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Remarks on Failure of Schauder’s Theorem 
in Noncompact Settings

Abstract. This work is intended as a kind of survey. Our aim is to state 
some facts concerning various equivalent formulations of Schauder’s Fixed 
Point Theorem. Consequences of failure of the theorem in noncompact 
settings are also discussed. We do not present many new results, what 
follows should rather be treated as a material for seminar discussions.

Let C be a nonempty bounded closed and convex subset of a Banach 
space X. We will deal with continuous mappings T : C —► C. If T is a 
lipschitzian mapping with constant k > 0, i.e.

||T® - Ty\\ < fc||z - j/|| for x,ytC,

we write T € £(fc). If T 6 £(fc) for some k > 0 we will simply 
write T € C . Let us begin with a general version of the classical Brouwer’s 
Theorem [2].

Theorem 1 (L. E. J. Brouwer 1912). Any nonempty bounded closed and 
convex subset of a finite-dimensional Banach space X has the fixed point
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property for continuous mappings, i.e. every continuous mapping T‘.C-*
C has a fixed point x = Tx.

Eighteen years later when the needs forced the studies of infinite-dimen­
sional spaces J. Schauder [12] published his famous theorem.

Theorem 2 (J. Schauder 1930). Every nonempty convex and compact 
subset C of a Banach space X has the fixed point property for continuous 
mappings.

The proof of Schauder’s Theorem is based on the following fact. By 
compactness of C every continuous mapping T : C —> C can be uniformly 
approximated with a desired accuracy by finite dimensional mappings. More 
precisely, for any £ > 0 there is a continuous mapping Tj : C -> C such 
that Ti(C) C C n Xo , where Xo is a finite dimensional subspace of X, and 
for any x G C ,

\\Tx - 1\x\\ < e.

Using this fact and observing that 1\ : C A Xo —> C A Xo has a fixed point 
by Brouwer’s Theorem, a straightforward compactness argument shows that 
T has a fixed point, too.

One can continue this type of approximate reasoning and observe that 
every finite dimensional mapping (and thus every compact mapping) can 
be approximated with a necessary accuracy by lipschitzian mappings. This 
can be proved by applying Weierstrass-Stone’s Theorem to each coordinate 
of any finite dimensional mapping and approximating it by a polynomial 
and then utilizing some ’’technical tricks”.

Returning to our situation, for any £ > 0 there is T2 G £ such that 
for any x G C the inequality ||Ta; — 72®|| < £ holds. And now, a simple 
compactness argument gives the following, seemingly weaker, equivalent to 
Schauder’s Theorem.

I. Every nonempty convex and compact subset C of a Banach space X has 
the fixed point property for mappings of class C.

In other words

II. If C is a nonempty convex and compact subset of a Banach space X 
then every lipschitzian mapping T : C -* C has a fixed point.

And, without repeating standard assumptions on C, we can also state 
next result which might appear even weaker than the previous one but it is 
also an equivalent to Schauder’s Theorem.
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III. There is ko > 1 such that every mapping belonging to £(k0) has a 
fixed point (C has the fixed point property for £(fco))-

Indeed, this is an immediate consequence of the following fact.
If T £ £(h) then for any A € [0,1] the mapping defined by setting

T\ = (1 - A)/ + AT belongs to £(1 — A + Afc). Thus for A < (ho - 1)/(A: — 1), 
T\ € £(ho) and therefore has a fixed point. The conclusion (III implies II) 
now follows from the fact that T and T\ have common fixed points, i.e. 
FixT = Fix Ta.

Let us add another version of Schauder’s Theorem to our list of its equiv­
alents.

IV. If a continuous mapping T : C —> C is such that for every x G C , 
||x - Tx|| = d = const then d = 0.

It is obvious that Schauder’s Theorem implies IV. For the reverse impli­
cation, observe that supposing there is a mapping T : C —* C which is 
fixed point free, we have (by compactness of C) minx6c ||x - Tx|| = d > 0 
and therefore for Tj : C —* C defined by setting

T\x = x
Tx — x 

+ liri -1||

the following condition holds ||x — Tix|| = d = const > 0.
After the preceding short discussion of equivalent formulations of Schau­

der’s Theorem let us restrict our attention to noncompact sets C.
S. Kakutani [7] was probably the first who in 1943 showed that there are

continuous mappings of the unit ball in Hilbert space without fixed points. 
A stronger result is due to V. Klee [8].

Theorem 3 (V. Klee 1955). For any nonempty closed convex but non­
compact subset C of a Banach space X there exists a continuous mapping 
T : C —> C which is fixed point free.

From the topological point of view Klee’s result closed one problem. And 
now the theorems of Schauder and Klee can be mixed in one property.

V. Any nonempty bounded closed and convex subset C of a Banach space 
X has the fixed point property for continuous mappings if and only if it is 
a compact set.

But there are still problems of qualitative type which remain open. First 
examples of fixed point free mappings were the nonexpansive mappings
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(mappings of class £(1)) or their compact perturbations. One can easily 
prove that although they do not have fixed points all of them satisfy the 
condition inf{||x — Tx|| : x € C} = 0.

First examples of mappings which do not satisfy the above condition were 
given by K. Goebel [3] in 1973. His paper initiated studies of the so-called 
minimal displacemet problem.

In noncompact settings, given T : C —* C, we define minimal displace­
ment dr of T by the formula dr = inf{||x - Tx\\ : x G C} . The minimal 
displacement for a given class T is defined by = sup{dT : T G T}.
We try to find the number °r at least its estimates.

The class £(fc) of all the lipschitzian mappings with constant k is of 
special interest and has been investigated. We abbreviate <pc(£(ik)) to 
<pc(fc). One can easily prove that <pc(M < (1 - l/fc)r(C), where r(C) is 
the Chebyshev radius of C.

It is known [3] that there are sets C for which the above estimate is 
sharp and there are also sets for which it is not. Several questions posed in 
Goebel’s paper still remain open. Some further results in solving minimal 
displacement problem for the unit ball B/j in Hilbert space were obtained 
but unfortunately the progress is very slow. We still do not know the func­
tion . Fundamental in this theory is the following result of Sternfeld
and Lin [10].

Theorem 4 (Y. Sternfeld, P. K. Lin 1985). For any noncompact bounded 
and convex subset C of a Banach space X there is a lipschitzian mapping 
T : C —► C for which dr = inf {||x - Tx|| : x G C} > 0.

Observe now that using standard approximation argument presented 
in the first part of our paper one can find such a mapping in each class 
£(&), k > 1. Hence, the above theorem has its following equivalent formu­
lation.

VI. If C is noncompact then <pc(k) >0 for k > 1.

We can also get an analogue of IV.

VII. If C is noncompact then in each class £(k), k > 1, there is T such 
that for any x G C , ||x — Tx|| = const > 0 .

To prove it we assign to a lipschitzian map T with dT > 0 the mapping 
Ti defined by putting

Tix = x + dT Tx - x
||Tx-<
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Of course T\ is lipschitzian and dr, = dr = H# — ?ia;|| for any x € C. 
Having such a mapping in the class £ we can find another mapping in every 
class £(fc) by taking a linear combination of T\ and the identity (see III).

Mappings with positive minimal displacement and in particular with con­
stant displacement behave in a special way.

Let T : C —► C, T € £(fc), be such that ||x - Ta:|| = dr for all x 6 C . 
Given x 6 C consider three points: Tx, T2x and u = %(Tx + T2x). We 
have

df = \\Tu — u|| = -Tu + -Tu - }-Tx - ^T2x 
2 2 2 2

< |*ll« - x|| + - T®||

< -U||x - Tx|| + - T2x\\ + -U||T® - T2x|

= - T2®|| + ~kdT.

Thus

(1) Ik-rM dj'.

Therefore, although T2 is not necessarily a mapping with constant dis­
placement, the following inequality holds

(2) dT2 > 2 -

Observe that for k close to 1 the coefficient on the right side of the inequality 
is close to 2. As an obvious consequence of the above consideration we can 
state our next proposition.

VIII. If C is noncompact then for any e > 0 there is a continuous mapping 
T : C —> C such that dj > 0 and d^ > (2 — £)d? •

Of course as such a mapping T we can take any lipschitzian mapping 
with constant sufficiently close to 1 which displaces any point x E C by 
the same fixed distance.

On the other hand, the above consideration leads to the following equiv­
alent to Schauder’s Theorem.
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IX. If C is compact then for any £ E (0,2] and any continuous mapping 
T -C -> C there is x € C such that

||x-T2x|| <(2-e)||x-Tx||.

(The inequality sign < can be replaced by strict inequality sign < or 
by equality sign).

In particular, for £ = 2 we have the following, seemingly weaker, equiv­
alent to Schauder’s Theorem.

X. IfC is compact then any continuous mapping T :C -* C has a periodic 
point with period 2 (i.e. T2 has a fixed point).

With such observations studies of so called rotative mappings were initi­
ated by K. Goebel and M. Koter [5, 9] and one chapter in [4] is also devoted 
to such mappings.

Let a positive integer n and a real number a < n be given. A continuous 
mapping T : C —* C is said to be (a, n)-rotative if for each x E C,

(3) ||a: - Tnx|| < a||x - Tx||.

Observe that the notion of rotativeness is especially justified when we 
consider mappings with constant displacement. For such mappings T we 
have ||x - Tnx|| < n||x - Tx\\ and the inequality (3) with a < n is re­
sulted only by a certain ’’turning” of a sequence of successive iterations 
x,Tx,T2x,... ,Tnx,.... If we do not suppose that T has constant displace­
ment this inequality may also be caused by a certain ’’shortening” of the 
distances between consecutive terms of this sequence and the significance 
of the notion ’’rotative” is not that clear. In both cases (n, 0)-rotativeness 
means n-periodicity (Tn = Id ).

The following theorem is basic in the theory of rotative mappings [6].

Theorem 5 (K. Goebel, M. Koter 1981). Fora < n any nonexpansive and 
(n, a)-rotative selfmapping T : C —> C of a closed and convex set C has a 
fixed point.

Note that in this theorem no special geometrical structure is assumed on 
C. We even do not require boundedness of C. As there exist examples of 
bounded sets C which are fixed point free for nonexpansive mappings we 
can write the following remark.
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XI. There exists a convex closed and bounded set C and a mapping T : 
C —> C, T € £(1) which is not (n,a)-rotative for any n and a < n.

Theorem 5 has some further extensions. Given n and a with a < n set 
7n(a) = sup{fc : any h-lipschitzian and (n, a)-rotative mappingT : C —► 
C has a fixed point} . We abstract here from the set C and the space in 
which it is included and we have the following [5].

Theorem 6 (K. Goebel, M. Koter 1981). For any n and a < n, 7„(a) > 1 •

In the definition of 7n(a) we can restrict ourselves either to a given set 
C or to subsets of a given space or to certain subclasses of class £(fc).

For example, we can consider only classes of mappings with constant 
displacement. In such a class our definition is the following:

7^onst(a) = sup | A: : the only fc-lipschitzian and (n, a)-rotative mapping 

T : C —> C with constant displacement is T = Zdj

= inf|fc : there is fc-lipschitzian and (n, a)-rotative mapping T : C —> C 

with constant positive displacement j .

Of course we have 7n(a) < 7n°nst(a). Not much is known about the values 
of 7„(a). First estimate 72(a) > } ((2 — a) + ^/(2 — a)2 + a2) proved by

K. Goebel and M. Koter in [5] is not sharp [4]. It is not even known 
whether 72(0) < +00 or whether there exists a set C and a fixed point 
free fc-lipschitzian mapping T : C —> C such that T2 = Id .

Let us observe that substituting a = 2(2/fc — 1) into (1) or (2) we can 
now, after our modification, write 72°nst(a) > 4/(a + 2).

By the above remarks the propositions VIII, IX and X can be modified .

XII. If C is noncompact then for any £ > 0 there is a continuous mapping 
T : C —► C such that dr > 0 and dr* > (n - £)dr •

Once again as such the mappings there have to be h-lipschitzian mappings 
(with constant or not displacement) and with k sufficiently close to 1.

We continue in this fashion to get, for any £ £ (0, n], the following 
equivalent to Schauder’s Theorem.
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XIII. IfC is compact then for any e > 0 and for any continuous mapping 
T:C->C there exists x eC such that ||x - Tnx\\ < (n - £)||x - Tx||.

In particular, for e = n we get another equivalent formulation.

XIV. If C is compact then every continuous mapping T : C -> C has 
periodic point with period n (i.e. an x such that Tnx = x).

We conclude our discussion with some constructive examples of lipschitz­
ian mappings with constant displacement.

Example 1. [4] Let us consider Banach space of continuous functions 
C[0,1] and take C = {x € C[0,1] : 0 = x(0) < x(t) < x(l) = 1, t € [0,1]} . 
Let e(t) = t on [0,1]. Select a € C, ot / e , and define Ta : C —► C 
by setting (Tax)(t) = a(x(/)) = (o o x)(Z). The mapping Ta inherits 
the behaviour of a, i.e. if a(Z) - a(s)| < k\t — s| for t,s 6 [0,1] 
then ||Tax-Taj/|| < k\\x- y|| for x,y € C. Since any function x € C takes 
on all the values from the interval [0,1], Ta has the following property:

||Tax - x|| = max{|a(x(t)) - x(t)| : t € [0,1]}
= max{|a(t) -1| : t G [0,1]} = ||o - e|, = dTa = const.

Thus Ta has a constant positive displacement. Moreover, = TQ« where 
an denotes the n-fold iteration of a. Thereby all the iterates of Ta have 
also constant displacement d^ — ||e — on||.

Now consider the special case where o(t) = min{fcf, 1} . Thus we have 
dra = 1 — 1/^ aRd dr? = 1 - 1/h2 = (1 + l/fc)^ . Comparing this with 
the definition of 72°"st(a) and setting a = 1 + 1/fc we get

+oo for a < 1,
l/(a - 1) for 1 < a < 2.

We know only this estimate which is probably not sharp.

Second example is connected with the result proved by B. Nowak [11] 
for a certain class of spaces and then generalized onto all Banach spaces by 
Benyamini and Sternfeld [1].

Theorem 7 (B. Nowak 1979, Benyamini and Sternfeld 1983). For any 
infinite dimensional Banach space X there is a lipschitzian retraction of the 
unit ball onto the unit sphere.

It means that there exists a mapping R : B -+ S m a class £(fc) 
such that Tx = x for all x G S. This theorem shows how different is
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finite dimensional case of compact balls from the infinite dimensional one of 
noncompact balls. The fact that in finite dimensional case S is not a retract 
of the ball is equivalent to Brouwer’s Theorem (Theorem 1). Theorem 7 can 
be proved as a consequence of the result of Sternfeld and Lim (Theorem 4) 
[10].

Example 2. Assume that R : B —> S is a lipschitzian retraction with 
constant k (R e £(fc)). Given I > k define T by setting T® = « — Rx/l. 
T is a homeomorphism of B onto (1 — 1/Z) B . Moreover, T € £ (1 + k/l) . 
For I = k the mapping T defined by the formula Tx = x - Rx/k be­
longs to class £(2) and maps B onto (1 — l/k)B although not necessarily 
homeomorphically. In both cases dp = 1 /Z = const. To obtain examples of 
mappings described in Proposition VIII and Proposition XII one can take 
mappings from this example with sufficiently large I.

The problem is how to find at least one constructive example of the 
retraction R. Let us end this article by giving such an example.

Example 3. Let X = C[0,1]. For x € B , define A by setting

(A®)(t) = |®(Z) + 1 - 2(1 - ||®||)Z| - 1 + 2(1 - ||®||)/.

Observe first that for any x 6 S we have Ax = x. It is easy to prove that 
A E £(5). A little bit more difficult is to prove that inf {|| A®|| : x 6 B} > 0 
and to find its value. The retraction R : B —> S can be obtained by 
setting Rx = A®/||A®||. Thus the retraction is defined constructively, all 
the detailed computation being left to the reader.
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