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Abstract. This article is a survey of results on Banach spaces containing 
asymptotically isometric copy of Z1 and co, and their relationship to the 
fixed point property.

The concept of a Banach space containing an asymptotically isometric 
copy of f1 is a useful tool in identifying Banach spaces that fail the fixed 
point property. It was introduced by Dowling and Lennard in [DL] where 
it was initially used to prove that nonreflexive subspaces of ZA[0,1] fail 
the fixed point property. Soon after, Dowling, Lennard and Turett [DLT1] 
used this notion to prove that every equivalent renorming of ^(T), for T 
uncountable, fails the fixed point property. In the same paper, the concept 
of a Banach space containing an asymptotically isometric copy of co was 
introduced and it is proved that Banach spaces containing an asymptotically 
isometric copy of co fail the fixed point property. Thus the concept of a 
Banach space containing an asymptotically isometric copy of co is another 
tool in identifying Banach spaces failing the fixed point property.

This article is a survey of results on Banach spaces containing asymp­
totically isometric copy and cq, and their relationship to the fixed point
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property. We have divided this paper into five sections. In section 1 we 
define the concepts of a Banach space containing an asymptotically isomet­
ric copy of f1 or co. We prove that such Banach spaces fail the fixed point 
property. We also give alternative methods for recognizing asymptotically 
isometric copies of ft and co. In section 2 we give examples of classes of 
Banach spaces containing asymptotically isometric copies of f1 and co as 
well as examples of renormings of f1 (respectively, co) that fail to contain 
an asymptotically isometric copy of £’ (respectively, co). Section 3 deals 
with refinements of the James Distortion Theorems. The main result of 
this section is that Banach spaces containing co fail the asymptotic fixed 
point property. Duality is the topic in section 4 and the main result is 
an asymptotically isometric analogue of a classical result of Bessaga and 
Pełczyński [BP]. Finally, in section 5 we consider the relationship between 
Banach spaces containing an asymptotically isometric copy of Co and Ba­
nach spaces with weak normal structure. We also prove that Banach spaces 
with the generalized Gossez-Lami Dozo property do not contain a copy of 
c0.

This article is the text of of a series of lectures given by the first author 
at the Workshop on Fixed Point Theory held in Kazimierz Dolny, Poland 
from June 23-28, 1997. The first author would like to thank the Workshop 
organizers for the opportunity to participate in the workshop and for the 
wonderful hospitality he received during his visit to Poland.

1. Asymptotically isometric copies of f1 and co- As a way of moti­
vating the definitions of a Banach space containing asymptotically isometric 
copies of f1 and co, we begin by recalling James’s Distortion Theorems.

Theorem 1.1. [J] If a Banach space X contains an isomorphic copy of f1 
and if e > 0, then there exists a sequence (xn)n in X so that

oo OO OO

c1 -£) 52 w || 52 “"M 52 i“"i ’
n=l n=l n=l

for ail (on)n G f1.

Theorem 1.2. [J] If a Banach space X contains an isomorphic copy of Co 
and if £ > 0, then there exists a sequence (in)n in X so that

oo
(1 -e)sup|on| < || Yanxn

71 II
n=l

for all (an)n G c0.

< sup|an|
71
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Definition 1.3. [DL] A Banach space X is said to contain an asymptoti­
cally isometric copy of if there is a null sequence (en)„ in (0,1) and a se­
quence (i„)„ in A so that £^=1(l-e„)|an| < || £™=1 a„x„|| < Źn=i l«n| > 

for all (a„)„ € t1.

Definition 1.4. [DLT1] A Banach space X is said to contain an asymp­
totically isometric copy of co if there is a null sequence (£„)„ in (0,1) and a 
sequence (in)n in X so that supn(l - £n)|an| < || £^=i anxn|| < supn |a„|, 
for all (an)n € c0.

The usefulness of these notions can be found in the next two results.

Theorem 1.5 [DL]. If a Banach space X contains an asymptotically iso­
metric copy of P, then X fails the fixed point property for nonexpansive 
mappings on closed bounded convex subset of X.

Proof. By assumption there is a null sequence (en)n in (0, 1) and a sequence
(xn)n in X so that £^(1 - £„)|a„| < || £“=i anxn|| < £~=1 |a„|, for all
(fln)n € f1. Let (An)„ be a strictly decreasing sequence in (l,oo) with
lim A„ = 1. By passing to subsequences if necessary we can assume that 

n—*oo

An+l < (1 — £n)An •
Define yn = Anxn, for all n € N, and let C = ćo({y„ : n G N}), the 

closed convex hull of the sequence (yn)n. Clearly, C is a closed, bounded 
convex subset of X whose elements are of the form z = tnyn, where
tn > 0 for all n G N and 53^ f„ = 1. Define a mapping T : C —> C by 

Mn) = Z~=i tnyn+i, where t„ > 0 for all n G N and £~=1 tn = 1-
It is easily seen that T has no fixed points in C. We will now show that T 
is nonexpansive (in fact, we will show that T is contractive).

Let z — $3^-! tnyn and w = snVn be elements of C with z / w.
Then

OO °°

\\Tz - Tw|| = || £(tn - 5„)j/n+l || < - Snl ||i/n+1 II

n=l n=l
oo °°

< |Zn — Sn|An+i < |Zn ~ Sn|An(l — £n) 

n=l n=l
II °° 11

- || ^tn ~ Sn )AnXn || = I'2 “ ’

n=l

This completes the proof.
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In this same manner we obtain

Theorem 1.6. [DLT1] If a Banach space X contains an asymptotically 
isometric copy of co, then X fails the fixed point property for nonexpansive 
mappings on closed bounded convex subsets of X.

Proof. By assumption there is a null sequence (en)n in (0,1) and a sequence
(in)n in X so that sup(l - e„)|an| < £~=1 a„in < sup |an| , for all

n •’ II n
(“n)n G Co- Let (An)n be a strictly decreasing sequence in (l,oo) converging 
to 1. By passing to subsequences if necessary we can assume that An+1 < 
(1 -£n)An.

Define yn = Xnxn for all n G N and

C =
' oo

’ InVn • (^n)n G Co ,

.n=l

0 < tn < 1 for all n G N .

C is clearly a closed bounded and convex subset of X. Define T : C —> C 
by

(
OO \ oo oo
52)= + 52 » for 52tnVn e c •

n=l / n=l n=l

It is easily seen that T has no fixed points in C. To see that T is non­
expansive (in fact, contractive), let z = Y,n=i Mn and w = £~=1 snyn be 
elements of C with z / w.

Then
OO oo

\\Tz — Tw|| = jj 52(tn - Sn)j/n+l|| = || 52(^n — sn)An+l®n+l 

n=l n=l

< sup\tn - Sn|An+i < sup |tn - Sn|An( 1 - £n) 
n n

oo
- II 52(*n “ 5n)^na:„|| = ll-z - w|| . 

n=l

This completes the proof.

The last results in this section give alternative methods of recognizing 
asymptotically isometric copies of f1 and cq.
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Theorem 1.7. A Banach space X contains an asymptotically isometric 
copy of C if and only if there is a sequence (xn)n in X such that

(1) there are constants 0 < m < M < oo so that for all (tn)n 6 ,
OO OO oo

m 52 |tn| < || *»®n|| < A/ 52 l*nl >
n=l n=l n=l

and
(2) limn_oo ||^n|| = ni.

Proof. Suppose that X contains an asymptotically isometric copy of f1. 
Then there is a null sequence (£„)„ in (0,1) and a sequence (j/„)n in X so 
that

OO oo oo
52(1 — £n)|^n| < || 52 ^nj/n|| < 52 l^”l

n=l n=l n=l

for all (tn)n 6 f1. Let xn = (1 — £„)_1yn for each n £ N. Then for all 
(<n)n € f1,

OO OO OO oo
52 lZn| < || 52 “ £n)_1|*n| < G " ^l)"1 Z W *
n=l n=l n=l n=l

Also, since 1 < ||xn|| < (1 —£„)_1 , lim ||xn|| = 1. Thus conditions (1) and
71—>OO

(2) hold.
Conversely, suppose that conditions (1) and (2) hold. Fix a null sequence

(£„)„ in (0,1). By scaling if necessary, we can assume that m = 1. Since
lim ||xn|| = m = 1, and ||xn|| > m = 1 for all n 6 N, by passing to 

n—>oo
subsequences, if necessary, we can assume that 1 < ||xn|| < 1 + £„ f°r all 
n € N. Define yn = (1 + £„)_Ixn for all n € N. Then since < 1 we 
have

OO oo

|| Z *nj/nll - Z for a11 (tn^n e £l ■
n=l n=l

Also
OO oo

II Z *nJ/n|| = II Z + £")_la:"||

n=l n=l

oo oo
> 52(i+£„)1 itni > 52(i—£n)i^ni ■

n=l n=l

Thus X contains an asymptotically isometric coy of f1.

An obvious consequence of Proposition 1.7 is the following
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Corollary 1.8. A Banach space X contains an asymptotically isometric 
copy of fx if and only if there is a null sequence (en)n in (0,1) and a sequence 
(xn)n in X so that

OO OO oo
l^n| < || Żn^njl < (1 + £fc) l^n| ,

n=k n=k n=k

for all (tn)n 6 f1 and for all k € N.

We finish this section with analogous results for asymptotically isometric 
copies of co-

Theorem 1.9. A Banach space X contains an asymptotically isometric 
copy of co if and only if there exists a sequence (xn)n in X and constants 
0 < m < M < oo such that, for all (tn)n 6 cq,

(1) < Af sup|fn|, 
n

(2) lim ||x„|| = M.

Proof. Suppose that X contains an asymptotically isometric copy of co- 
Then there is a null sequence (£„) in (0,1) and a sequence (xn) in X such 
that supn(l - £„)|tn| < | £n tnxn|| < supn |tn| for all (tn)n € c0 . Let 

m = infn(l — £n). Then 0 < m < 1 and for all (tn)n € co,

msup|tn| < < sup |tn|.

Also, since 1 — £n < ||xn|| < 1, we have lim ||xn|| = 1.
n—*oo

Conversely, suppose that X contains a sequence (xn)n satisfying condi­
tions (1) and (2), and let (£„)„ be a null sequence in (0,1). By consid­
ering xn/M rather than xn, we can assume that M = 1. In particular, 
m < ll^nll < 1, for all n € N, and Jim ||a:n|| = 1. Hence, by passing to
subsequences if necessary we can assume that 1 - £„ < ||xn|| < 1, for all 
n e N.

By passing to subsequences again, if necessary, we can assume that £n < 
m/4 for all n € N. Define = m and <5n = (4/m)£n for all n > 2.
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Consider the expression || $2£=1 for scalars ti,t2,•••,tn. By as­
sumption we have

m max |tfc| < V tkxk\\ < max 
l<fc<n II x' II l<k<n

k=l

By scaling we can assume that max |tfc| = 1. Thus we have 
l<fc<n

n
m < Ils < 1-

fc=i

To show that X contains an asymptotically isometric copy of c0 it suffices
to show that max (1 — ófc)|/fc| < || Since we already have

i<fc<n
the right-hand inequality, it remains only to show the left-hand inequality. 
First, note that if | < m, then

n

(i - MM < (i - MM < ™ < || 52
fc=l

Secondly, if | > m, choose Cj with Cjtj = |<j|. By convexity we have

1 - < IIMI
52 ^^H + lll^j- 52 m***

l<fc<n,fc#j l</c<n,fc#j

1 II V- II 1

< 2lrJ'+ cA**|| + 2-

Hence ||xj + > 1 “ 2er BY convexity again we have

1 — 2fj < ||.Cj T CjtfcX/j||

< Ill5>M + Ilk2-cil^x^+ 52 caz*||
2 fc=l l<fc<n,fc#j

< 2II 52 <fcXfc|| + 2^2 ""
fc=l
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n
Thus || JStfcXfcll > IM - 4£r Therefore, since |t,| > m we have 

fc=i

> IM - 4£j > IM - (4/m)|fJ|ej = (1 - ńj)|tj|.
fc=i

Putting the two pieces together we have || “ ^i)lłil and
j=i -J“n

so the proof is complete.

The following result follows immediately from Theorem 1.9.

Corollary 1.10. A Banach space X contains an asymptotically isometric 
copy of c0 if and only if there is a null sequence (e„)n in (0,1) and a sequence 
(xn)n in X such that for all (tn)n € co and for all k 6 N

(1 - £fc)sup |t„| < V tnxn < sup |tn|.
„>/= H H n>fc

2. Spaces containing asymptotically isometric copies of f1. In Sec­
tion 1, we saw that any Banach space containing an asymptotically isometric 
copy of f1 fails the fixed point property. In this section we will identify some 
Banach spaces containing asymptotically isometric copies of f1. Our first re­
sult was proved by Kadec and Pełczyński [KP], although they stated the 
result in a weaker form. The form of the Kadec-Pełczyński result we state 
here can be proved by analyzing the proof of the original result (see [Di]).

Theorem 2.1. If X is a nonreflexive subspace of (L^O, 1], || • ||i), then 
X contains an asymptotically isometric copy of f1. In particular, every 
nonreflexive subspace of (Z1 [0,1],|| • ||i) fails the fixed point property.

Theorem 2.1, used in tandem with Maurey’s Theorem [M], yields

Corollary 2.2. Let X be a subspace of(L1[0,l],||-||1). Then X is reflexive 
if and only if X has the fixed point property.

Our next result is of an isomorphic flavor.
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Theorem 2.3. If T is an uncountable set, then every renorming of ^(T) 
contains an asymptotically isometric copy of f1. Consequently, if T is un­
countable, ^(T) cannot be renormed to have the fixed point property.

Proof. Let e7 be the element in /’’(T) with e7(7) = 1 and e7(o) = 0 
if a / 7. Let ||| • ||| be an equivalent norm on ^(T). Then there exists 
constants 0 < m < M < 00 such that

™ KI < HI 52 a^||| - M 52 ’
7€F 7€F 7€F

for all finite subsets F of T and for all scalars a7,7 G F.
Define m^ = inf {111 52 a-Ye-ylll '■ 12 KI = 1,F 1S a finite subset of A},

where A is an uncountable subset of T. Note that m < tuą < M for all un­
countable subsets of A of T and increases as A decreases. Let (Aa)a<Wl 
be a decreasing chain of uncountable subsets of T with D Aa = 0, wherea<ui
uq is the first uncountable ordinal. Then (m^ )a<w, is a nondecreasing 
transfinite sequence of real numbers and hence eventually constant. Thus 
there exists Qo such that if a > «o, then mAa = mAa = mo-

Consider Aao. There exists n\ G N, and real numbers a’ and elements
ni ni

7] € Aao for j = l,...,ni such that 52 |a}| = 1 and m0 < ||| 52 a}e7;lll < 
j=i j=l

mo + 2_1. Since Da<Wl Aa = 0, there exists 07 > a0 so that 7] Aai, for
j = 1,...,nj. Since mAa = mo, there exists G N, and real numbers a2

n2
and elements 7J G Aai for j = such that 52 lajl = 1 an^ m° —

j=in2
HI 52 ajc7?lll < mo+2-2. Continuing in this manner we obtain a block basic

sequence (ijt) of (e7) where = 52j=i aje~/k an^ m° - IIKW - mo + 2_A:. 
Then for all scalars a\,...,an we have

n n n
m0 52 ki <||| 52a*xfc||| -M 52 ki

k=i fc=i *=1

and lim ||K||| = mo- Hence, by Theorem 1.7, (f1(r),||| • |||) contain ann—*00
asymptotically isometric copy of f1.

We are now easily able to obtain some corollaries.
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Corollary 2.4. If X is a separable Banach containing a copy of f1, then 
X* cannot be renormed to have the fixed point property. In particular, £°° 
cannot be renormed to have the fixed point property.

Proof. By a result of Pełczyński [Pe], if a separable Banach space X con­
tains a copy of f1, then X* contains a copy of ^(r), for some uncountable 
T. An application of Theorem 2.3 completes the proof.

Corollary 2.5. If a Banach space X contains a complemented copy of I1, 
then X* cannot be renormed to have the fixed point property.

Proof. If X contains a complemented copy of I1, then X* contains a 
copy of f°°. By Corollary 2.4, £°° cannot be renormed to have the fixed 
point property, and hence X* cannot be renormed to have the fixed point 
property.

There are other situations where asymptotically isometric copies of f1 
appear. For example, if (Q, S,^) is a finite measure space that is not purely 
atomic, then the Orlicz space L*(/r), endowed with the Orlicz norm, con­
tains an asymptotically isometric copy of (l whenever L®(p) is nonreflexive 
[DLT1]. Nonreflexive subspaces of the Lorentz function space Lw,i(0,oo) 
also contain asymptotically isometric copies of [CDL]. Similarly, non- 
reflexive subspaces of the trace class Ci contain asymptotically isometric 
copies of t1 as do nonreflexive subspaces of the predual Ad, of a von Neu­
mann algebra M with a faithful, normal, finite trace t [DDDL]. However, 
not every Banach space containing a copy of f1 contains an asymptotically 
isometric copy of f1 as the following example illustrates.

Example 2.6. Define an equivalent norm on I1 by
OO

111*111 = sup7„ £ |£fc|, 
n k=n

for all x = (£n) € I1 , where (7„) is a fixed sequence in (0,1) that strictly 
increases to 1. We will show that (f^HI • |||) does not contain an asymp­
totically isometric copy of f1. Let us assume that (£', ||| • |||) contains an 
asymptotically isometric copy of f1. Then there is a null sequence (en)„ in 
(0,1) and a HI • HI - normalized sequence (x„)„ in f1 so that

oo oo oo
(*) — (U52^■ja'j||| — 52i^jI’ f°r = (^j) € •

J=1 j=l j=l

Without loss of generality we can assume that the sequence (i„)„ is dis- 
jointly supported, i.e., that the support of xm is disjoint from the support of
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xn if m n. This is so because, since the closed unit ball of P is weak-star 
sequentially compact with respect to the predual co, by passing to a subse­
quence, we may suppose that (xn) converges weak-star (and hence pointwise 
with respect to the canonical basis (e„) of f1) to some y € f1. By replacing 
(xn) by the ||| • ||[-normalization of the sequence (-—~p—x)n, we may sup­
pose that y = 0. By the proof of the Bessaga-Pełczyński Theorem [BP,Di], 
we can pass to a subsequence of (zn)n which is essentially disjointly sup­
ported. Truncating this subsequence appropriately we obtain a disjointly 
supported sequence, which when normalized, satisfies (*). Consequently, 
we can and do assume that (xn)n is disjointly supported.

By passing to subsequences if necessary, we can also assume that £„ < 
for all n € N.

Let (m(fc))fc~0 be a strictly increasing sequence in Nu{0} with m(0) = 0 
and a sequence of scalars such that, for each k € N,

m(fc)

xk = 52 ■
j=m(k-l)+l

For each N 6 N, we have

TV + 1 - £i - Nejv < HI®! + TVxtvJH 

/"»(!)Z z”i(l) m(N) x m(N)

sup p4 52i^i + yv 52 tai), 52 i£fciil<j<m(l) 
m(N—l)+l<«<m(?V)

”>(1)

fc=m( TV—1)4-1 

m(TV)

k=i

m(N)X my I) J ' ' 'I

sup 52 + ^7md) 52 i&i»Nii 52
k=j k=m(N-l)+l k=i '

m(N—l)4-l<»<»n(TV)

sup

7n(JV—1)4-1 <«<m(TV)

z ”»(1)
Kz

1 k=j

TV7m(l) 

7m(/V—1)4-1
7m(TV—1)4-1 E ie*l) •

'7v-i)-r 7

m(N) x z

Nn 52 i&i f <max i
k=i j

j=m(7V—1)4-1

TV7m(l)
7m(/V—1)4-1

<

I6J +
(

i +

Thus N + 1 - ei - Nen < max (1 + for all N € N. Since

£1 < 1/2 and Nen < 1/2, we have N + 1 - £i - Nen > N, and hence

for all N e N .N + 1 - £i - Nen < 1 +
7m( TV —1)4-1



78 P. N. Dowling, C. J. Lennard and B. Turett

Therefore
1 £i

1 + y

and letting N 
for all n 6 N.

oo yields 1 <

1 , 7m(l)
- S d---------------

A 7m(/V-l)+l

This is a contradiction since 7„ < 1

Remark. This example and similar type examples of renormings of f1 
which do not contain asymptotically isometric copies of f1 can be found in 
[DJLT]. Examples of renormings of c0 which do not contain asymptotically 
isometric copies of co can also be found in [DJLT].

We will now move to Banach spaces containing asymptotically isometric 
copies of c0. Our first result is similar to Theorem 2.3.

Theorem 2.7 [DLT2]. IfY is an uncountable set, then every renorming of 
c0(r) contains an asymptotically isometric copy of c0. Consequently, ifY is 
uncountable, c0(Y") cannot be renormed to have the fixed point property.

Proof. Let e7 be the element in c0(r) with e7(7) = 1 and e7(a) = 0 if 
a / 7. Let HI • HI be an equivalent norm on co(r). Hence there exists m, 
M > 0 such that

for all finite subsets F of T and for all scalars a-,, 7 E F.
Define = sup {11| 52 a-ye-yl 11 : max la-vl = 1, F is a finite subset of A}, 

7eF 76/7
where A is an uncountable subset of T. Note that m < mA < M for all un­
countable subsets A of T and mA decreases as A decreases. Let (Aa)a<w, be 
a decreasing chain of uncountable subsets of T with Aa = 0, where
uq is the first uncountable ordinal. Then is a non-increasing
transfinite sequence of real numbers and hence eventually constant. Thus 
there exists ao such that if a > ao> then mAa = nnAao = mo-

Consider Aao. There exist a natural number nj, and real numbers a J 
and elements 7] in T for j = l,-- - ,nj such that maxi<j<ni |a]| = 1 and 
m0 - 2_1 < |||Lj=iajc-r,-HI - m°- Since na<Wl A° ~ there exists 
Qi > a0 such that 7] £ for j = ,m. Since mAa^ = m0, there
exist a natural number n?, and real numbers a2 and elements 7J in T for j = 
I,-- - ,n2 such that maxi<j<n2 |a?| = 1 and m0 - 2-2 < ||| 52"=i aje-7?lll - 
mo- Continue in this manner to obtain a block basic sequence (x/t) of (e7) 
where xk = 52j=r aj^ and m0 - 2_fe < |||xfc||| < m0.
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Then for any (ak)k 6 co we have, 

OO / nk

EMI = |||E'“(E“‘s*)lll = |||EE«^f
fc=i fc=i S=i ' fc=ij=i

< Too sup |afcCt*I = Too sup |afc|,

and
OO n*

fc=l

= Ul ZL12 111 -m sup iafca> i= msup iafci’
fc=l j=l ’

and lim |||xfc||| = m0. Hence by Theorem 1.9, (co(T), ||| • |||) contains an
n—+oo

asymptotically isometric copy of cq.

Remark. Even though the proof of Theorem 2.7 is quite similar to the 
proof of Theorem 2.3, we decided to include it because of the applications 
of Theorem 2.7 that will appear in section 5.

Another place where asymptotically isometric copies of co appear natu­
rally is in subspaces of (co, || • ||oo)>

Theorem 2.8. IfY is a closed infinite dimensional subspace of (co, || -Hoo)) 
then Y contains an asymptotically isometric copy of co and hence Y fails 
the fixed point property.

Proof. Let (en)n denote standard unit vector basis in co. Let Zn denote the 
closed linear span of (cj)j>n in (c0, ||-||oo)- Since Y is an infinite dimensional 
subspace of co, Y D Zn / {0} for all n £ N. Thus we can choose xi € Y A Zi 
with ll^iHoo = 1. We can write xj = anen, where £ R for all
n £ N. Let no = 1. Choose nj > 1 so that supn>ni Kl < 2-2. Since
Y n Zni ± {0}, choose x2 £ Y A Zni with ||x2||^ = 1- We can write
x2 = “nen, where a2 £ R for all n £ N. Choose n2 > nj so
that supn>„a |q^| < 2-1 • 2-3 for i = 1,2. Since Y A Zn2 / {0}, choose
x3 € Y A with IIX3II00 = 1- We can write x3 = anen, where
o3 £ R for all n £ N. Continuing inductively in this manner we obtain a 
strictly increasing sequence (n^)*; in N and a sequence (xk)k in Y with Xk = 
E~=n*_, Qnen, where sup„>nt_i KI < (fc-l)_1 •2_fc_1 for alH < » < fc-1 
with k > 2. Fix € co and consider the element z = $3fc=i tk%k € K.
Then

oo oo oo nt —1 / k \

*=£«» <4«»=E E EM'-
fc=l n=n*_i k=1 n=n*_i \i=l
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Also, since z € c0, we can write z = EXi znen. Hence for < n < 
nk -1, zn- £*=i tia'n. Let bk = o£en. Note that H^fcHoo = 1 for
all k € N. Thus, for each k € N, we obtain

njk-lz II oo Qnen

njfc-1 ✓ k X njk-l

E (EZ’Qn)e"~^ E
n=n*_i 'i=l ' n=njt_1

max
nfc_j<n<nifc -1

|fc-l
E‘*Qn 

I i=l

< (fc-l)||<||oo( max |<A
\nk-i <n<ni, —1 )

1

OO •

Also for ra*;_i < n < nk — 1, we have

k Jt-1
l*n| = | E f‘ań| > l<fc«nl ~ E *’a’>

»=1 t=i
> lffcll«nl - (fc ~ l)||t||oo max |Q^|

= IMI«‘l-2-fc-1||f||00.

Therefore, maxBui<n<nt_j |zn| > |/fc| - 2-fc-1||t||0o, and so

H°° = U-x?g»k-i (W " 2"fc_lH‘lloo) > 2-1|WI

Thus
n*-i

li E *nen-tfc6fc|| <2-fc-1||t||oo<2-fe||z||oo
n=nt_,

and therefore

<2'‘II’IU-E
n=nfc_!

- kfcl
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In particular, for each k 6 N we have || 53n=«Li ZnCnIIoo ~ 1**1 - 2 
"to-1

Choose k0 € N so that || £ zne„||oo = |M|oo- Then ||^||oo - |ffco| <
n=n*0-i

2-fc° H^Hoo- Consequently,

ll*ll~ < ^2-fc.l^ol < max 1**1-

We also have that for all k G N, |/fc| - || 53”=nLi - 2_fcHalloo, and
hence |tfe| < || 53"tn’fc_i 2nenll°° + 2_/cH2IIoo < IMloo + 2"*Halloo- Therefore 

supfc>1 ) l^fcl — llzlloo- Puling the above inequalities together we get

that for all 6 co

I"? (rfW)|!i| £ 11 fj - S (r^1) |ł‘1-

This means that (xk)k spans an asymptotically isometric copy of co in Y.

Remarks.
(1) The real Banach space (co, || • ||oo) contains an infinite dimensional sub­

space that does not contain an isometric copy of co- Examples of such 
subspaces were independently constructed by D. Alspach [A] and E. 
Behrends [B]. Thus Theorem 2.8 can be considered as the optimal re­
sult of this type. We will outline Alspach’s example below.

(2) We could modify the proof of Theorem 2.8 to show that every infinite 
dimensional subspace of (Zl,|| • ||i) contains an asymptotically isomet­
ric copy of Z1. However, since every infinite dimensional subspace of 
(€1, || • ||i) is isometric to a nonreflexive subspace of (£»1[0,1], || • ||i), the 
result is already known from Theorem 2.1. Again this result can be con­
sidered as the optimal result of this type because Fonf and Kadec [FK] 
has constructed an infinite dimensional subspace of (€',|| • ||i) which is 
strictly convex (and hence does not contain an isometric copy of tx).

Example 2.9 [A]. The space (co, || ■ ||oo) contains a subspace that is iso­
metric to (53^n)c0> where (\ is n-dimensional P. Let (en,fc)fc=i’nSi

n
standard basis for (53^n)c0- Thus || 53 “n.fcCn.fcll = SUP 53Z=i lan,fc|- For

n n
each n € N, define fn = en,n + 53 £kek,n- Then, for (an)n~j G c0, we have 

k>n

= sup(|an| +
oo

nasi
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Therefore,

SUp |an| < II E an/nll < SUP ( 1 + q ) lfl«l ' 
n 11 " \

Let X = 5pań{/n}„=i- We will show that X does not contain an isomet­
ric copy of c0. To do this we will show that X does not contain an isometric 
copy of ^2°, two-dimensional £°°. Suppose, to obtain a contradiction, that 
X does contain an isometric copy of I?. Then there are elements x and y
in x with ||®|| = ||j/|| = II® + y\\ = II* - y\\ = L

Let x = 52 anfn and y = 52 bnfn- We may assume that there are indices
n n , no and ni with no < such that

11*11 = l«n0l + E 8^'afcl and 113/11 = 1^1+ E •

fc<no ° k<n\

Then 7/8 < |o„0| < 1 and 7/8 < |6ni| < 1 •
Note that

|an0 - M + E - 1,1 " = lł and
fc<n0

|o«o + M + E +6fc' - + sHI = 1 ’ 50
fc<n0

< |®n0 “ ^nol + l®n0 + ^nol + Ę ^(lafc “ M + &fcl)
fc<n0

< 2 .

Therefore |6fc| < lafc| for all k < tiq. Similarly, we can show that |ajt| <
|6fc| for all k < n\. In particular, we have |6no| = |a„0| > 7/8. Hence
|ano + £Ó„0| > 7/4 for £ = 1 or £ = -1. For this £, we have 1 = ||x + ey\\ >
sup |an -I- £6n| >7/4 and this is a contradiction. Hence X does not contain

n
an isometric copy of •

Our last example is of a renorming of t°° which fails to contain an asymp­
totically isometric copy of c0. We will give another verification of this result 
in section 5.
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Example 2.10. (£°°, ||| • |||) does not contain an asymptotically isometric 
copy of co, where the ,|| - 11| norm is defined on f°° as follows:

‘f * = i e then |||*||| = sup |^| + ^2_-’|<J|.

J j=i
Note that ||| • ||| is an equivalent norm on £°° and ||x||oo < |||x||| < 211x1100 
for all x E l°°.

Proof. Suppose that (f°°,||| • |||) does contain an asymptotically isometric 
copy of co- That is, there is a null sequence (en)n in (0,1) and a sequence 
(xn)n in t°° such that

for all scalars , <2»• • •»*n and for all n 6 N.
Without loss of generality, we can assume that the sequence (xn)n con­

verges pointwise to 0. For each n € N let xn = Since |||xi||| >
1 — £l >0, there exists j E N such that 0. Let k = min{j : 0}
and a = 3^r|^|. Choose N\ > k so that Sj^Ni+i < a/4. Choose 
N2 € N so that en < a, for all n > JV2- Since (xn)n converges pointwise 
to 0, choose N > N2 such that |f"| < a/4 for j = 1,2,...,M and for all 
n > N. Hence, for each n > TV, we have the following

OO
iw«.<iiwii = iwu+£2-i|eji 

1=1

Ni 00
= IWI~ + £2--’|fJ|+ Y, 

1=1 1=M+1

Nj °° a
<W«o + £r^ + £ 2-f <||xn||oo+

1=1 1=^+1
By convexity of || • Hoq, we have ||xn||oo < |(||*i + *n||oo + ||*l ~ *n||oo), 

so either ||xi + > ||xn||oo or ||xi - xn||oo > ||*n||oo- If ||*i + *n||oo >

||*n||oo, then we have
OO

1 > 111*1 +*n||| = ||*1 + *n||oo + £ 2”3 KJ +^"l 

1=1

> HXnlloo + 2-‘& + «| > IIMI - ^ + 2-fc(&| - I)

> lll*n||| - j + 2-fc(kJl - j) > lll*n||l - « + 2-*kll

> 1 - £n - a + 2"fc|^| > 1 - a - a + 2_fc|^| = 1 + a,
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which is clearly impossible. Similarly we arrive at a contradiction if we 
assume that ||®i - xn||oo > Moo- This completes the proof.

3. Refinements of James’s Distortion Theorems. We saw in section 
1 that the concepts of asymptotically isometric copies of f1 and c0 arise 
naturally when one considers the James’s Distortion Theorems. In this 
section we will consider some refinements of James’s Theorems.

Our first result is the isomorphic analogue of Theorem 1.7.

Theorem 3.1. A Banach space X contains an isomorphic copy of f1 if and 
only if there is a sequence (x„)n in X such that

(1) there are constants 0<m<M<ooso that for all (tn)n e f1,
OO 0° II 0°

m |tn| < |j < Af |tn| ,
n=l n=l n=l

and
(2) lim ||xc„|| = M. n—>oo

The proof of Theorem 3.1 follows directly from the proof of the James’s 
Distortion Theorem for t1 [J]. A direct consequence is the following.

Corollary 3.2. A Banach space X contains an isomorphic copy of £’ if 
and only if there is a null sequence (£„)n in (0,1) and a sequence (xn)n in 
X so that oo oo oo

(1 — £fc) |^n| < II ^n^nll < l^nl »
n=k n=k n=k

for all (tn)n e f1 and for all fc € N.

The corresponding results for Co do hold, but they do not follow so eas­
ily from the James’s Distortion Theorem for Co. We begin with a simple 
consequence of James’s Theorem for Co, which can easily be obtained by 
modifying James’s original proof.

Proposition 3.3. A Banach space X contains an isomorphic copy of Co if 
and only if there is a decreasing null sequence (en)n in (0,1) and a sequence 
(xn)n in X so that

(1 - £fc) sup |t„| < II tnXn II < (1 + £fc) sup |tn|,
n>k H II n>k

for all (tn)n € co and for all k E N.

We will improve the left-hand estimate in Proposition 3.3 using the fol­
lowing result from [CGJ].
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Lemma 3.4. Let (in)n be a basic sequence in an infinite dimensional Ba­
nach space X. Then there is a block basic sequence (yn)n of (xn) and a 
sequence of functionals (y*)n in X* which form a unit biorthogonal system 
of X. That is, for each n € N, ||y„|| = ||3/* || = J/*(3/n) = 1 and y*(ym) = 0 
for all m n.

Theorem 3.5. A Banach space X contains an isomorphic copy of c0 if and 
only if there is a null sequence (en)n in (0,1) and a sequence (xn)n in X so 
that

OO

sup |t„| < V tnxn < (1 + £fc) sup |t„| ,
n>fc •' , ' n>k— n—K —

for all (tn)n € co and for all k € N.

Proof. Suppose that X contains an isomorphic copy of co. Then by Propo­
sition 3.3, there is a decreasing null sequence (ón)n in (0,1) and a sequence 
(x„)n in X so that

(1 - 6k) sup |/n| < ^2 M sup |t„|,
n>k n=fc n>fc

for all (tn)n € co and for all k e N.
Since (x„)n is a basic sequence in X, there is a block basic sequence

(j/n)n of (x„)„ and a sequence of functionals (y*)n in X* which form a
unit biorthogonal system of X, by Lemma 3.4. Thus there is a strictly
increasing sequence of integers (hn)n“0, with ko = 0, and scalars t”, where
fcn-1 < j < kn and n € N, so that yn = Sj=fcn_1+1 Since llz/nlI = 1,
we have (1 - ófcn_1+i) max |t?| < 1, so |t"| < (1 - for

kn-l + l<j<kn
all + 1 < j ' < kn and for all n 6 N.

Let (a„)„ € c0 and <€ N. Then for each m> I,
OO / oo

|| 52«nJ/n|| > |j/m I 52a"yn
n=Z \n=Z

oo
Hence || £ ant/n|| > sup |am| . Also 

n=r m>t

oo oo
||E«n!Z„|| = ||E“" E ^11 - 

n=Z n=t j=fcB_i+l " „>7

— |am|

< (l + afc<_1+i)(l-*fcz-i+i) 1sup|an| = (l + £<)sup |o„|, 
n>l n>(
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where £< = (l + ^k<_i+l) U 1 •
Since ó„ —> 0 as n —♦ oo, £t —> 0 as £ —>• oo, and hence the proof is

complete.
An obvious consequence of Theorem 3.5 is the following result which is 

similar to Theorem 3.1.

Corollary 3.6. A Banach space X contains an isomorphic copy of c0 if 
and only if there is a sequence (xn)n in X such that

(1) there are constants 0 < m < M < oo so that for all (tn)n G Co,
OO

and
(2) lim ||xn|| = m.

n—*oo

Our last result in this section returns us to fixed point theory. It is proved 
in [DLT3],

Theorem 3.7. If a Banach space X contains an isomorphic copy of c0, then 
X fails the fixed point property for asymptotically nonexpansive mappings 
on closed bounded convex subsets of X. (A mapping T : C —> C is said to 
be asymptotically nonexpansive if \\Tnx -Tny|| < fcn||x - y|| for all x,y e C 
and for all n 6 N, where (fc„)n is a sequence of real numbers converging to 
!•)

Proof. If X contains an isomorphic copy of c0, then, by Theorem 3.5, there 
is a null sequence (£„)„ in (0,1) and a sequence (xn)n in X so that

OO

sup |t„| < II V tnXnll < (1 + £fc) sup |/n| , 
n>fc U U n>fc

for all (tn)n € c0 and for all n € N.
Define C = {Z^=i : 0 < 1 and (tn)n 6 c0}. Clearly, C is a

closed bounded convex subset of X. Define T : C —► C by *n®n) =
xi + 52^=1 tnxn+i, for all € C. It is easily seen that T has no
fixed points in C. Let z = and w = snxn be elements of
C and let k 6 N. Then

OO

||Tfcz — Tfcw|| = II y^(tn ~ sn)xn+fcll < (1 + £fc+i)sup|tn — sn| 
n=l n

oo

< (1 + £fc+l)|| ~ Sn)xnJJ = (1 + £fc+l)||z - W||.
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Since 1 + Ek+i —► 1 as L —> oo, this shows that T is an asymptotically 
nonexpansive mapping on C. This completes the proof.

Remark. It is unknown where the corresponding result for P holds; that 
is, if a Banach space X contains an isomorphic copy of f1, does X fail the 
fixed point property for asymptotically nonexpansive mappings on closed 
bounded convex subsets of X?

4. Duality results. In this section we will consider the behaviour of 
containment of asymptotically isometric copies of co and f1 with respect to 
duality. Our first result appears in [DJLT].

Theorem 4.1. Let (X, || • ||) be a Banach space that contains an asymp­
totically isometric copy of co- Then X*, with the dual norm, contains an 
asymptotically isometric copy of (l.

Proof. Since X contains an asymptotically isometric copy of co, there is a 
null sequence (£n)n in (0,1) and a sequence (x„)n in X so that

TV
max (1 -£n)|an| < < max |an| ,

l<n<7V II ' II l<n<Jv
“ " n=l “ ~

for all scalars ai,...,ajv and all N 6 N. Let (a;*) be the Hahn-Banach 
extensions to elements of X* of the linear functionals on the span of (xn) 
that are biorthogonal to (xn).
Fix m G N. Then, for all vectors x of the form anxn, with N > m,
we have

= l«m| = (1 -
< (1 - £m)-1 max (1 - £„)|on| < (1 - £m)-1||x||. 

l<n</V

Therefore, ||a;JJ| < (1 - £m)-1- Define y* = x*||z*||_1 for each n € N. Fix
scalars ai, <12, ...,a/v and let bn = sign an for all 1 < n < N. Then since
II ZlLi Mn|| < max l^nl = 1, we have 

1 <n</V

TV TV /TV \ { N \
52 ia”i || E«n^|| - (52anj/" I I526nXnI
n=l n=l \n=l / \n=l /

n=l n=l
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Thus X* contains an asymptotically isometric copy of Z1.

Remark. The converse of Theorem 4.1 does not hold and this is easily seen 
by considering X = Z1 with its canonical norm. Then X does not contain 
an asymptotically isometric copy of co, but A = Z , with its canonical 
norm, and X* contains an isometric copy of Z1.

Our next result can be considered to be the asymptotically isometric 
version of a result of Bessaga and Pełczyński [BP]. The proof of this result 
can be found in [DR].

Theorem 4.2. For a Banach space X, the following conditions are equiv­
alent:

(a) X* contains an asymptotically isometric copy of c0.
(b) X contains a complemented asymptotically isometric copy of Z1.
(c) X* contains an asymptotically isometric copy of (°°.

Before we get to the proof of Theorem 4.2, we need the following defini­
tion and some results.

Definition 4.3. A Banach space X is said to contain an asymptotically 
isometric copy of Z°° if there is a null sequence (c„)n in (0,1) and a bounded 
linear mapping T : Z°° —> X so that

sup(l - £„)|t„| < ||T((tn)n)|| < sup |tn|, 
n n

for all (t„)„ G Z°°.

Remark. The definition of a Banach space containing an asymptotically 
isometric copy of Z°° is completely analogous to the definition of a Banach 
space containing an asymptotically isometric copy of co or Z1. However, 
because Z°° does not have a basis, we have cloaked the definition in terms 
of an operator rather than a basis.

By modifying the proof of Theorem 1.9, we obtain

Proposition 4.4. A Banach space X contains an asymptotically isometric 
copy of e°° if and only if there is a null sequence (en)n in (0,1) and an 
operator T : £°° —> X so that

(1 - efe) sup |tn| < I|T((tn)n>fc)|| < sup |tn| 
n>fc n>k

for all (tn)n G Z°° and for all k 6 N.

The following three results will also be needed in the proof of Theorem
4.2.
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Theorem 4.5. [JR] Let X be a separable infinite dimensional Banach 
space. If (£*)„ Is a weak* null normalized sequence in X*, then (£*)n 
has a subsequence (y*)n which is a weak* basic sequence.

Theorem 4.6. [Me] Let (x„)n be a bounded sequence in a Banach space
X and suppose that there is a weakly unconditionally Cauchy series x* 

n
in X* so that the sequence (x*(xn))n does not converge to 0. Then (xn)n 
has a subsequence (yn)n which is equivalent to the unit vector basis of f1 
and the closed linear span of (yn)n is complemented in X.

Theorem 4.7. [HM] Let X be a Banach space and let Xo be a sep­
arable subspace of X. Then there exists a separable subspace Z of X 
which contains Xo, and an isometric embedding J : Z* —> X* such that 
(J(z*))(z) = z*(z) for all z ę Z and z* G Z*.

Proof of Theorem 4.2. The implication (c) implies (a) is trivial.
For (b) implies (c), let Y be a complemented subspace of X which is an 
asymptotically isometric copy of (.1. By the statement and proof of Corollary 
1.8, there is a null sequence (sn)n in (0,1) and a basis (£„)„ in Y so that

OO oo

£l^<||X>«*n||<(l+£fc)5>n|
n=/c n=fc n=k

for all (t„)n G f1 and for all k G N. Define T : Y —+ C by T(]£t„£n) = 
n

(tn)n, for all (t„)„ G f1. Note that T is a bounded linear mapping from Y 
onto C with ||T|| < 1. Hence T* : f°° —> Y* is a bounded linear mapping 
with ||T*|| < 1.

Let (an)n G f°° and let k G N. Since ||T*|| < 1, ||T*((a„)n>fc)|I <
sup |an|. Also
n>fe

||T*((an)n>fc)|| = sup{|[T-((on)n>fe)](£)| : £ G K, ||x|| < l}

= sup{|[(cn)„>fc](T£)|:£Gy, ||x||<l}

OO oo oo .

= sup{|[(an)n>fc](T(J2/3j£j)| : € K, || 52 < 1)
j=i J=i i=i

0° OO OO .

= sup{| 52 anPn\ : 52 6 Y' 'I 52 - 4
n=fc j=l
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oo oo oo
> sup{| 52an/3n| 6 K, ||52fell < 1}

n=/c j=k j=l
00 00

> sup|| 52 anPn\ : 52 l^jl - 
n=k j=k

TT7"} = 7T7supH
1 + £fc J 1 + £fc n>k

Hence by Proposition 4.4, Y* contains an asymptotically isometric copy of 
£°°. Since Y is complemented in X, Y* is isometric to a subspace of X* and 
thus X* contains an asymptotically isometric copy of i°°.

For the proof of (a) implies (b) we will first assume that X is separable. 
We now assume that X is a separable Banach space and X* contains an 
asymptotically isometric copy of c0. Then there is a null sequence (£n)n in 
(0,1) and a sequence (1*) in X* so that

sup(l - £n)|*n| < 52 tnXn\\ - SUP IM ’
n „ n

for all (/„)„ € co.
Since (x*)„ is a basic sequence in X*, there is a block basic sequence 

(jZn)n of (xn)n and a sequence of functionals (y**) in X"" which form a 
unit biorthogonal system of X, by Lemma 3.4. Hence there is a strictly 
increasing sequence of integers, (fcn)n=o with ^0 = 0, and scalars, 
where + 1 < j < kn and n 6 N, so that

yń= 52 (n) »
xi

Since ||y*|| = 1, we get

(«)lmax (1 - £,)|a(,n)| < 1 < max la,

In particular, |a(n)| < (1 - £j)_1 < [1 - min £,1-1 for all 

fcn-1 +1 < j < fcn and for all n G N. Define 6n = 1 - min £,-, and let 

zn = for each n G N. Then, for each (on)n € c0, we have

|| x “‘"’4
n n Vfcn-l+l<j<fcn

= || 52 52
n fcn-l+l<J<fc„

< sup anónQ^ } 
kn-1 + l<j<k„ I J

n£N
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Now, for scalars . • • ,0k, we will consider the expression || /?nl/n*||-
n=l

fc fc
Note that since ||y**ll = 1 for all n € N, || 52 52 l/^l- Define

n=l n=l
k

x* = 52 (sgn/3„)z*. From our calculations above, we see that ||x*|| < 1. 
n=l

Also, since the pair of sequences (y*), (y**)n form a unit biorthogonal 
system of X*, we have

/c k k
2 |(X>»»r)*'| = I (Ż

n=l n=l n=l n=l
k

= £«„«• 

n=l

ThuS 52n=l ^n|/3„| < < 52n=i |/Jn| » and therefore we have

52„ Wnl < II En«*|| < 52n l^n , for all (/3n)n G
Since (i‘)n is a sequence in X* which is equivalent to the unit vector

basis of co, and since (y*)n is a block basis of is equivalent to
the unit vector basis of co. In particular, (y*)n is a weak* null sequence 
in X*. Thus since X is separable and (y*)n is a weak* null normalized 
sequence in X*, (y*)n has a subsequence (which we will again denote by 
(y*)n) which is weak* basic, by Theorem 4.5. By the construction of this 
sequence (see the proof of Theorem 4.5 [LT; pages 11-12]), there is a bounded 
linear operator T : X —> (span{y*}, defined by (Tx)(y*) = y*(x), for 
all y* G span{y* }n^i and for all x G X. Moreover, this operator has the 
property that for each e > 0 and for each y** G span{y'^}<^‘=-l of norm 
1, there exists an x G X with ||x|| = 1 and \\Tx — y**|| < £. Hence we 
have that for each n G N, there exists xn G X with ||x„|| = 1 so that 
||Ta;n — y**|| < 2~n.

For scalars /?i, /?2»
k

for each n G N. If we define x* = 52 (sgn/ln)2*, then ||x*|| < 1 so by an 
n=l

earlier computation we have

n=l n=l

< |(£/3„Txn)(x-)| + | ~ rx„)j (X-)
<n=ln=l
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= |x- (£>*„) I +1 £ /MC - r*») (*‘)|

n=l n=1

< ||x*IIII £ + E 1/3-1IIC - Txn\\ ||x*||
n=l n=l

-1| E ^n2:nll+ 52 i0"i2_n'
n=l «=1

Hence || E /3„x„|| > E (ó« “ 2 n) |/3„|. Thus we have shown that
£n(ón _ 2-n)|/3n| < HE„k*n|| < Enl^nl for all (0n)n € ć1, and since 
Sn _ 2~n —> 1 as n -» oo, we have shown that (xn)n is an asymptotically
isometric copy of £*.

Note that for each n 6 N,

(Tl„ - C)(l/n) = »n(®n) “ C(»n) = ^n(»n) " 1- 

Thus, |y*(x„)| > 1 - \(Txn - C)(j/n)l for all n e N, and since

|(Txn - 0(^)1 < ll^n - Cll IICI = l|T«„ - Cll < 2-",

(y*(xn))n does not converge to 0. Also, since (p*)n is equivalent to the unit
vector basis of co , E Vn 1S a weakly unconditionally Cauchy sequence in X*. 

n
Hence, by Theorem 4.6, (xn)„ has a subsequence (j/n)n which is equivalent 
to the unit vector basis of and the closed linear span of (yn)„ is comple­
mented in X. However, since (xn)„ is an asymptotically isometric copy of 
£1,(yn)n is also an asymptotically isometric copy of f1. This completes the 
proof for the case when X is a separable Banach space.

For the general case, let X be a Banach space such that X* contains an 
asymptotically isometric copy of cq. Then there is a null sequence (£n)n in 

(0,1) and a sequence (x*)n in X* so that

for all (t„)„ 6 co.
Let Z = span{z* Then Z is a separable subspace of X*. Let

{■Znjn'Si be a countable dense subset of the unit ball of Z. For each n € N
choose a sequence (xn,*:)fc in the unit ball of X so that ||zn(| = lim z„(xn,fc)- 

______ fc—»oo
Now we define Y = span{xnifc}n^L1. Then Y is a separable subspace of



Asymptotically Perturbed Norms... 93

X. By Theorem 4.7, there is a separable subspace Yj of X which contains 
Y and there is an operator J : Yf —> X* satisfying (Jy*)(y) = for
each y* G Yf and y G Yj. In particular, if R : X* —> Yf, is the natural 
restriction mapping, then RJ = idy-. Therefore, for each n G N

pnll > ll^nll = sup{|(7Z2n)(y)| : y G Ki,||y|| < 1}
= sup{|zn(y)| : y G YnHyH < 1}
> sup{|zn(x„,fc)| : k G N} = ||z„||.

Thus ||/£zn|| = ll-^nll for each n G N, so the restriction of R to Z is an 
isometry. Thus Yf contains an asymptotically isometric copy of c0. Since Yi 
is separable, the first part of the proof says that Yj contains a complemented 
asymptotically isometric copy of . A close analysis of the proof reveals 
that this complemented asymptotically isometric copy of in Yj is in fact 
a complemented asymptotically isometric copy of £1 in X. This concludes 
the proof.

Remark. In Theorem 4.2 if we replace the phrase “asymptotically isomet­
ric” by “isomorphic”, then we have the statement of the Bessaga-Pełczyński 
Theorem [BP]. However, it is interesting to note that if we replace the phrase 
“asymptotically isometric” by “isometric”, then the result is no longer true. 
More precisely, the implications (a) implies (b), and (c) implies (b) do not 
hold if “asymptotically isometric” is replaced by the word “isometric”. This 
can be seen by considering X = ^(T), where T is an uncountable set, and 
equip X with a strictly convex norm ||| •|||. Then (X, |||*|||) does not contain 
an isometric copy of f1. On the other hand, (X,||| • |||)* is isomorphic to 
£°°(r). Hence, since T is uncountable, (X, ||| • |||)* contains an isometric 
copy of f°° (and so contains an isometric copy of co) [Pa].

5. Asymptotically isometric copy of Co and renormings of Banach 
spaces. In this section we will investigate the relationship between Banach 
spaces containing an asymptotically isometric copy of co and weak normal 
structure. We also consider the relationship between Banach spaces con­
taining an isomorphic copy of co and other well known geometric properties 
of Banach spaces, such as property (P), property asymptotic (P), property 
(WO) and the generalized Gossez-Lami Dozo property (GGLD). We refer 
the reader to the paper of Sims [S] for more details on these properties. All 
of the results in this section appear in [Do].
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Theorem 5.1. If X is a Banach space with weak normal structure, then 
X does not contain an asymptotically isometric copy of c0.

Proof. Suppose that X contains an asymptotically isometric copy of co- 
Then there is null sequence (£„)„ in (0,1) and a sequence (in)n in X such 
that supn(l — £n)|^n| < || 53n=l ^n®n|| < suPn l^n| i for all (tn)n E Co.

Since the sequence (in)n is equivalent to the unit vector basis of co and 
since the unit vector basis of c0 is weakly null, (xn)n is weakly null. Hence 
the set {x„ : n E N} is a relatively weakly compact set in X and so by the 
Krein-Śmulian Theorem, K = ćó({x„ : n E N}), the closed convex hull of 
{xn : n E N}, is a weakly compact convex subset of X.

Since ||xn - xm|| < 1 for all n,m E N, diam A" < 1. Since ||xn - xm|| >
1 - £n for all n, m E N, with n > m, and since (en)n is a null sequence in 
(0,1), diam K < 1. Thus diam K = 1.

Consider an element i E co({in : n E N}). Then x = 'EVsltjXj, where 
tj > 0 for all 1 < j < N and tj = 1.

For each n > N, ||x - xn|| = || tjXj - *n|| > 1 - £„.

Since (en)n is a null sequence, this implies that sup{||x - y\\ : y e K} > 
1. Since diam A' = 1, we get that sup{||x - y\\ : y e A'} = 1. Hence 
sup{||x - y|| : y € A'} = diam A' for all x E A and so A' fails to have normal 
structure. Therefore X fails weak normal structure and this completes the 
proof.

We now obtain some easy consequences of Theorem 5.1. The first corol­
lary follows immediately from Theorem 2.7, and the second corollary is 
immediate from Theorem 2.8.

Corollary 5.2. If X is an infinite dimensional subspace of (c0, || • Hoo), then 
X fails to have weak normal structure.

Corollary 5.3. Every equivalent renorming of c0(r), for T uncountable, 
fails weak normal structure.

Remark. It is well known that if a Banach space X is uniformly con­
vex in every direction (UCED), then X has weak normal structure [Z]. 
Day, James and Swaminathan [DJS] proved that c0(r) does not admit an 
equivalent UCED norm if T is uncountable. Corollary 5.2 is therefore an 
improvement of this result. Corollary 5.2 was also proved by Landes [LI, 
L2] using different techniques.

In [DJS] and in [Z], it is proved that every separable Banach space can be 
equivalently renormed to be UCED, and thus can be renormed to have weak
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normal structure. They also show that can be equivalently renormed 
to be UCED, and hence to have weak normal structure. Combining these 
results with Theorem 5.1 we get the following

Corollary 5.4. Every separable Banach space can be equivalently renormed 
so as not to contain an asymptotically isometric copy of co- Also, f°° can 
be equivalently renormed so as not to contain an asymptotically isometric 
copy ofc0.

Remark. Separability is necessary in Corollary 5.2, because every equiva­
lent renorming of co(T) contains an asymptotically isometric copy of Co, if 
T is uncountable, by Theorem 2.7.

Two Banach space properties that imply weak normal structure are prop­
erty (P) of Tan and Xu [TX] and (WO) of Tingley [T]. Sims and Smyth 
[SS] proved that these properties are equivalent. By Theorem 5.1, every 
Banach space with property (P) (or equivalently, (WO)) will not contain 
an asymptotically isometric copy of cq. Two related properties are the gen­
eralized Gossez-Lami Dozo property (GGLD) of Jimenez-Melado [JM], and 
asymptotic (P) of Sims and Smyth [SS] given below.

Definition 5.5. Let X be a Banach space.
(a) X is said to have the generalized Gossez-Lami Dozo property (GGLD) 

if whenever (a;n)n is a weakly null sequence in X which is not norm null 
then

lim inf ||xn|| < lim sup lim sup ||a;n — xm||. 
n n m

(b) X is said to have property asymptotic (P) if whenever (in)n is a weakly 
null sequence in X which is not norm null then

lim inf ||xn|| < diama{a;n},

where diama{a:n} = limndiam{a:fc : k > n} is the asymptotic diameter 
of the sequence (z„)n.

Sims and Smyth [SS] have also proved that GGLD and property asymp­
totic (P) are equivalent. While GGLD implies (WO), Jimenez-Melado [JM] 
has shown that they are not equivalent by constructing an equivalent norm, 
HI ■ HI, on c0, so that (c0, ||| • |||) has (WO), but (c0, ||| ■ |||) fails GGLD. Our 
next result shows the relationship between GGLD and cq.
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Theorem 5.6. If X is a Banach space with GGLD, then X does not contain 
an isomorphic copy of c0.

Proof. Suppose that X contains an isomorphic copy of c0. By Theorem 
3.5, there is a null sequence (£n)n in (0» 1) an(^ a sequence (in)n in A so 
that

(*) sup |/fc| < || £ tkxk\\ < (1 + £„) sup |tfe|,
V 7 k>n k=n k>n

for all (ife)fe € c0 and for all n € N. By passing to subsequences if necessary 
we can and do assume that the sequence (£„)„ is decreasing. Since (xn)n is 
equivalent to the unit vector basis of c0, (in)„ is weakly null. Clearly from 
(*), limn||*n|| = 1- Also, if k > n then 1 < ||x„ - xfe|| < 1+£„. Hence 
1 < diam{xfc : k > n} < 1+ £„ for all n 6 N. Therefore diama{xn} = 1, so 
X fails to have property asymptotic (P), and thus fails to have the GGLD. 
This completes the proof.
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