

Definition. A mapping f € Hol(D,X) is said to be a semi-complete 
(respectively, complete) vector field on D if the Cauchy problem

(1) r /(«(«, x))=o

1 u(0,x) = a:

has a solution u(t,x) € D defined on R+ X D (respectively, R X D).
Note that if f € Hol(D,A) is semi-complete, then a solution of (1) is

unique and determines a one-parameter semigroup (flow) Ft(x) (= u(t, x))
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of holomorphic self-mappings Ft, t € R+, of D. The mapping f is the 
infinitesimal generator of this flow, i.e.,

(2) lim 
<—>o+

for all x G D, where the limit in (2) is taken with respect to the norm of X. 
The class of semi-complete vector fields on D will be denoted by hol(D).

If f is a complete vector field on D, then its flow Ft (defined on R) is a 
one-parameter group of automorphisms on D, i.e., Ft G Aut(P), t 6 R. In 
this case we will write that f G aut(P).

The motivation to investigate the class of semi-complete vector fields 
comes, for example, from the theory of stochastic branching processes [HTE], 
[SBA], fixed point theory [A-R-S], quantum mechanics [UH], optimization 
and control theory [H-M], and evolution equations [B-P],[BH2]. One of the 
important questions that often arises can be formulated as follows: What 
are the conditions for f G hol(D) to actually be in aut(D)?

If D is a bounded symmetric circular domain, then the class aut(P) of 
complete vector fields has been studied intensively. See, for example, [VJP], 
[I-S], [UH], and [SD]. In particular, it is known that aut(J9) is a real Banach 
Lie algebra, while hol(D) is only a real cone [R-Sl], [R-S2].

Our main purpose in this paper is to describe the class hol(D) of semi
complete vector fields in terms of one-sided estimates [K-Z], [SM]. This will 
also provide an answer to the above-mentioned question.

To motivate our approach we briefly review several previous results. For 
the one-dimensional case, namely D = A, the unit disk in C, an implicit 
condition which characterizes hol(A) was obtained by Berkson and Porta [B- 
P]. It was later shown by Abate [AM] that their condition can be rewritten 
in the form

(3) Re/(a:)i > -^Re/'(x)(l - |«|2), x G A.

In addition, Abate gives a generalization of this condition (in a more com
plicated form) to the case of the Euclidean ball D in Cn.

On the other hand, it follows directly from (2) that if f has a holomorphic 
extension to D, then f satisfies the so-called “flow invariance” boundary 
condition

(4) Re(/(a:),i) > 0, x G dD,

where (•,•) is the inner product in C". This condition is sometimes called 
a one-sided estimate. Such conditions play an important role in the deriva
tion of existence theorems for nonlinear equations (see [K-Z], [SM], [BFE],
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[BH1]). Unfortunately, even for the one-dimensional case it is not clear how 
to get (4) from (3) in such a situation.

At the same time, for n = 1 it can be shown, by using the maximum 
principle for harmonic functions, that (4) implies the following interior con
dition:

(5) Re/(i)i > Re/(0)ż(l — |x|2) , x € A.

We claim that even if f € Hol(A,C) does not extend continuously to dA, 
condition (5) is necessary and sufficient for f to be a semi-complete vector 
field. Moreover, this fact can be generalized in the same form to all infinite 
dimensional Banach spaces X with a homogeneous open unit ball D. Recall 
that a domain D is said to be homogeneous if for each two points x and 
y in D there is f £ Aut(jD) such that /(x) = y. Examples of Banach 
spaces with a homogeneous open unit ball include Hilbert spaces, the space 
L(H,K) of bounded linear operators between two Hilbert spaces H and 
K, those subspaces of L(H,K) which are J* algebras [HLA], and more 
generally, those Banach spaces which can be realized as JB* triple systems 
[UH].

Let X' denote the dual space of X. We use the pairing (x,x') to denote 
the value of a linear functional a:' € A' at the element x G X. The mapping 
J : X —> 2X defined by J(x) = {x1 € X' : (x,x') =|| x ||2=|| x' ||2} is 
called the (normalized) duality mapping of X.

Theorem. Let X be a complex Banach space with a homogeneous open 
unit ball D. Then
1- If f G Hol(J9, A) is a semi-complete vector field, then for each x & D, 

and each x' G J(x) the following condition holds:

(6) Re(/(x),x') > Re(/(0),x'>(l- || x ||2).

2. Conversely, if f G Hol(£), A) is bounded on each ball strictly inside D, 
and for each x € D there is x' G J(x) such that condition (6) holds, then 
f is a semi-complete vector field on D.

The proof of the Theorem is based on several results which are of inde
pendent interest.

The first of these results is an analogue of the Hille-Yosida theorem.
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Proposition 1. Let D be a bounded convex domain in X and let f G 
Hol(.D,X). Then f G hol(D) if and only if for each A > 0 the nonlinear 
resolvent R(A,f) = (I + A/)-1 is well-defined and belongs to Hoi (£),/?). 
In addition, for each t > 0 there exists the local uniform limit

«(t, •) = lim Rn(—,f) n—>oo n

and it is the solution of the Cauchy problem (1).

Proposition 2. Let D be a bounded domain in a complex Banach space 
X, and let {Tt}t>o C Hol(D, D) be a one-parameter semigroup on D. Then 
Ft : R+ —> Hol(D,£)) is differentiable in t > 0 if and only if it is locally 
uniformly continuous on R+ = [0,oo). In addition, in this case the limit in 
(2),

(2') lim = fv J t-o+ t J

is locally uniform on D and f G Hol(£), X) is a semi-complete vector field 
which is bounded on each ball strictly inside D.

Using Yosida approximations, the Earle-Hamilton fixed point theorem 
[E-H] and Propositions 1 and 2, one can establish that the class hol(£>) is 
a real cone. This fact, in turn, combined with the representation of aut(D) 
on bounded symmetric domains [UH], implies the following assertion.

Proposition 3. Let D be a bounded symmetric circular domain in X. 
Then hol(£)) admits the direct sum decomposition

hol(£>) _ G+ ® Go ,

where G+ = {h G hol(£>), h(0) = 0} and Go = {ga G aut(P) : 5o(i) = 

a — Pa(x), where a G X, Pa(x) is a homogeneous polynomial of degree 2 
such that Pia = — iPaj.

Now it is easy to show that if D is a homogeneous ball, then for each 
9a G Go, x G D, and x' G «/(x), the following equality holds:

Re(fla(x),x') = Re(a,x')(l— || x ||2).
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In addition, it follows by the Schwarz Lemma and (2) that for each 
h € G+ and x 6 D,

R.e(h(x),x'} >0, x' e J(x).

Thus for f € hol(D), setting a = /(0) and using Proposition 3 we obtain 
the first assertion of the Theorem.

Applying Proposition 1 and arguments similar to those used in [A-R-S] to 
show the existence of null points, we can now establish the second assertion 
of the Theorem.

Corollary. Let D be a homogeneous ball in X. Then a semi-complete 
vector field f is complete if and only if the linear operator A = if'(O) is 
Hermitian.
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