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Fixed Point Theorems for Compositions 
of Set-Valued Maps with Single-Valued Maps

Abstract. Some fixed point theorems are presented for a class of set-valued 
maps which seems to be interesting in view of applications in the theory 
of differential equations and inclusions. Our approach is based upon the 
topological fixed point theory initiated in [12] and developed in [1].

Introduction. The subject of the paper is to prove a number of fixed point 
theorems for a certain class of set-valued maps. This class of maps consists 
basically of the so-called Aronszajn-maps (i.e. set-valued maps with values 
being 7?{-sets) composed with single-valued maps. As it will become clear 
such types of maps provide great flexibility and are useful in applications 
in the field of differential equations and inclusions (see [11], [12]).

As the main tool we will apply the topological fixed point index theory 
as it is introduced in [12] and developed in [3], [1]. Clearly, any such theory 
requires that the maps under consideration satisfy a certain compactness 
condition (comp. [21]). Here we will assume conditions in terms of measures 
of noncompactness. As in the case of single-valued maps the use of measures 
of noncompactness unifies the treatment of compact maps (i.e. maps whose 
range lies in compact subset) and contraction mappings.

Finally let us note, that some of the results of the paper are known, 
even in a more general version. This is due to the fact that using methods 
of algebraic topology it is possible to construct a fixed point index theory
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for more general classes of maps, e.g. acyclic-valued and compositions of 
acyclic-valued maps (see [10], [13]). However, we would like to emphasize 
that the fixed point index used in this paper can be constructed by the 
natural and elementary technique of graph approximations and thus for our 
purpose the use of algebraic topology is not neccessary.

1. Preliminaries. Given topological spaces Tj,T2, we consider set-valued 
maps p \T\ -* T2, i.e. maps which assign to each x G Tj a non-empty set 
p(x~) C T2. The graph of the set-valued map p is the set

:= {0,2/) G Ti x T2|y G

A set-valued map p is called upper semi-continuous (u.s.c.), if for each open 
V C T2 the set ę>-1(V) := {x G T2|ę?(a:) C V} is open in T\ and p(x) is 
compact for each x G Tj. The fixed point set of a set-valued map p, i.e. 
the set of all points such that x G p(x), will be denoted by Fix(yj). In the 
sequel we use the convention that single-valued maps are denoted by Latin 
letters: , and for set-valued maps we use Greek letters: p,t/,irl
etc.

In the following we will impose compactness conditions on set-valued 
maps in terms of measures of non compactness. Recall that a measure of 
noncompactness is a map m from the bounded subsets of a Banach space 
X into the positive real numbers Rq such that m(A) = 0 <=> A compact, 
m(Ai U A2) = max{m(Ai),m(A2)}, m(Ai + A2) < ra(Ai) + m(A2) and 
m(conv A) = m(A) with bounded subsets A, Aj,A2 of A; m is called posi­
tively homogeneous if ro(AA) = |A]m(A) for all A G R. Important examples 
of positively homogeneous measures of noncompactness are the Kuratowski 
and the Hausdorff measure of non compactness m/< and mu respectively, 
where

m/<(A) := inf {r > 0| there are finitely many sets Ai,... , An C A 

n
with diam A< < r and A C [J A,J,

»=i
m/f(A) := inf{r > 0] there are finitely many points xi,... ,xn G X 

n
with A C (J Ar(xt)|

1=1

(given r > 0 and a subset A of a metric space M, by Ae(A) we denote an 
open e-neighborhood of A in Af; clearly, for a point 1 G M we use Nr(x) 
instead of Ar({x})).
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Now let (p : X D £)(y?) —► X be an u.s.c. set-valued map and m a 
measure of noncompactness on X. Then y? is called fc-set-contraction (w.r.t. 
m), where 0 < k < 1, if for each bounded subset A C P(y?), the set 
y?(A) is bounded and rra(yj(A)) < km(A). The set-valued map y? is called 
condensing (w.r.t. m) if for each bounded set A C D(y>) y?(A) is bounded
and m(y>(A)) < m(A) provided that m(A) 0.

The typical example of fc-set-contractions are mappings of the form y?i + 
y>2 where y>j is a A:i-set-contraction and y>2 is a contraction of constant k2 
and k = kx + k2- This will follow from Lemma 1 below. Recall that a 
map y> : X D P(y?) —» X is called a contraction of constant fc, 0 < k < 1, 
provided d//(y?(a:),yj(y)) < A:||x — J/|| for all x,y € where dy denotes
the Hausdorff metric and if k = 1, we say y? is a nonexpansive map.

Lemma 1. Let y> : X —* X be a contraction of constant k with compact 
values. Then y? is a k-set-contraction w.r.t. mu.

Proof. Let A C X be bounded with = r. Then given c > 0,
there are points ... , xn € X such that A C U?=i M-h(®<). Since y> is a 
contraction of constant k we see that y?(A) C UF=i V’(a:») + ^Jfe(r+e)(0) and 
thus mH(y>(A)) < mH( Afc(r+£)(0)) < k(r + c). □

For a set-valued contractive map yj with contraction constant k defined 
on a proper subset D of X, we are not able to show that it is a fc-set- 
contraction w.r.t. mu (it seems to us that the proof given in [5, p. 113], 
is in error since there is no guarantee that the centers of the balls defining 
W//(£)) lie in £)). However it is not difficult to show that such contraction 
mappings are 2A;-set-contractions w.r.t. mjj. Notice also that the arguments 
used in the Lemma applied on m/< yield only that y> is a 2fc-set-contraction 
(independently whether y> is defined on a proper subset or not); but the 
factor 2 disappears in the single-valued case. We add in passing that a 
condensing map in general is not a fc-set-contraction with k < 1 and, that 
a map y> which satisfies cf//(ę?(x), </7(j/)) < ||x - j/|| is not a condensing map 
(comp. [17, p. 222]).

2. The fixed point index. As the main tool in our consideration stands 
the topological fixed point index for the so-called decomposible set-valued 
maps as it is introduced in [12], [3] (see also [11]). In order to state this 
theory we need the following definitions.

Following [6] we say that a compact subset K of a metric space M is 
proximally oo-connected if, for each c > 0, there is 0 < 6 < e such that the
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inclusion Ng(K) C Nt(K) induces the trivial homomorphism on the homo­
topy groups, i.e. in : Tcn(Ng(K)) —► ?rn(iV£(A)) is zero for any n > 0 (we 
suppress the base points from the notations since they are not necessary).

As an example, recall that any Rg-set (i.e. the intersection of a de­
creasing sequence of compact contractible sets, see [14]) lying in an ANR is 
proximally oo-connected. Hence, compact contractible and compact convex 
subsets of a Banach space are proximally oo-connected.

We say that a set-valued map <p : T -+ M, where T is a topological 
space and M a metric space, is a /-map, if is u.s.c. and the set ę>(z) is 
a proximally oo-connected subset of M. In [12] it is shown that a J-map

: Y —♦ M, where Y is a compact ANR and M an arbitrary metric space 
admits arbitrary close graph approximations, i.e. given t > 0 there exists a 
continuous map g :Y —> M such that C

Now let A be a Banach space and U an open subset of A. By a decom­
position we mean a diagram U —M X, where M is a (metric) ANR, 

is a J-map and f is a continuous map. A map 4> is called decomposable,
if it has a decomposition, i.e. the diagram

(1) P($) : U M M X,

is such that $ = f o <p.
If another map $ : U —» A has a decomposition

(2) D(’f): U N A,

we say that the decompositions T(4>) and P($) are homotopic, provided 
M = N, there is a J-map g : U X [0,1] —> M and a continuous map 
h : M X [0,1] —» A such that »7(-, 0) = </?, t/(-, 1) = i/>, h(-, 0) = /, h(-, 1) = g. 
Observe that in this case we have a homotopy H : U x [0,1] —> A given by 
H(x,t) := Uve„(x,o J’C since ^(-’°) = and ^G1) =

For the class of decomposable, condensing maps there is a topological 
fixed point index. This fixed point index can be obtained by employing 
the technique of arbitrary close graph approximations. Moreover, the con­
struction uses methods similar to those in [17] in the case of single-valued 
condensing maps (see [1] for details).

Theorem 2. Let X be a Banach space, U C A open and let <t> : U —> X 
be a condensing map w.r.t. a positively homogeneous measure of noncom­
pactness m. Let P($) (see (1)) be a decomposition of <t> and let Fix($) be 
a compact set. Then there exists a fixed point index Ind %(P(4>), f/) € Z 
with the following properties:
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•MS: "

(i) (Additivity)
If Ui,Ui are open disjoint subsets ofU with Fix(<p) C U\ U U2, then 

Ind x(T>(*), U) = Ind xW^M + Indx(P(*)|t/2, tf2),

where P(4>)|[ą stands for the decomposition U, —1 M -/-* X,i = 1,2. 
Particularly, Ind %(P($), U) / 0 implies Fix(<p) / 0.

(ii) (Homotopy)
If 'P : U —>■ X is a map with a decomposition P($) (see (2)) homotopic 
with P($) such that the homotopy H : U X [0,1] —* X is a condensing 
map, i.e. m(H(A x [0,1])) < m(A) for each bounded A C U with 
m(A) 0 0, and the set E := {(x,t) € U x [0, l]|m € H(x,t)} is compact, 
then Ind x(0($), U) = Ind xPW, U).

(iii) (Units)
If c € X and $(x) = c for each x 6 U, then the decomposition 
V:U X X has

if cel/, 
if c{U.

(iv) (Oddness)
Ifr > 0 and <1> : Arr(0) —> X is a condensing map w.r.t. m with Fix($)O 
dlVr(0) = 0, having a decomposition T>($): Nr((T) X X, where 
<p,f are odd mappings (i.e. -<p(x) = <p(-x) for every x) and X is a 
Banach space, then Ind x(’P($), Nr(0)) = 1 (mod 2).

We will also use the following simple

Proposition 3. Let $ be as above with the decomposition P($) (see (1)) 
and let

V'(<f>) -Cx

be a decomposition such that there exists a map p : M —» M' such that the 
triangles

Indx(L>

commute. Then Ind x(’P(^), U) = Ind x(Pz(^)? U). □

Remark 4. In the paper we consider the class of decomposable mappings 
for several reasons:
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• The class is more general than /-maps: In [11, Example 6.2] it is 
shown that a map which takes the unit sphere S’ in R2 as its values 
has a decomposition. However, it is obvious that S’ is not proximally 
oo-connected in R2 and thus this map is not a /-map.

• The class of /-maps is not closed under addition. As an example 
consider the subsets A := Xi(l,0) and B := S1 \ A in R2 . Now A 
and B are proximally oo-connected (since they are contractible), but 
A+B is homotopically aquivalent with S1 and thus it is not proximally 
oo-connected in R2.

• Let F : [0,o] X X —> X. Then we can consider the Poincare map 
Pt associated with the differential equation x' = F(t, x) and in many 
cases it can be shown that this map is decomposable. To see this, 
observe that Pt = et o S, where

S(xo) :={x : [0, a] —► X\x is a solution of the initial value problem 
x' = F(t,x), x(0) = xo}

and et is the evaluation map in t 6 [0,a]. Under various assumptions 
(e.g. the Banach space X may be finite or infinite dimensional; the 
map F may be continuous or a Caratheodory map or it may be an 
u.s.c. set-valued map) it can be shown that S takes f?j-sets as its 
values and it follows that Pt is a decomposable map (see [19], [11] and 
the references given there ).

3. Fixed point theorems coming from homotopy. Let X be a Banach 
space, U an open subset of X and m a positively homogeneous measure of 
noncompactness.

Lemma 5. Let $,'!/: U —> X be condensing maps w.r.t. m having 
bounded range and let P($),2>(W) (see (1), (2)) be decompositions of the 
maps $|(y, 4'|(y, respectively. Let the set-valued map

A : U x [0,1] —* X, A(x,t) := (1 - Z)$(x) + Z'k(x)

be such that

(3) x A(x, t) for each x € dU, t 6 [0,1].

Then Ind x(P($),tf) = Ind X(P($), U).

Observe that A does not establish a homotopy of the decompositions 
P($) and D('P) and thus Theorem (2 (ii)) can not be applied directly.
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Proof (of Lemma 5). Consider the decompositions

■Df.U^MxN x, V2 U^MxN n^i’> X,

where qx, q2 : X X X -+ X, qx(x,y) := x, q2^x, y) y. Now the single 
valued map h : M x N X [0,1] —► X, h(x,y,t) := (1 — t)/(x) + tg(y) shows 
the homotopy of T>x and T>2 in the sense of decompositions and clearly

A(x,t) = (J b(p,p,t).

Hence, Ind%(T>i,tf) = Indx(P2iI0 follows if we can show that A is a 
condensing map and that the set £ := {(a:,t) G U X [0, l]|x G A(x,t)} is 
compact.

Let A Q U bounded with m(A) / 0. Since

A(A x [0,1]) C conv {4>(A) U 'P(A)}

we have

m(A(A x [0,1])) < m(4>(A) U 'P(A)) = max{m($(A)),m(4'(A))} < m(A)

since $ and $ are condensing. Thus A is condensing and, in order to show 
that £ is compact, observe first that £ is bounded, since H is bounded by 
assumption and therefore also the set r(£) is bounded (r : X x [0,1] —► X 
denotes the projection). Now assume m(r(£)) / 0. Then, since r(£) C 
A(£) and A is condensing, we have m(r(£)) < m(A(£)) < m(r(£)), i.e. a 
contradiction. Thus r(£) and also £ is compact. Now (3) shows £ = £.

It remains to show, that Ind x(P(4>), (/) = Indx(Pi,{/) and 
Ind x(P($), {/) = Indx(P2)tO- To this end, observe that there are maps 
Pi '■ M x N —> M, p2 : M x N —► N given by pi(z,p) := x, p2(x,p) := V 
such that Pj o(<px V’) = <p, f°Pi = 9i °(/xp) and p2 o(<px = V1, 9°P2 = 
92 o (/ x p). Thus, the above equalities follow from Proposition 3. □

Theorem 6 (Nonlinear alternative). Let U be an open subset of a Banach 
space X and let z £ U. Let 4> :TF -* X be a condensing map with bounded 
range having the decomposition (1) of 3>|t/- Then either

(Al) <J> has a fixed point or
(A2) there exists i0 G dU and to G (0,1) such that xo — z £ to($(zo) - {^})-

Proof. Without loss of generality we may assume Fix($) D dU = 0 (oth­
erwise (Al) holds). Define a map

A : Ux [0,1] -> X, A(x,t) := (1 - t){z} + t4>(x).
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Now assume that x £ A(x, /) for each x € dU and t 6 [0,1]. Then consider 
z : U —♦ X,x t-> z with T> : U X and it follows from Lemma 5 and 
Theorem 2 (iii) that Ind %(P($), U) = Ind%(P, U) = 1, i.e. $ has a fixed 
point and (Al) is valid.

If on the other hand there is a; € dU and t € [0,1] such that x € A(x,Z), 
then we have (A2) with xq := x and to := t. □

Corollary 7. Let $ : U —♦ X be as above, z (E U and assume one of the 
following conditions:

(i) U is convex and $(9(7) c U. (Rothe’s condition)
(ii) If to(x — z) 6 $(x) — {z} for x 6 dU then to < 1. (Yamamuro’s 

condition)
(iii) ||y — z||2 < ||z — z||2 + ||y - x||2 for each x E dU,y € $(x). (Altman’s 

condition).
Then $ has a fixed point.

Proof. The proof follows from the fact that each of the conditions implies 
that (A2) in the nonlinear alternative is wrong. □

Theorem 8 (Leray-Schauder alternative). Let <h: X —> X be a condensing 
map with a decomposition P($): X M X. Then either the set

G := {x E X|x 6 t$(i) for t E (0,1)}

is unbounded or $ has a fixed point.

Proof. Let G be bounded. Then there is 7? > 0 such that G C A/?(0) =: U. 
Now the map $|^ satisfies the conditins of the nonlinear alternative and 
there is no x € dU and t E (0,1) such that x E t$(x). Thus (A2) is not 
fulfilled (with z = 0), and therefore $ has a fixed point. □

4. A fixed point theorem coming from oddness. In what follows we 
say that ip : X X is a homogeneous map if A <p(x) C <p(\x) for every 
x E X, A E R.

We now extend to condensing decomposable mappings the result of La­
sota and Opial [16] obtained by them for convex-valued maps. Results of 
this type have applications in boundary value problems (e.g. the Nicoletti 
boundary value problem, see also [20]) and optimal control problems.
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Theorem 9. Let X -+ X be a condensing map w.r.t. m having
a decomposition T>(4>) : X M X and let <po : X —► X be a 
condensing map w.r.t. m with compact convex values. Assume also that 
<Po is homogeneous and that x € implies x = 0. Suppose that there
exists a > 0 such that

(4) 4>(a:) C <po(z) + A„(0) for each x G X.

Then $ has a fixed point.

Proof. We may choose > 0 such that x G dN^O) und y G <po(x) implies 
II® — 2/|| > 0- Indeed, if this were not the case, then one could select xn 
in dNi(Q) for every n such that ||xn - yn|| < L for some yn G <po(^n)- 
Now, (zn) C (t/n) + (®n — J/n) and thus, in case ra((a:n)) / 0, we obtain 
m(W) < ™((j/n)) + m((a:„ - j/„)) = ™((j/n)) < ”i((*n)), since <p0 is 
condensing. It follows that for some subsequence xnk —> x G <9Ai(0) and 
x G <Po(z), which is a contradiction.

Now we choose r G R with r • (3 > a. Then if x G dNr(0) and y G <Po(£), 
we have

(5) ||i - 3/|| = r > r (3 > a

since y/r G ipo^x/r). Next define the homotopy A : Arr(0) x [0,1] -» 
X by A(x,t) := (1 - t)4>(i) + tip0(x). Using (4) we see that A(x,t) C 
<Po(z) + Na(0) for each x G !Vr(0), t G [0,1] and hence it follows from
(5) that x £ A(x,t) provided x G dlVr(0), t G [0,1]. Thus we may apply 
Lemma 5 and obtain Ind %(P($), !Vr(0)) = Ind %(P(4>o), Nr(0)), where 
T(4>0) ; Nr(0) X X. But, since <p0 is an odd map, it follows from 
the oddness property 2 (iv) that Ind x(P($o), ^(0)) is nonzero, so 4> has 
a fixed point. □

5. The case of 1-set-contractions. Clearly such maps need not to have 
any fixed points. However we have the following result.

Theorem 10. Let U be an open subset of a Banach space X, $ : U —* X 
be bounded, 1-set-contractive w.r.t. a positively homogeneous measure of 
noncompactness m having the decomposition (1) of$|(/ and such that the 
condition (ii) of Corollary 7 is valid. Then 4> has a fixed point if and only if
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(★) for each sequence (xn) in U such that there is yn € $(x„) with 
xn — Vn —* 0 there exists a point x € U such that x € 4>(a;).

Proof. Consider the maps $n : U —► X, $n(x) := (1 — Zn){z} + Zn<I>(a:) 
where (Zn) is a squence of real numbers such that tn —► 1 and tn < 1. 
Clearly, is /„-set-contraction w.r.t. m and the condition (ii) of Corollary 
7 holds for $n: If a: € dU and to is such that Zo(a: — z) € $n(x) — {z}, i.e. 
t0(x - z) € (1 - tn){z} + Zn$(x) - {z} then Z0(i - z) e Zn(4»(i) - {z}) and 
thus by assumption Zo/Zn < 1. It follows to < Zn < 1. Moreover, observe 
that if we replace in the decomposition (1) of 4>|[/ the map f by the map 
fn : M —> X, fn(x) := (1 — Zn)z + Zn/(x), we obtain a decomposition of 
$n|y. Hence, Corollary 7 (ii) implies that for each n € N there exists a point 
xn 6 U such that a:n € $n(a;n)- But now, by definition of 3>n, we obtain 
Vn € $(i„) such that xn = (1 - Zn)z + tnyn, i.e. xn - yn = (1 - Zn)(z - j/„) 
and it follows that xn — yn —► 0. Thus assumption (*) implies the existence 
of a fixed point in U. □

If $ is condensing it follows that J — $ maps closed subsets onto closed 
subsets and therefore condition (★) is fulfilled in this case (I denotes the 
identity on the Banach space X). To give an example of a mapping which 
is only a 1-set-contraction such that condition (*) is fulfilled, we have the 
following Corollary 11.

Recall that a Banach space X satisfies the condition of Opial, if for each 
x e X and each sequence (xn) with xn —*• x (—>• denotes convergence in 
the weak topology), it follows that lim inf ||<cn — y\\ > lim inf ||zn — x|| for 
y x. All uniformly convex Banach spaces with weakly continuous duality 
mapping have this property; in particular, Hilbert spaces and lp spaces with 
p > 1 have this property (see [15]).

Corollary 11. Let X be a Banach space which satisfies the condition of 
Opial, and suppose U is an open subset of X such that U is compact in 
the weak topology. Assume that <pi : X —♦ X is a nonexpansive J-map and 
<P2 • U —> X is a strongly u.s.c. J-map (i.e. 1(^z) JS weakly open for each
open subset V of X and <fi2(z) is proximally oo-connected in X for each 
x € U). If the mapping $ := <pi + <p2 ■ U —>• X satisfies condition (ii) of 
Corollary 7, then has a fixed point.

Proof. By Lemma 1 <pi is a 1-set-contraction w.r.t. mu and, since y>2 maps 
weakly compact sets onto compact sets it follows that m//(ę>2(A)) = 0 
for each A C U. Thus $ is a 1-set-contraction w.r.t. mu. Next, we 
have a decomposition P($) of given by U X x X X, where
add(z,p) := x + y.
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We show that $ also satisfies condition (*): To this end, let (xn) be a 
sequence in U such that there is yn 6 4>(:rn) with xn — yn —> 0. Then 
there are un G P\(xrf) and vn G ^(zj such that yn = un + vn. Since 
U is weakly compact, we may assume that xn x and, using the strong 
upper semi-continuity of p2, we see that there is v G X, a subsequence 
still denoted (un) such that vn —> v and therefore, v G ^(z)- But now 
xn ~ Un = xn ~ yn + u„ —♦ v, and since xn - un G (/ - <pi)(arn) it follows 
from a result of Lami Dozo ([15, Th. 3.1]) that v G (/ - <pi)(a:). Thus 
x G $(x). □

Remark 12. Theorem 10 and Corollary 11 are the generalizations from 
[9] where analogous results were obtained for maps with compact convex 
values. Observe, that in order to see that the map $ in Corollary 11 is a 1- 
set-contraction, we have to assume that p\ is defined on X. If is defined 
only on U the result is true in case <pi is a single-valued map or X is a 
Hilbert space and U = Ar(0) (since in this case there exists a nonexpansive 
retraction r : X —> Nr(0) and we can apply Corollary 11 on <pi o r instead 
of ęjj). In general it seems to be a difficult problem to prove Corollary 11 
without assuming that p\ is defined on all of X.

6. A fixed point theorem in locally convex spaces. Starting from the 
paper [7] of Ky Fan in 1952 the problem of the existence of fixed points for 
set-valued maps in locally convex spaces was considered by many authors 
(see [18] and the refernces given there). Here we would like to give a version 
of the Ky Fan fixed point theorem for the mappings as considered in this 
paper.

Assume X is a locally convex topological vector space. By U(0) we denote 
the fundamental system of neighborhoods of 0 G X.

Theorem 13. Let C be a compact convex subset of X and let $ : C —> C. 
fet p : C —► M be J-map, f : M —> C a continuous map where M is an 
ANR and let $ = fop. Then 4> has a fixed point.

For the proof of this result we need the following

Lemma 14 (see [4. p. 89). Let X and C be as above and let U G £1(0). 
Then there is a finite dimensional subspace Xu of X and a continuous map 
Pu :C C ft Xu such that Pu(x) — x G U for each x G C.

Proof of Theorem 13. Let U G U(O). Consider the map 

4>tr : C —> C, *u(x) -= + U)f\C.
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If we can prove that each fixed point set Fix (<!>(/) is non-empty and closed, 
then it will follow that also any finite intersection of these sets is non­
empty. Hence, it follows from the finite intersection property of C that 
D[/6U(o) Fix($</) / 0- Clearly any point xq in this intersection satisfies 
x0 G 4>(xo).

Now let x £ Fix($iz) for some U G £1(0). Then we have x $(x) + U 
and thus there exists V) G H(0) such that

(6) (® + v1)n($(x)-t-r+v1) = 0.

(Here we use the fact that % as a topological linear space carries a uniform 
structure induced by the system £1(0).)

Since <t> is u.s.c. there i» a set V2 € £1(0), V? C Vj, such that 
$•(3/) C ($(2) + Vj) n C for each y G (x + V2) O C. But for such y we 
have <bu(y) C $(2/) + U C ^(x) + Vj + U and thus, by (6), y <£ $u(y), be. 
Fix(<I>i/) is closed.

In order to show that for each U G £1(0) the fixed point set Fix($(y) is 
non-empty, we define a map $[/ : CC\Xu —> CC]Xy by ^[/(x) := Pfyo$(x), 
where Xu and Pu are as in the Lemma 14 w.r.t. U. Observe that for each 
x G C D Xu we have ^(x) C $(/(x), since, if y € 4*(/(x), i.e. there is 
z G 4>(x) such that y = Pu(z), we have 3/ = z + (Pu(z) - z) G 4>(x) + U. 
But the map tyy has the decomposition

coxv^u M^coXu

and thus (e.g. by Corollary 7 (i)) there exists a fixed point xp of Vu. It 
follows xu G Vufau) C $u(xu), i.e. Fix (<&[/) / □
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