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KRZYSZTOF CZARNOWSKI

Structure of Fixed Point Sets of Condensing Maps 
in Bo Spaces with Applications 

to Differential Equations in Unbounded Domain

Abstract. A class of ’’generalized” condensing maps is introduced. A 
theorem on the structure of fixed point set of such maps is obtained. Its 
applications to some boundary value problems for differential equations in 
unbounded domains are studied.

The purpose of this communication is to give an Aronszajn type theorem 
°n the structure of solutions set of an equation in an abstract Bo space 
(written E} and show some of its applications to boundary value problems 
for differential equations studied in unbounded domains. The basic example 
is the finite dimensional Cauchy problem x' = ar(Zo) = where f :
[*o, +oo) x Rn —> Rn is continuous. Here, under some additional hypothesis, 
each solution extends on the interval [to,+°o) and the set of all solutions, 
treated as a subset of a Bo space C([/o> +oo), Rn), is a compact Rg. Recall, 
that classical theorems of H. Knesser (1923) or N. Aronszajn ([1], 1942) 
give topological characterizations of the solutions set of the Cauchy problem 
treated as a subset of the Banach space C([<o,to + o],R") for some a > 0. 
Numerous results on the structure of solutions sets of equations appeared 
inter, see for instance [20], [3], [17], [23], [24].

In the first section a class of “generalized” set-contractions and condens­
ing maps is introduced and, in the second section, a degree theory for the
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corresponding class of vector fields is outlined. The proofs of propositions 
and theorems are ommitted, since they generally follow standard lines — 
compare [15], [16] and [8]. For a different treatment of condensing maps in 
general topological vector spaces see [18]. The proofs of propositions in the 
range (l)-(9) are similar to those in [8], (1)—(14). The only difference is 
that now one also has to verify that certain sets fall into certain classes 7£,, 
but this usually follows straight from the axiomatic definition of the classes 
Ti.Q given in (3). A complete treatment of the material included below is 
given in [9].

In the third section, Theorem (15) on the structure of fixed point set of a 
“generalized” condensing map is given. The theorem is a generalization of a 
theorem of W. V. Petryshyn [17]. We demonstrate its applications to some 
boundary value problems for differential equations studied in unbounded 
domains.

1. Generalized condensing maps in a Bo space. We assume that 
the topology of the space E is determined by a chosen countable family of 
seminorms Q. For a seminorm q E Q, let Bq = { u : q(ti) <1} denote 
the “unit ball” with respect to q and let Bq = { A C E : sup ę(4) < +oo } 
denote the family of all q-bounded subsets of E. Finally let B =■ flggę 
denote the family of all bounded subsets of E.

With each seminorm q we associate a function

•yq:Bq R+ ( R+= [0,+oo) ),

7,(4) = inf{ó > 0 • (a finite set scE) C 5 + 6Bq }.

The family {7, : q E Q }, denoted 7q, is a version of the Hausdorff or 
“ball” measure of noncompactness. The functions 7, satisfy properties well 
known for the Banach space case.

(1) Proposition. For each seminorm q E Q the function 7q satisfies the 
following properties:

(a) if A E Bq i B C A, then B E Bq and 7q(B) < 7q(A);
(b) if A, B E Bq, then 4 U B E Bq and 7,(4 Uh) < max (7,(4), 7, (B));
(c) if A E Bq, then A E Bq and 7,(4) = 7,(4);
(d) if A E Bq i A E R, then XA E Bq and 7,(A4) = | A|7,(4);
(e) if A,B E Bq, then 4 + B E Bq, and yq(A + B) < 7,(4) + 7,(5);
(f) if A E Bq, then co 4 € Bq and 7,(co 4) = 7,(4);
(g) 7?(^<z) = 1-
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(2) Proposition. Let A € B. The set A is compact, iff'jq(A') = 0 for each 
<l£Q.

We assume that for each seminorm q € Q a family of „regular” sets Rq 
is distinguished, which satisfies the following

(3) Properties.
(a) K. c Rq C I3q, (K. — the family of all compacta),
(b) if A E Rq and B C A, then B € Rq,
(c) if A, B e Rq, then A U B e Rq,
(d) if A G Rq, then A, coAe Rq,
(e) if A, B E Rq and A E R, then XA, A + B E Rq.

We use the following notation: Rq = {Rq : q 6 Q } and R = PlgeQ 
We give some examples of families Rq.

(4) Examples.
(a) Rg = Bq.
(b) Rq = {A C E : Vc>o 3^a set scE) C 5 + tBq}.

In the case when E is a Banach space with the norm || • ||» the family 
7i||.|| = { A C E : A £ K. } is the family of all relatively compact sets.

(c) Rq = {A ę. Bq : 3^a countable set scE) ^e>° 5 + sBq}.
(d) Let X be a Banach space and let E = C(R+;X) be the Bo space of 

continuous maps x : R+ —> X with the family of seminorms

Q = {qT :T E N }, where qT(x) = sup{ ||x(t)|| : t E [0,T] }.

We put

Rqr = | A E Bqr : Ve>o 35>o VX£A Vt,f<e[o,T]

=> ||x(t)-x(t')ll<4-

In the case of a Banach space E = C([a, 6]; X) with the maximum norm, the 
family 7£||.|| is the family of all bounded sets of equicontinuous functions.

(5) Definition. Let F : Q — E, fl C E an open set, be a continuous map. 
R is (Q, 7^Q)-condensing iff

(a) E(fi) e TZ ind VqeQ V^AeK, 7,(*W) < 7qM)- 

R is a (Q, 7^Q)-set-contraction iff
(b) F(fi) € R and VqeQ 3fcfl<1 VAcń,Aęnq
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Similarly a homotopy : Q x I —» F, I = [0,1], is (Q,7^Q)-condensing or 
a (Q, 7^<j)-set-contraction iff it satisfies a condition which is obtained from
(а) or (b) respectively, by substituting both F(fi) and F(A) by 4>(fi x I) 
and $(A X I).

(б) Proposition. If F : Q. E is (Q,'R.Qy)-condensing, then the map 
I — F : fl —> E, I — the identity, is proper and closed. More generally: if 
a homotopy $ : Q X I —► E is (Q, F.Q)-condensing, then for each compact 
C C E the set (I — $)-1(C) = { x G ft : Stel x — 4>(x,Z) € C } is compact 
and for each closed A Q Q the set

(f-$)(Axl) = [i-$(i,l): xeA,t£l}

is closed.

(7) Proposition. Let us assume that a continuous map V : Q X E —> E 
such that V(tt x F) € 72. satisfies the following two conditions

(a) q^Q VyęE VActfAeK,, 7? (^(-^,2/)) = 0>
(A) V,e<3 30<jt,<i g(V(x,!/i) - V(x,j/2)) < M(2/i - 2/2)-

Then the map F : Q —+ E which is given by the formula F(x) = V(x,x), 
is a (Q,7ZQ)-set-contraction.

2. Topological degree of a generalized condensing vector field.
In the class S(Q,7£q; fi) of vector fields I — F, where the map F : fl —> E 
is a (Q,7£<2)-set-contraction, we shall define a topological degree, which is 
invariant with respect to the class of homotopies, denoted HS(Q,7?.q; Q), 
of the form I — $, where the homotopy $ is a (Q, 7^Q)-set-contraction. We 
follow the method of R. D. Nussbaum [15].

We associate, with a given map F : Q —► E, a decreasing sequence of 
closed and convex sets (or, starting from some index, empty sets) Ko = E, 
Kn+i = coF(Q D Kn), n = 0,1,2,... and a closed and convex set (or an 
empty set) A^ = A'oo(F, Q) = Kn, which is invariant in the sense
that F(fin Aqo)) C Koo- With a homotopy 4> : fix I —> E we also associate a 
closed, convex and invariant set A^oo($,fi) by a similar construction, where 
the image F(Q (7 An) is substituted by $((Q 17 Kn) X l).

The set A'00 constructed for a (Q,72.Q)-set-contraction is compact, since 
for each q E Q we have Ki E Kq and for each n > 1,

7,(M < 7g(#n) < A:, -7,(An_i) < ... < fc"-1 -79(A'i), 

and hence 79(A’OO) = 0.
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(8) Definition. Let I — F 6 S(Q,7£q;Q) and x — F(x) / 0 for x € dto. 
We define

deg(L - F, Q, 0) = <
deg(/ - rF,ft,0), 

0,

if A'oo / 0, 

if /Too = 0,

where r : E —* is a retraction and deg(L — rF, fi, 0) is the degree of the
compact vector field I — rF.

The degree deg(L — rF, fi,0) does not depend on the choice of retraction 
and is equal to deg(/ — F, Q,0) whenever F is compact. Hence the above 
definition provides an extension of the topological degree from the class of 
compact vector fields onto the class S(Q,7£q;Q).

(9) Proposition. We have the following properties:
( \ j / t \ f 11 if o £ fl,

(b) if f £ S(Q,7£q;Q), /(i) 0 for each x £ dfl and deg(/, 0,0) / 0,
then /^(O) /

(c) if f £ S(Q, TZq; Q), Qj , Q2 C fi, fli fl ST2 = 0 and 7^ 9
for each x € Q\(Q1un2), then deg(/, fi,0) = deg(/, fii,0)+deg(/, Q2,0)>

( d) if (j) £ and </>(a:) / 0 for each x € dfl,
then deg(0(-,O),Q,O) = deg(</>(-, l),fI,0).

The proofs of the above facts follow standard methods — see for in­
stance [8]. It is also worth noticing that the linear homotopy (x,t)
(1 ~ *)/o(z) + t/i(x) connecting two maps /o,/i € S(Q,7£q; fi) belongs to 
the class HS(Q,7^q; ft).

The following proposition allows the extension of the degree theory onto 
the class S'(Q,7£q; Q) of (Q, 72.Q)-condensing vector fields. The respective 
class of homotopies of the form I — where the homotopy is 
condensing, is denoted by TZq; fl).

(10) Proposition. Let f € S'(Q,TZQ;fl) and f(x) 5^ 0 for each x € dfl, 
and let a convex and symmetric neighbourhood of zero U in the space E be 
chosen so that f(x) U for x € dfl. Then the set

Vf = {g£S(Q,TZQ;fi):(f-ff)(fi) C U }

Js nonempty and the degree deg(g,Q,0) does not depend on g £ Uf.
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Moreover, if <f> G HS'(Q, TZq-, fi) and </>(x,t) / 0 for each x G dfl and 
t G I, then the set

U+ = {i/> eHS(Q,fy;A) :(</>- I) CU}

is nonempty and the degree deg(ip(-,t),£l,O) depends neither on ip £ Uj 
nor t G I, for any convex and symmetric neighbourh ood of zero U such that 
</>(x, t) U for x G dQ. and t G I.

(11) Definition. Let f G S'(Q, TZq; ft) and /(a;) / 0 for each x G dSl. Let 
a neighbourhood of zero U be chosen as in Proposition (10). We define

deg(/, 0,0) = deg($r,O,0),

where the map g is arbitrary such that g G Uf.

We have properties like those given in Proposition (9) — it is sufficient 
to substitute “ S' ” instead of “ S ”

We also have versions of theorems of Borsuk and invariance of domain.

(12) Theorem. Let 0 be a convex and symmetric neighbourhood of zero in 
E and let a map f G S'(Q,7£q; 0) be such that f(x) 0 and f(—x) = — f(x) 
for x G 50. Then deg(/,O,0) = l(mod2).

(13) Theorem. Let 0 be a convex and symmetric neighbourhood of zero
in E and let f G be a one-to-one map such that /(0) = 0.
Then deg(/, 0,0) = l(mod2).

(14) Theorem. If f G S(Q,0q;O) is one-to-one, then the image /(O) is 
an open subset of the space E and f is a homeomorphism of 0 onto f({L).

Let us note that Theorems (13) and (14) are stated in restricted generality 
— for the vector fields in S(Q,5q;0) instead of $'(Q,TZq;£1) (compare 
[16])-

3. Applications to structure of solutions sets of equations in Bo 
spaces. Let (£/„) denote a decreasing sequence of convex and symmetric 
neighbourhoods of zero in E such that Un = {0}.



Structure of Fixed Point Sets ... 61

(15) Theorem. Let f G S'(Q,7Jq;Q) be a map which satisfies conditions
/(x) 0 for x € dfl and deg(/, 0,0) / 0. Suppose that there exists a
sequence of maps fn G S'(Q, fi) such that, for each n, (/-/n)(fl) C Un 
and the equation fn(x) = y, for each y G Un, has at most one solution.

Then the set of all solutions of the equation f(x) = 0 is an fig (i.e. it 
is homeomorphic to an intersection of a decreasing sequence of compact 
absolute retracts).

Obviously, the condition deg(/, fi,0) 0 is fullfilled in the case when
0 = E — the linear homotopy connecting the map f and the identity is 
admissible.

Now we present two examples of applications of the above theorem. Our 
goal here is to demonstrate applicability of the theory of sections 1 and 2 to 
certain classes of problems rather, than give truly new theorems. First of the 
examples deals with an ordinary first order differential equation in a Banach 
space. An existence theorem with hypothesis similar to that of Theorem
(16) (but in a bounded interval and with a general Kamke function in (16c)) 
can be found in [12], A series of theorems on the structure of sets of solutions 
(in bounded intervals) of differential and integral equations in Banach spaces 
can be found in papers of S. Szufla, e.g. [21], [22]. Recently some papers 
in which differential equations are studied in unbounded domain appeared, 
e-g- [6], [7], [19], [14], [5].

Let X denote a Banach space with a norm || • || and let p be the Hausdorff 
(or “ball”) measure of noncompactness associated with || • ||. Let us assume 
that the map f : R+ x X —> X is continuous and consider the following 
Cauchy problem

x'(f) =/(t,x(t)), t > 0, 
x(0)= 0.

The set of all solutions of the above problem is denoted by S. We consider 
the Bo space E = C(R+, A) of all continuous maps x : R+ —> X, with the 
family of seminorms

Q = { qT : T > 0 }, qT(x) = sup{ ||x(t)|| : t G [0,T] }.

Convergence in E is then equivalent to the uniform convergence on bounded 
subsets of R+.

(16) Theorem. Let b,c^k : R+ —» R+ be continuous functions. Let us 
assume that the following conditions hold:

(a) the map f is uniformly continuous on [0, T] x { x G X : ||x|| < r } for 
each T,r > 0,
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(b) ||/(Z,®)|| < b(t)||®|| + c(t) for each x 6 X and f € R+;
(c) //(/(Z, A)) < fc(t)/x(A) f°r each bounded A C X.

Then the set S C E is an Rg.

We sketch the proof. From Gronwall inequality and (16b) it follows that 
if x(-) is a solution of (C), then for t > 0, ||x(t)|| < a(t), where a(f) =
( c(s) ds^ e-lo da. Hence the right hand side f can be modified in such

a way that all the conditions so far imposed on / will still hold, the set 
of solutions of the problem (C) will remain unchanged, but /(t,x) = 0 for 
||x|| > 1 + a(f). For example it is sufficient to replace f by

where 0 : R —► R is a continuously differentiable function such that 0(u) = 1 
for |u| < 1, 0 < 0(u) < 1 for 1 < |u| < 2 and 0(u) = 0 for |u| > 2. Then 
the condition (16b) can be replaced by a stronger condition ||/(t, ®)|| < a(t) 
with some continuous function a(-).

To complete the proof it is now sufficient to verify that the maps h, 
hn : E —> E, n € N, given by formulae

h(®)(<) = x(t) - I /(s,®(s)), 
do

and
0 < t < 1/n, 

f(s,u(s))ds, t>l/n,

fullfill the hypothesis of Theorem (15). The above maps belong to the class 
of vector fields S(Q,7£q; £) where

bn(»)(<) =

Q = {9t= T>0}, 9T(x) = sup{e-'t/ofc(s)^||®(/)||: /g[0,T]},

k > 1 is arbitrarily chosen (the method of Bielecki is used here), and RqT is 
defined as in Example (4d). The last choice is due to the fact that properties 
like

m(/0T A^ds) < I n(A(s))ds,
Jo

and 7t(A) = sup{/z(A(t)) : t £ [0,T]} hold for equicontinuous sets of 
functions A C E (see [12]).

The second example is the Darboux problem for a hyperbolic equation. 
An existence theorem for a similar problem (but in a bounded domain and
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with continuous right side) was proved in [11]. Theorems on the structure 
of the set of solutions, in bounded domain, for various kinds of assumptions 
on the right side can be found in [13], [2], [4], [10]. Theorem (17), as stated 
below, was already proved in [8]. Here we wish to demonstrate that the 
theory of section 2 can be applied to this case.

Let A = R+xR+ and AT = [0,T] x [0,T], T > 0. Let f : A x R4" -> R" 
be a Caratheodory map, i. e. we assume that all its sections

f(x, y,: R4" -> R", (i,y)eA

are continuous and all sections

/( u,r, s,f) : A —> R", (u,r,s,/) e R4"

are Lebesgue measurable.
The Darboux problem is stated as follows:

(D)
uxy — f(xi Vi ui unuyi uxy) 

u(0,p) = p(p), «(x,0) = h(x)

in A, 

on <9A,

where g,h : R+ —» R" are given absolutely continuous maps which sat­
isfy condition p(0) = /i(0). A solution of this problem is any absolutely 
continuous map u : A —> R" which satisfies the differential equation almost 
everywhere in A and the boundary condition for all x,p € R+. The set of 
all solutions is denoted by S.

We say that a measurable function v : A —* R+ is locally bounded (locally 
less then a, a > 0), if

esssup(a.tJz)eAT|u(x,y)| < +oo (respectively: ... < a)

for each T > 0.
In the following theorem we study the set of all solutions of the problem 

(D) as a subset of the Bo space of continuous maps E = C(A,RP) with the 
family of seminorms

Q = {qT-. T > 0 }, qT(u) = sup{ |u(x,p)| : (x,j/)gAt}.

Besides, the space of locally integrable functions E' = L4(A,R ) with the 
family of seminorms

P = { pT : T > 0 }, Pt(u) = f I |u(x,l0| dx dy.

is useful.
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(17) Theorem. Let b, c, K,M,N : A —> R+ be measurable locally bounded 
functions and let N be locally less then 1. We assume that the following 
two conditions are satisfied:

(a) for all (x,y,u,r,s,t) £ A x R4",

|/(i,y;u,r,s,t)| < b(a:,j/)|u| + c(x,y)

(b) for all (<x,y,u,ri,s-i,ti),(<x,y,u,r2,S2,t2) G Ax R4p,

\f(x,y,u,rx,slytx) - f(x, y,u,r2, s2, t2)|
< A’(x,y)|r1 - r2| + M(x,y)\sx - s2| + N(x,y)\tx - t2|

Then the set of all solutions of the Darboux problem S C E is an Jig.

We sketch the proof (we shall not be repeating some of the details which 
can be found in [8]). A suitable generalization of Gronwall inequality can 
be used to derive estimates on solutions of the problem (D) and further 
assumptions on f can be strengthened without loosing generality (as in the 
proof of (16)).

In particular we can assume that for all (i,y; u,r,s,t) G A x (R4p), 

|/(x,i/;u,r,s,t)| < a(x,y),

where a(-,-) is some locally integrable function.
Let Dt = {u £ E' : |u(x,y)| < a(x,y) almost everywhere in AT } and 

let us introduce the families of sets

72.t = { A c E : 3 a compact set KCE1 3 ^>o A C A + p,DT }.

Then we consider the map

h:E'^ E',
b(u)(xl2/) =/(x,y; h(x) + ff(J/)-p(0)+ [ I* u&rfidtdi!,

Jo Jo
h'W+Jo u(x,TJ>)(lT1' 9'(y) + Jo u(f’y)d£,u(x,3/)).

Using the method of Bielecki we find an equivalent family of seminorms 
P= {Pt} such that if = HT, then h G S(P,ftp; £). The reason for 
the families Tip is that the map

S-.E'^E, S(v)(x,y)= [ [ v(£,T/)d£dł7,
Jo Jo

is not completely continuous, but it sends sets from Q Up into compact sets 
(in [8] this difficulty is dealt with in a different way).

For the remaining elements of the proof (in particular the construction 
of suitable approximations, see [8]).
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