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Some Consequences of Fundamental 
Ordering Principles

in Metric Fixed Point Theory

Abstract. We present some results of metric fixed point theory, which 
can be derived from the following fixed point theorems involving a partial 
ordering: Zermelo’s Theorem, the Knaster-Tarski Theorem and the Tarski- 
Kantorovitch Theorem. Using ideas of Fuchssteiner and Mańka we also 
establish another generalization of Zermelo’s Theorem, which enables to 
give constructive proofs (without a help of the Axiom of Choice) of fixed 
point theorems due to Caristi and Khamsi-Kreinovich.

1. Introduction. There are three fundamental fixed point principles which 
hold on ordered structures: the Zermelo Theorem [33] for progressive maps, 
the Knaster-Tarski Theorem for isotone maps (cf. [11], p. 14) and the 
Tarski-Kantorovitch Theorem for continuous maps (cf. [11], p. 15). All the 
above principles are independent of the Axiom of Choice (abbrev., AC) and 
therefore many constructive aspects in the metric fixed point theory can be 
derived from them. In particular, Fuchssteiner [13] has shown that Kirk’s
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[21] fixed point theorem for nonexpansive maps can be proved construc
tively via the Zermelo Theorem, whereas the original proof given in [21] has 
relied on AC in the form of Zorn’s Lemma. Other consequences of the Zer
melo Theorem in metric fixed point theory are discussed, e.g., in papers of 
Buber and Kirk (in which a constructive proof of Soardi’s [28] theorem for 
nonexpansive maps is given), Fuchssteiner [13] (a new proof of Sadovski’s 
(cf. [31], p. 500) theorem for condensing maps is obtained too), and Mańka
[22] (a constructive proof of Caristi’s [9] theorem via a generalization of the 
Zermelo Theorem is given). Many results in metric fixed point theory can 
be also proved via the Knaster-Tarski Theorem as shown by Amann [1] (cf. 
also [31], p. 512). At last Baranga [4] has given a new proof of the Banach 
Contraction Principle using the Kleene fixed point theorem, which, in fact, 
is an equivalent reformulation of the Tarski-Kantorovitch Theorem.

In Sections 2 and 3 of this paper we survey results of our two ear
lier papers [17] and [18], in which we have discussed some consequences 
of the Knaster-Tarski Theorem and the Tarski-Kantorovitch Theorem, re
spectively. Section 4 is devoted to a study of some consequences of the 
Zermelo Theorem in metric fixed point theory. In particular, using ideas of 
Fuchssteiner [13] and Mańka [22], we generalize Zermelo’s result (see Th.9; 
in fact, Th. 9 turns out to be equivalent to the Zermelo Theorem), which 
enables us to give another constructive proof of the Caristi [9] fixed point 
theorem with using neither AC nor any of its weaker forms. Moreover, a 
proof of Th. 9 seems to be easier than a proof of the corresponding re
sult of Mańka (see Prop. 2 in [22]). As another application of Th. 9, we 
give a constructive proof of a fixed point theorem for dissipative maps on 
probabilistic metric spaces, which has been newly obtained by Khamsi and 
Kreinovich [20] with the help of Zorn’s Lemma.

2. The Knaster-Tarski Principle. By a chain in a partially ordered set 
(P, ^) we mean a linearly ordered nonempty subset of P. A selfmap F of 
P is said to be isotone if given x, y € P, x ■< y implies that Fx -< Fy.

Theorem 1 (Knaster-Tarski). Let (P, ^) be a partially ordered set and 
F : P h-> P isotone. Assume that there is a b £ P such that b < Fb and 
every chain in {x £ P : b X ®} has a supremum. Then F has a fixed point.

In [17] we have shown (without using AC) that Th. 1 yields the Banach 
Contraction Principle as well as its extension to uniform spaces proved by 
Tarafdar [29]. However, Th. 1 let us deduce on the existence of a fixed point 
only, and it does not imply the convergence of successive approximations. 
We have also shown in [17] that Th. 1 yields the following fixed point 
theorem of Angelov (cf. [2] and [30]), but in this case our proof has relied
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on Zorn’s Lemma. However, it seems to be interesting that this proof does 
not use any iteration method, a typical technique for proving results of such 
a kind.

Theorem 2 (Angelov). Let X be a complete Hausdorff uniform space with 
a uniformity generated by a family of pseudometrics {pa : a G A), and let 
f be a selfmap of X satisfying the inequalities

(1) Pc(fx,fy) < hapjM(x,y) for x,y G X and a G A,

where j is a selfmap of A and ha G (0,1) for a G A.
If sup{hjn-i(a)n G N} < 1 for each a G A, and there exists an xq G X such 
that

sup{pjn-i(a)(a:o,/a:o) : n G N} < oo,

then f has a fixed point.

The introducing of a map j is motivated by applications in a theory of 
neutral functional differential equations (cf. [2], [3], [30]). In order to prove 
Th. 2 via Th. 1 we have defined in [17] the following partial ordering in 
the Cartesian product X X R+, where R+ denotes the set of all nonnegative 
real functions on A:

(«, 0) (if, 0) Pa(x, y) < 0(a) “ 0(«), for each a e A.

If A is a singleton, i.e., X is a metric space, then the above ordering 
coincides with the one introduced by Ekeland [12]. By Lemma 1 [17] a 
completeness of X implies that every chain in (X x R+, ^) has a supremum. 
Next, we have defined in [17] the following selfmap F of X x R+ by

F(x,0) := (/x,h • (0o j)), for (x, 0) G X x R+,

where (h • (0o j))(a) := hQ0(j(a)). By Lemma 2 [17], condition (1) easily 
implies that F is isotone with respect to the ordering X defined by (2). 
So to prove Th. 2 via Th. 1 (with P := X X R+, and X and F defined 
by (2) and (3), respectively), we need to show that there exists a pair 
(xo,0o) € X x R+ such that (xo,0o) F(xo,0o). This problem leads to
the following functional inequality with an unknown function 0:

(4) 0(a) > 5(«) + /i(a)0(j(a)),
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for a € A, where g(a) := pa(xo, fxo) and b(a) := ha. If j is the iden
tity map (as is in Tarafdar’s [29] theorem and in the Banach Contraction 
Principle), then it is enough to put

<MQ) := 1 ha for a 6 A,

and then the proof of Th. 2 via Th. 1 is completed. However, in many 
applications j is not the identity map. Then, in order to solve (4 on A, it 
suffices to have a solution of (4) on each orbit of a map j according to the 
following

Lemma 1 (cf. [17]. Let j be a selfmap of an abstract set A, g : A R+, 
and h : A i-> [0,1]. If for each /3 6 A inequality (4) has a solution (f>p : 
Oj(/?) R+, where Oj(0) := : n £ N}, then there is a global
solution of (4), i.e., a function (j), which satisfies (4) for all a £ A.

To prove Lemma 1, we have used in [17] a Hahn-Banach type argu
ment. The proof of Lemma 1 given in [17] could be compared with a direct 
proof of a theorem on the existence of a non-trivial continuous functional 
on a normed space, the result, which is usually obtained as a corollary 
to the Hahn-Banach Theorem. Instead of one-dimensional subspaces (i.e., 
minimal, with respect to the inclusion, non-trivial linear subspaces), we 
have here orbits of a map j (i.e., minimal, with respect to the inclusion, 
j-invariant subsets of A). Instead of functionals, we consider solutions of a 
functional inequality. In both cases, using Zorn’s Lemma let us infer that 
there exists an appropriate object (a functional or a function, respectively) 
defined on the whole space, provided that such objects can be defined on 
appropriate minimal sets. Now, while there is no problem with defining 
a continuous linear functional on any one-dimensional subspace, a corre
sponding problem for a functional inequality is not so trivial and it can be 
solved, e.g., if all the assumptions of Th. 2 are satisfied (cf. the proof of 
Corollary 1 in [17]).

The fact that Th. 1 implies the Banach Contraction Principle was ob
served earlier by Amann [1], however, under the additional hypothesis of 
boundedness of a metric space (X,d) considered (cf. also [31], p. 512). He 
used a partial ordering X defined in the family of all nonempty closed sub
sets K of X with F(A') C K by K L iff K = L or K C cl(T(L)), where 
cl(T(L)) denotes the closure of the set T(L).

We conclude this section with a remark that Nadler’s [24] fixed point 
theorem, an extension of the Banach Contraction Principle to set-valued 
maps, can be derived from Smithson’s [27] generalization of the Knaster- 
Tarski Principle to multifunctions on ordered structures as we have shown 
in [17].
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3. The Tarski-Kantorovitch Principle. A selfmap F of a partially 
ordered set (P, is said to be continuous with respect to an ordering 
if for each countable chain C having a supremum, F(supC) = supF(C'). 
Each continuous map is necessarily isotone (cf. [11], p. 15).

Theorem 3 (Tarski-Kantorovitch). Let (P, ^) be a partially ordered set 
and F : P P continuous. Assume that there is a b 6 P such that b ■< Fb 
and every countable chain in {x E P : b x} has a supremum. Then the 
set of fixed points of F is nonempty. Moreover, p := sup{Pn(b) :n 6 N} is 
a fixed point of F.

Using the ordering defined by (2) and the selfmap F of X xR+ defined 
by (3), we have shown in [18] that Th. 3 yields Th. 2 (cf. the proof of Th. 
3 in [18]). Additionally, the convergence of successive approximations of 
a map f on X can be proved via Th. 2, the fact non-obtainable via the 
Knaster-Tarski Principle. In fact, at first we have shown in [18] that Th. 
3 implies the Banach Contraction Principle including both the existence 
of a fixed point and the constructive formula for it (i.e., the convergence 
of successive approximations). Next, we have proved Th. 2 by applying 
both Th. 3 and the Contraction Principle thanks to which we have avoided 
of using Zorn’s Lemma this time. Moreover, it suffices to assume in Th. 2 
that a uniform space X is sequentially complete. This property of X implies 
that every countable chain in (X x R+,^) has a supremum (cf. Prop. 1 
in [18]) as required in Th. 3. In a metric setting the reciprocal of the last 
implication also holds according to the following

Proposition 1 (cf. Prop. 2 in [18]). Let (X, d) be a metric space and X 
be the ordering in (X x R+, ^) defined by (2). The following conditions are 
equivalent.

(i) (X, d) is complete.
(ii) Every chain in (X x R+,^) has a supremum.
(iii) Every countable chain in (X x R+,^) has a supremum.
(v) Every increasing sequence in (X x R+,^) has a supremum.

In fact, condition (v) implies the sequential completeness of X as shown 
in [18], and we need to use the Axiom of Choice for countable families in a 
proof of the implication (v) => (i).

In [18] we have also examined possibilities of deriving from Th. 3 some 
results for nonlinear contractions. Given a function </> : R+ >-» R+ such that 
<£(0) = 0 and </>(t) < t for t > 0, we say that a selfmap f of a metric space 
(X, d) is a (/>-contraction if

d(fx,fy) < <t>(d(x,y)) for all x,y € X.
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Such mappings were studied by a number of authors (cf., e.g., [5], [6], [16], 
[17], [18], [23], [25], [34]). Actually, we have investigated in [18] consequences 
of Th. 3 restricted to the ordering X in (X x R+,^) defined by (2), i.e., 
(x,a) X (y,b) iff dd(x,y) < a - b, and the operator F on X x R+ defined 
by F(x,a) := (/a:, Ta), for x 6 X and a E R+.

In view of Prop. 2 and Prop. 4 in [18], the following theorem corresponds 
exactly to the restriction of the Tarski-Kantorovitch Principle to the above 
ordering and the operator F (cf. Th. 4 in [18]).

Theorem 4. Let f be a continuous selfmap of a complete metric space 
(X,d) such that, given a,b E R+ and x,y E X, d(x,y) < a - b implies that 
d(fx,fy) < Ta — Tb, where T : R+ i-> R+ is right continuous. If there 
exists a0 E R+ and xo E X such that d(xo,fxo) < a0 - Ta0, then f has a 
fixed point.

It is natural to assume that the set {a € R+ : Ta < a} is non-empty; 
for otherwise, Th. 4 would be trivial since d(xo,/zo) < ao - Ta0 implied 
then that x0 = fxo. It turns out that, in general, Th. 4 can be applied 
only to Banach contractions (then it suffices to put Ta := ha, where h is 
a contractive constant of /). In particular, the Rakotch [25] fixed point 
theorem cannot be proved via Th. 4 according to the following result (cf. 
Th. 6 and Rem. 4 in [18]).

Theorem 5. Let a function <f> : R+ i-> R+ be non-decreasing, 0(t) < t 
for / > 0 and t i—> </>(t)/t (t > 0) is non-increasing. Then the following 
conditions are equivalent.

(i) There is an h E (0,1) such that </>(t) < h t for all t 6 R+.
(ii) Given a complete metric space (X, d) and a (^-contraction f : X •—> X, 

f is a Banach contraction.
(iii) Given a complete metric space (X, d) and a (^-contraction f : X i—> 

X, there is a T : R+ i—> R+ such that the assumptions of Th. 4 hold and 
the set {a € R+ : Ta < a) is non-empty.

So in particular, if </>: R+ R+ is a function as in Rakotch’s [25] theorem 
with the property that for each ^contraction the Tarski-Kantorovitch Prin
ciple can be applied in the way described above, then each ^-contraction is a 
Banach contraction. So Th. 5 has a negative impact on the methodological 
possibilities of deriving from the Tarski-Kantorovitch Principle fixed point 
results for nonlinear contractions. Nevertheless, there exist </>-contractive 
maps (which are not Banach contractions), for which Th. 4 does ap
ply. In particular, each continuous superadditive function (f> such that 
lim^oo </>(t)/t = 1 generates such a ^-contraction (cf. Th. 7 and Rem. 
5 in [18]).
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4. The Zermelo Principle. A selfmap F of a partially ordered set (P, 
is said to be progressive iff x Fx, for all x £ X.

Theorem 6 (Zermelo). Let (P, be a partially ordered set and F : P 
P progressive. If every non-empty well-ordered subset of P has a supremum, 
then F has a fixed point.

In [19] we have shown that Th. 6 yields directly the following restriction 
of Caristi’s [9] fixed point theorem.

Theorem 7. Let f be a selfmap of a complete metric space (A,d) and a 
function 0 : X h* R+ be continuous. If d(x,fx) < 0(x) - for all
x E X, then f has a fixed point.

In Caristi’s theorem a function </> need not be continuous, but only lower 
semi continuous. Then, however, it can be proved that every chain C (hence 
every non-empty well-ordered subset) in X endowed with Br<ndsted’s [7] 
ordering defined by

(5) x<y iff d(i,y) < </>(a:) - </>(i/),

has an upper bound (cf. [10]), whereas a supremum of C need not exist. 
However, a supremum of C does exist if we assume that <f> is continuous (cf. 
the proof of Th. 2 in [19]), and then Th. 6 applies. In particular, Zermelo’s 
Theorem implies the Banach Contraction Principle (this fact was also ob
served by Fuchssteiner [13], but under the assumption of boundedness of 
A): if f is a Banach contraction with a contractive constant h £ (0,1), 
then f is progressive with respect to ordering (5) generated by a (continu
ous) function </>(x) := (1 — h)~1d(x,fx) (cf. [19]).

On the other hand, the assumption of Th. 7 on continuity of </> is not 
very strong, because it turns out that, under AC, Th. 7 is equivalent to 
Caristi’s theorem (cf. Th. 3 in [19]).

In 1988 Mańka [22] gave a wholly constructive proof of Caristi’s theorem. 
He used his generalization of Zermelo’s Theorem involving a notion of a sup- 
function (cf. [22] for a definition). Manka’s argument is a development of 
an idea of Zermelo’s [32] proof. Our purpose here is to establish another 
extension of Zermelo’s Theorem, which can be proved in a simpler way and 
which is strong enough to imply Caristi’s theorem without a help of AC. 
Actually, this extension is closely related to the following Bourbaki-Kneser 
Principle (in a terminology of Zeidler - cf. [31], p. 504).
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Theorem 8 (Bourbaki-Kneser). Let (P, be a partially ordered set and 
F : P P progressive. If every chain in P has a supremum, then F has a 
fixed point.

In fact, Th. 7 and Th. 8 are equivalent because of the following lemma 
(cf., e.g., [27]), which can be proved without AC.

Lemma 2. Let (P, be a partially ordered set. The following conditions 
are equivalent:

(i) every chain in P has a supremum;
(ii) every non-empty well-ordered subset of P has a supremum.

The following result extends Th. 8 (hence Th. 6) and it is closely related 
to Prop. 2 in [22]. We follow Manka’s advice at the end of his paper 
[22], but, in fact, the same idea (introducing a function F defined below) 
appeared earlier in Fuchssteiner [13]. Both authors used the partial ordering 
”to be an initial segment” (i.e., for T, S C P, T ■< S means that T C S and 
each s 6 S \ T is an upper bound of T), whereas we shall simply use the 
set-theoretical inclusion ”C”. The family of all chains in P is denoted by 
C(P).

Theorem 9. Let P be a partially ordered set and F : P P progressive. 
Assume that there exists a function o : C(P) •—> P such that for each 
C € C(P), o(C) is an upper bound of C. Then F has a fixed point.

We shall derive Th. 9 from the following restriction of Th. 8 to maps, 
on and to a family of subsets of a set, which are progressive under the set- 
theoretical inclusion. The family of all subsets of a set P is denoted by 
2P.

Theorem 10. Let P be a set, P be a non-empty subset of 2P and F be 
a selfmap ofP such that A C F(A} for all A £ P. If for every chain C in

IJCecC e ^en F has a fixed point.

Proof of Theorem 9. For C G C(P), define

(6) P(C):=CuF(<r(C)).

Since by hypothesis, for x G C, x ■< <r(C) F(o(C)), we infer that F(<r(C))
is an upper bound of C and hence F(C) is a chain, i.e., F is a selfmap of 
C(P). Clearly, F is progressive with respect to the set-theoretical inclusion. 
Moreover, if C is a chain in (C(P),C) then UCecC C(P) as can be
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easily verified. So we may apply Th. 10 (with V := C(P)) to infer that 
T has a fixed point Co. By (6), F(cr(Co)) £ Co so by the property of cr, 
F(a(Co)) f(Co), and, on the other hand, <r(Co) F(tr(Co)) since F is 
progressive. Hence, we get that cr(Co) is a fixed point of F.

□

Since the implications Th. 9 => Th. 8 => Th. 10 are obvious, we get 
(without AC) the following

Proposition 2. Th. 6, Th. 8, Th. 9 and Th. 10 are equivalent.

Remark 1. A counterpart of Th. 9 for 1FO(P), the family of all non
empty well-ordered subsets of P, substituted for C(P) (which corresponds 
to Prop. 2 in [22]) cannot be proved in the above way, since condition 
UcecC £ IVO(P) need not hold for every chain C in (IVO(P),C).

Remark 2. Th. 9 yields directly Caristi’s fixed point theorem, i.e., Th. 7 
with the assumption of lower semicontinuity of </> substituted for continuity 
of 0. To see it, it suffices to endow a set X with ordering X defined by (5) 
and for each chain C in (X, ^), put <r(C) := lim C, since each chain treated 
as a net is convergent and its limit is an upper bound of it (cf., e.g., [10]). 
Clearly, f is progressive with respect to X.

In the sequel we shall give a constructive proof of the Khamsi-Kreinovich 
[20] fixed point theorem for maps on probabilistic metric spaces (Menger 
spaces). For a definition of Menger spaces, we refer to [20] and, for a more 
detailed discussion, to [26]. We emphasize here that the authors of [20] as
sume that distribution functions are right-continuous, which is a deviation 
from the established terminology according to which distribution functions 
are left-continuous. In this case, however, some further changes are nec
essary. In particular, in Def.l [KK] the authors should assume that for 
x,y £ X, FXty € A+ (the set of all distributions F such that F(0) = 0) 
only if x y, because their condition (2) (Px,i(<) = 1 for t > 0 and x £ X) 
and right-continuity of distributions imply then that FX)a;(0) = 1, so that 

0 A+. Simultaneously, the condition that Fx,x(0) = 1 is also necessary 
for other purposes (see the definition of </>-dissipative map and condition (7) 
given below), so we really need to work with right-continuous distributions.

Let (X, F,t) be a Menger space, where t is a continuous T-norm, and let 
$:X >-» R+ be a lower semicontinuous function. Following [20] (with some 
slight changes, however) we say that a map / : X X is <j>-dissipative 
iff there exists a function h : R+ >-> (0,1] such that lime_o+ h(c) = 1, 
fi(a + b) < h(b)) for all a, b £ R+ and

h(4>(x) - </>(/a:)) < Fxjx(^x) - </>(/x)), for all x £ X.
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The above assumptions imply that h is non-increasing (cf.[KK]) and 
h(0) = 1.

Theorem 11 (Khamsi-Kreinovich). Let (X,F,t) be a complete Menger 
space and f : X X be </>-dissipative map. Then f has a fixed point.

In their proof of Th. 11 the authors of [20] have used twice AC for 
countable families, and Zorn’s Lemma. Our purpose here is to give a wholly 
constructive proof of Th. 11, without any choice. Following [20] we define 
the partial ordering X in X by

(7) x<y iff b(0(x) - </>(j/)) < ^(^(x) -

(Observe that X is reflexive thanks to the assumption that Fx,®(0) = I-)- In 
the sequel we shall need the following two technical lemmas. Both of them 
can be proved without AC.

Lemma 3. Let (X,F,F) be a Menger space with continuous t and let 
x,y ę X. If a net {x^j^gs converges to x, then Fx<rty{a) -> FXiy(a) for 
every a E R, which is a point of continuity of FXtV.

Lemma 3 can be proved by using a similar argument as in the proof of 
Lemma in [20].

Lemma 4. Let g : R i-> R be non-decreasing and xo,yo € R- If g(x) > J/o 
for every x > xo, which is a point of continuity of g, then g(x) > yo for all 
x > X0.

Lemma 4 is an immediate consequence of the well-known theorem (ob
tainable without AC) saying that the set of points of discontinuity of a 
monotonic function is at most countable.

Proposition 3. Let (X,F,t) be a complete Menger space endowed with 
the partial ordering X defined by (7). Then every chain C in (X,^) is 
convergent as a net, and limC is an upper bound of C.

Proof. Let C be a chain in (X, X). We may treat C as a net by putting S := 
C and xo := o for o E S. By (7), if a, (3 E C and a ■< 0, then b(</>(xa) — 
<£(«/?)) < FXatXp(<f>(xa) - </>(xp)), so <t>(xa) > (ftxp), i.e., {0(xtr))(Tgc is 
decreasing, hence convergent to some r > 0. We show that the net {x^j^gc 
is Cauchy. Let a > 0 and b E (0,1). By hypothesis, there is a to > 0 such 
that b(t) > 1 - ft for all t E [0,to]. Since {<^(x(T))<rgcr is Cauchy, there is
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a a 6 C such that if a -< a ■< (3, then 0 < <J>(xa) — ^(x^) < min{a,to}- 
Hence and by monotonicity, for such a and (3, FXatXg(a) > FXaiX/J(</>(a;a) — 
(/•(x^)) > >1-6. That means {xa}a^c is Cauchy, hence
convergent to some xo G X- Then, by hypothesis, </>(xo) < lim^gc —
r, and r < 0(xff) for a 6 C. Hence, if a,/3 G C and a X (3, then

FXa,Xfi(,aa) > FXa<Xg > 6(aa),

where aa := </>(xa) — ^>(xo) and aap := </>(xa) —
Fix an a € C. Let a' > aa and a' be a point of continuity of a function

FXa,x0- Then, FXatXg(a') > FXaiXg(aa) > h(aa). Hence and by Lemma 
3, FXatXo(a') = ]impec FXaiXg(al>) > h^da). By Lemma 4, we get that 
Tia,x0(a) - ^(a») for all a > aa. Since FXa,Xo is right-continuous, we 
may infer that FXatXo(aol') > h(aa). That means xq (= limC) is an upper 
bound of C.

□

Th. 11 is an immediate consequence of Th. 9 and Prop. 3.
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