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Approximating Common Fixed Points 
of Nonexpansive Semigroups

by the Mann Iteration Process

Abstract. In this paper we introduce a new iteration procedure of Mann’s 
type for approximating common fixed points for a family of nonexpansive 
mappings in a Hilbert space. Then, using some ideas in the nonlinear ergodic 
theory, we prove that the iterates converge weakly to a common fixed point 
for a family of mappings. Further, we prove the strong convergence theorems 
for a noncommutative family of nonexpansive mappings in a Hilbert space.

1. Introduction. Let C be a nonempty closed convex subset of a real 
Hilbert space H. Then a mapping T : C —> C is called nonexpansive, if 
||Ta: — Ty\\ < ||rc — y\\ for all x,y € C. We denote by E'(T) the set of fixed 
points of T.

Mann [11] introduced an iteration procedure for approximating fixed 
points of a mapping T in a Hilbert space as follows:

(1) Xx = xeC, xn+i = anxn + (1 - an)Txn for every n > 1, 

where {an} is a sequence in [0,1].
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Later, Reich [13] discussed this iteration procedure in a uniformly convex 
Banach space whose norm is Frechet differentiable and obtained that the 
iterates {zn} converge weakly to a fixed point of T if a„(l ~ an) = °o
and F(T) / 0.

On the other hand, Baillon [1] proved the first nonlinear ergodic theorem 
for nonexpansive mappings in a Hilbert space: Let C be a nonempty closed 
convex subset of a Hilbert space and let T be a nonexpansive mapping of 
C into itself. If the set F(T) is nonempty, then for each x € C, the Cesaro 
means

converge weakly to some y G F(T). This result has been extended to non­
linear ergodic theorems for families of nonexpansive mappings by several 
authors (see, e.g. [2], [6], [7], [14], [15], 17]).

2. Preliminaries. Throughout this paper we assume that H is a real 
Hilbert space. In a real Hilbert space H, we have

l|A» + (1 - A)s||2 = A||x||! + (1 - A)||»||! - A(1 - A)||i - S||J

for all x,y € H and A G R with 0 < A < 1. We write xn —*■ x to indicate
that the sequence {xn} of vectors converges weakly to x. Similarly xn —>■ x
(or lim xn = x) will symbolize strong convergence. We denote by R and 

n—»oo
R+ the set of all real numbers and the set of all nonnegative real numbers, 
respectively. For a subset A of H, co A and co A mean the convex hull of A 
and the closure of the convex hull of A, respectively.

Let S be a semigroup and let B(S') be the Banach space of all bounded 
real valued functions on S with supremum norm. Then, for each s £ S 
and f G B(5), we can define elements raf G B(S) and l3f G B(S) by 
(rs/)(f) = /(ts) and (/s/)(f) = f(st) for all / G S', respectively. We also 
denote by r* and I* the conjugate operators of rs and ls, respectively. Let 
D be a subspace of B(5) and let n be an element of D*. Then, we denote 
by //(/) the value of /z at f G D. Sometimes, /z(/) will be also denoted by 
Zit(/(f)) °r / /(/)d/z(f). When D contains constants, a linear functional /i 
on D is called a mean on D: if ||^|| = /z(l) = 1. We also know that /x is a 
mean on D if and only if

inf/(a) < /x(/) < sup/(s) 
sgS

for each f G D. For s G S, we can define a point evaluation &s by ós(/) = 
/(s) for every f G B(S). A convex combination of point evaluations is called
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a finite mean on S. A finite mean on S is also a mean on any subspace D of 
B(S) containing constants. Further, let D be a subspace of B(S) containing 
constants which is r„-invariant i.e., rsD C D for each s £ S. Then, a mean 
/z on D is called right invariant if n(r3f) = for all s € S and f E D. 
Similarly, we can define a left invariant mean on a /„-invariant subspace of 
B(S) containing constants. A right and left invariant mean is called an 
invariant mean.

The following definition which was introduced by Takahashi [15] is crucial 
in the nonlinear ergodic theory for abstract semigroups. Let u be a function 
of S into H such that the weak closure of {u(f) : t £ S} is weakly compact 
and (zz(-),y) € D for every y 6 H. And let /z be an element of D*. Then, 
by the Riesz theorem, there exists a unique element E H such that 
(um y) = H,(u(s),y) for all y E H. If /z is a mean on D, then izM is contained 
in co{zz(t) : t E 5} (for example, see [8], [9], 15]). Sometimes, will be 
denoted by J u(t)dn(t).

Let C be a subset of a Hilbert space H. Then, a mapping T of C into itself 
is said to be nonexpansive on C if ||Ta: — Tj/|| < ||x — y|| for every x, y € C. 
Let T be a mapping of C into itself. Then we denote by F (T) the set of fixed 
points of T. On the other hand, a family S = (T(s) : s 6 S] of mappings 
of C into itself is called a nonexpansive semigroup on C if it satisfies the 
following conditions:

(i) T’(st) = 71(s)T'(t) for all s,t E S',
(ii) ||T(s)a; — T(s)j/|| < ||a: — y|| for all x,y € C and s E S.

We denote by F(S) the set of common fixed points of T(t),/ E 5, that
is, F(S) = Pl F(r(l)).

ZgS
We know that a Hilbert space H satisfies Opial’s condition [12], that is, 

for any sequence {xn} C E with xn —*■ x E E, the inequality

(2) liminf ||a;n - ®|| < liminf ||a:n - y\\n—►oo n—>00

holds for every y E E with y / x.

3. Weak convergence theorems for nonexpansive semigroups. Let 
S' be a semigroup, let C be a nonempty closed convex subset of a Hilbert 
space H and let S = {T(t) : t E S) be a nonexpansive semigroup on C 
such that F(S) 0. Let D be a subspace of B(S) such that D contains 
constants and for any x E C and y E H, (T(-)z,y) E D. For any mean 
y on D and x E C, there exists a unique element T^x in C such that 
(Tmx,z) = h3(T(s)x, z) for all z E Hj see [7], [15].
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Now consider the following iteration scheme :

(3) xi = x G C and zn+1 = an xn + (1 - an)TMn®n for every n > 1,

where is a sequence in [0,1] and {//„} is a sequence of means on
D. Putting Tnx = anx + (1 - an)TMnx for every x 6 C, the mapping Tn of 
C into itself is also nonexpansive. In fact, let x,y € C. Then, for any z € C, 
we have

\\Tn„x - TMny|| = sup Z(T(s)x - T(s)2/,z)dpn(s) 
lkll<i M

< sup Z ||T(s)a; - T(s)?/|| ||z||d/zn(s) 
ll*ll<l •/

< y ||T(s)x - T(s)y||d/z„(s) < ||a; - y||

and hence

||Tna: - Tnj/|| = ||{onx + (1 - a„)TMna:} - {any + (1 - an)T^ny}||

— an — 2/11 + (1 — an )||T/*»x ~
< anil® - 2/|| + (1 - an)||® - 2/11 = ||® ~ 2/11-

Further, we have F(5) C F(71Mn) C F(T„) for every n > 1 and hence
oo

F(5) C Q F(T„).
n=l

Using ideas of [2], [6], we can prove the following lemma.

Lemma 3.1. Let C be a nonempty bounded closed convex subset of a
Hilbert space H and let S be a semigroup. Let S = {T(t) : t € S} be a
nonexpansive semigroup on C and let D be a subspace of B(S) containing
constants and invariant under every l3,s G S. Suppose that for each x G C
and z G H, the function t t-» (T(t)x,z) is in D. Let {pn} be a sequence of
means on D such that lim ||pn — l*pn|| = 0 for every s G S. Then, n—>oo

lim sup ||TMbx - T(t)TMnx|| = 0 
n—>oo xgC

for every t G S.

Proof. Let u G H. We have that

||TM„a: — u|| = (Tllnx — u,T^nx — u) = (p,n)t(T(T)x — u,Tflnx — u)
= (Pn)t (p„)s(T(/)x - U,T(s)x - u).



Approximating Common Fixed Points ... 5

Since

2(7(f)x — u,T(s)x — u) = ||7(t)x — u||2
+ ||T(s)a; - u||2 — ||T(t)a: - T($)a;||2,

we have

2(Mn)t (Mn)s(T(t)® - u,T(s)x - u)
(4) = (Mn)t (/Xn)a{||T(/)® - tt||2 + ||T(s)® - w||2 - ||7(f)x - 7(s)®||2}

= 2(Mn)t||T(0x - «||2 - (Mn)t (Mn).||T(i)x - 7(s)®||2.

Then, putting u = 7Mn® in (4), we have

(Mn)t (/Zn)4||T(t)x - T(s)®||2 = 2(Mn)t||7(f)x - 7Mn®||2.

So, it follows that

(5) IRkx - u||2 = (m„),||T(1)i-«||!II W-T„.x||2.

Let s € S. Putting u = 7(s)(7Mnx) in (5),

= (M„),l|T(i)i - r(»)r„.i||J - (/.»).l|r(<)* - r„.*ll2.

Then, we have that

||TMn® - T(s)TMn®||2
= (Mn-ZX)t|| W - rm.®||2 - (Mn)tllW - tm„*||2 

+ (ZX)t||T(t)®-T(5)TMn®||2
=(Mn-ZX)t||r(t)® - T(s)TM„®||2 - (/x„)t||T(t)® - TMn®||2 

+ (Mn)t||T(5)T(t)®-7(5)7Mn®||2

< (Mn-Z;Mn)t||T(t)x - T(a)TMn®||2 - (Mn)t||T(/)® -TMn®||2 
+ (Mn)t||T(t)®-TMn®||2

=(/zn-z;Mn)t||r(z)® - 7(5)TMn®||2 < llMn-zxil • m,
where M = 4sup||®||2. So, we have that lim sup||TMn® - 7(s)7Mn®|| = 0 

x£C n-*oox£C
for every s £ S.

□
We have the following lemma for iterates {®n} defined by (3).
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Lemma 3.2. Let C be a nonempty closed convex subset of a Hilbert space 
H and let S be a semigroup. Let S = {T(t) : t 6 S} be a nonexpansive 
semigroup on C such that F(S) 0. Let D be a subspace of B(S) containing 
constants and invariant under every ls,s £ S. Suppose that for each x 6 C 
and z £ H, the function t (T(t)x,z) is in D. Let {pn} be a sequence of 
means on D. Suppose Xi = x £ C and {zn} is given by

xn+1 = anxn + (1 - an)T^nxn for every n > 1,

where {on} is a sequence in [0,1]. Let w be a common fixed point of 
T(t),t £ S. Then, lim ||zn — w|| exists.

n—*oo

Proof. Let w be a common fixed point of T(t),t € S. Then, we have

^11 — T (1 ~ (^n)T^nXn — w||
< Onll^n - W|| + (1 - an)||TMnXn - W||
< «n|kn - W|| + (1 - O„)||Xn “ w||
= ll*n “ W||

and hence lim ||a:n — wll exists. n—►<»
□

Using Lemma 3.1, we obtain the following lemma which is essential to 
prove the weak and strong convergence theorems.

Lemma 3.3. Let C be a nonempty closed convex subset of a Hilbert space 
H and let S be a semigroup. Let S = {T(t) : t £ S} be a nonexpansive 
semigroup on C such that F(S) 0 and let D be a subspace of 
containing constants and invariant under every is,s 6 S. Suppose that for 
each x € C and z £ H, the function t >-+ (T(t)a:,z) is in D. Let {pn} he a 
sequence of means on D such that lim ||pn - l*pn|| = 0 for every s £ S.

n—►oo
Suppose Xi = x 6 C and {arn} is given by

xn+i = anxn + (1 - an)T^xn for every n > 1,

where 0 < an < a for some a with 0 < a < 1. Then,

lim||T'(t)a:n - xn|| = 0 for every t £ S. 
n

In particular, xHi —*■ yo implies yo £ F(S).

Proof. For x C C and f £ F(S), put r = ||z — f\\ and set 

X = {ue H -.\\u- f\\ <r}DC.
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Then X is a nonempty bounded closed convex subset of C which is T(/)- 
invariant for every t € S and contains — x. So, without loss of generality, 
we may assume that C is bounded. Then, it follows from the definition of 
{®n} that xn+i — xn = an(xn — T^lnxn).

Let w be a common fixed point of T(t), t 6 S. Then, from
lkn+1 - w||2 = ||an(i„ - w) + (1 - an)(TMnxn - w)||2

= Onll^n - w||2 + (1 - O'n)||TM„Xn - w||2

- o„(l - a„)||TMna:n - z„||2

we have
an(l - a)||TMna;n - x„||2 < an(l - a„)||TMn2:n - z„||2

= Onlkn - w||2 + (1 - an)||rM„a:„ - w||2 - ||xn+i - w||2 

< <*n||®„ - w||2 + (1 - a„)||a:„ - WH2 - ||®n+l “ w||2 

= Ikn - w||2 - ||a:n+1 - w||2.

Then, from Lemma 3.2, we obtain

(6) lim an||TMBxn - xn|| = 0.
n—►oo

Since, for each t 6 S,
||T(<)a:n-)-i — a:n+i|| < ||T(/)xn+j — T(t)TMna:n||

+ ||T(t)T’Mnxn — TMnxn|| + ||TMna:n — xn+i||

— 2||TMnxn — arn+i|| + — Tt*»®nll
= 2on||a;n — TMltxn|| + ||T(f)T#lBxn — TMna;n||,

from (6) and Lemma 3.1, we have

(7) lim ||T(t)in - xn|| = 0.
n—*oo

Assume xn. —>• y0 and yo F(S). Then, we have yo T(s)j/o for some 
5 6 S. Since H satisfies Opial’s condition [12] from (7), we obtain,

lim inf ||a;n, - y0|| < lim inf ||xn. - T(s)t/0||
:—>oo t—>oo

= lim inf ||a;n. - T(s)a:n. + T(s)a:ni - T(s)y0|| i —*oo

= lim inf ||T(s)a:ni - T(s)y0|| < lim inf ||xnj - j/0||-t—>OO I—+OO
This is a contradiction. Hence, we obtain that yo is a common fixed point 
ofT(f),/e S.

□

Now we can prove a weak convergence theorem for nonexpansive semi­
groups in a Hilbert space.
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Theorem 3.4. Let C be a nonempty closed convex subset of a Hilbert
space H and let S be a semigroup. Let S = {T(t) : t £ S} be a nonexpansive
semigroup on C such that F(S) / 0 and let D be a subspace of B(S)
containing constants and invariant under every ls,s G S. Suppose that for
each x € C and z £ H, the function t t-> (T(F)x,z) is in D. Let {^n} be a
sequence of means on D such that lim ||/zn — l*pn || = 0 for every s G S. 

n—>oo
Suppose X] = x 6 C and {zn} is given by

xn+i = anxn + (1 - an)T^xn for every n > 1,

where {«„} is a sequence in [0,1]. If {«„} is chosen so that an G [0,a] for 
some a with 0 < a < 1, then {xn} converges weakly to a common fixed 
point yo ofT(t),t G S.

Proof. Let w be a common fixed point of T(t),Z G S. Then, from Lemma
3.2 lim ||rcn — wll exists. As in the proof of Lemma 3.3, we may assume 

n—>oo
that C is bounded. So, {x„} must contain a subsequence which converges 
weakly to a point in C. So, let {ini} and {xnj} be two subsequences of {xn} 
such that xnj —*■ z\ and xny —>• Z2- Then, from Lemma 3.3, we have that 
Z\ and 22 are common fixed points of T(Z),Z G S. Next, we show z\ = 22. 
If not, then since H satisfies Opial’s condition [12], we have

lim ||x„ - 2! || = lim ||xn< - 211|
n—►00 t—+00

< Hm ||xnj - ^21| = lim ||x„ - 22|| = lim ||arn - 22||
1—►00 n—►oo j —>00

< lim ||x„, - *i|| = lim ||xn - 2i||.
j —>oo n—>oo

This is a contradiction. Hence, we obtain xn —* yo € F(S).
□

As direct consequences of Theorem 3.4, we have the following corollaries.

Corollary 3.5. Let H be a Hilbert space and let C be a nonempty closed 
convex subset of H. Let T be a nonexpansive mapping of C into itself such 
that F(T) / 0. Suppose Xi = x £ C and {zn} is given by

1
n + 1xn+i Xn +

1
n + 1 i=0

for every n > 1. Then, {xn} converges weakly to a fixed point ofT.
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Proof. Let S = {0,1,2,... },5 = {T‘ : i e S}, £> = B(S) and An(/) = 
n /(*) f°r aN n = 1,2,... and f € D. Then, {An : n = 1,2,...} is a
sequence of means. Further, we have

||An-/rAn||= sup |(An -/;An)(/)| = i sup |/(0) -/(n)| < — —> 0, 
ll/ll<i n ll/ll<i n

as n —► exo and hence for k > 2,

l|A„ - z;An|| < ||ZJAn - /^Anll + • • • + ||z;An - An|| < fc||An - ZJAn|| - 0, 

as n —* oo. Therefore, we obtain Corollary 3.5 by using Theorem 3.4.
□

Let N = {0,1,2,... } and let Q = {ęn,m}n,meN be a matrix satisfying the 
following conditions:

OO

(a) sup V 19n,m| < O°;

lim 
n—*oo

oo

m=0
oo

(b)

(c) lim ] I<7n,m+1 9n,m| — 0.
n—*oo z—*

m=0
Then, according to Lorentz [10], Q is called a strongly regular matrix. If 

Q is a strongly regular matrix, then for each m £ N, we have that |q„im| —>■ 0, 
as n —* oo (see [7]).

Corollary 3.6. Let H and C be as in Corollary 3.5. Let T be a nonex­
pansive mapping of C into itself such that F(T) / 0. Let Q = {qn,m}n,meN 

be a strongly regular matrix. Suppose xi = x G C and {zn} is given by 
In+i = anxn + (1 - «n) £m=o 9n,mTTOa;n for every n > 1, where {«„} is 
a sequence in [0,1]. If {«„} is chosen so that an € [0, a] for some a with 
0 < a < 1, then {zn} converges weakly to a fixed point ofT.

Proof. Let S = {0,1,2,... },5 = {Tn : n G S}, D = B(S) and A„(/) = 
n for each n = 1,2,... and f G D. Then, {A„ : n =
1,2,...} is a sequence of means. Further, we have ||An — Z£An|| —> 0 for 
every k = 0,1,2,... . Indeed, we have that

OO

||A«-Z?An|| = sup |(A„ - Z;An)(/)| = sup £ q„,m {/(m) -/(m + 1)} 
II/II<1 II/II<1 m=0
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= sup 
ll/ll<i

oo oo

9n,o/(O) + ^2 9n,tn+l f(m + 1) - 9n,tn/(m + 1)

m=0 m=0
oo

— |9n,rn+l — 9n,?n| 4“ l*7«.,01 * 0,

m=0

as n —* oo and hence for k > 2,
l|A„ - z;An|| < hz;a„ - An|| + • • • + ||z; An - aj

< fc||An - ZJAnll — 0,
as n —> oo. So, using Theorem 3.4, we obtain Corollary 3.6.

□

Corollary 3.7. Let H and C be as in Corollary 3.5. Let U and T be 
nonexpansive mappings of C into itself with UT = TU and F(T) D 
F(Z7) 0 0. Suppose xi = x £ C and {xn} is given by xn+i = anxn + 
(1 — an) U'T^Xn for every n > 1, where {on} is a sequence in
[0,1]. If {on} is chosen so that an £ [0,a] for some a with 0 < a < 1, then 
{xn} converges weakly to a common fixed point ofT and U.

Proof. Let S = {0,1,2,...} x {0,1,2,... },5 = {U'T^ : (i, j) € 5}, D = 
B(S) and An(/) = /(m) for each n = 1,2,... and f £ D. Then,
{An : n = 1,2,...} is a sequence of means. Further, we have that for each 
(Z,m) £ S,

l|An-/(*/ifn)An||= sup |(An-/(*iTO)An)(/)|

= sup
i,j=0

S w+l'j+m)
«,J=0

< —-{I • n + m(n — Z) + Z • n + m(n — Z)}

— —7{2n(Z + m) — 2mZ} —> 0,
n

as n —► oo. Therefore, using Theorem 3.4, we obtain Corollary 3.7.
□

Let C be a bounded closed convex subset of a Hilbert space H and let 
S' = {T(t) : t £ R+} be a family of nonexpansive mappings of C into 
itself. Then, S' is called a one-parameter nonexpansive semigroup on C if 
it satisfies the following conditions:
T(0) = I, T(t + s) = T(t)T(s) for all t,s £ R+ and T(t)x is continuous in 
t £ R+ for each x £ C.
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Corollary 3.8. Let H and C be as in Corollary 3.5. Let S = {T(t) : 
t g R+} be a one-parameter nonexpansive semigroup on C such that 
F(S) 0 0. Suppose Xj = x E C and {a:n} is given by xn+i = anxn + 
(1 — on) y- J0Sn T(i)xndt for every n > 1, where sn —>■ oo as n —> oo and 
{«„} is a sequence in [0,1]. If {on} is chosen so that an 6 [0,a] for some 
a with 0 < a < 1, then {zn} converges weakly to a common fixed point of 
T(F),t g S

Proof. Let S = R+, 5 = {T(t) : t g R+} and let D be the Banach space 
C(S) of all bounded continuous functions on S with the supremum norm. 
Define As(/) = | JQS /(Z)df for every s > 0 and f g D. Then, we obtain that 
for any k with 0 < k < oo,

||A» -/JfeAs|| = sup I- Z f(t)dt--f f(t + k)dt 
||/||<i I 5 Jo 3 Jo

1 I fs fa+k= - sup / /(t)dt — / /(tjdt
3 II/II<1 |J0 Jk

ck rs+k
J f(t)dt - J f(t)dt

< - sup ( I \f(t)\dt + I \f(f)\dt 
3 ||/||<i \ Jo Ja

= - sup 
s I1/II<1

II/II<1 
2fc

—------ > 0,
s

as s —> oo. Therefore, using Theorem 3.4, we obtain Corollary 3.8.
□

Corollary 3.9. Let H and C be as in Corollary 3.5. Let S = {T(t) : t g 
R+} be a one-parameter nonexpansive semigroup on C such that F(S) / 0. 
Suppose xi = x g C and {xn} is given by

Xn+1 — &nxn "1(1 e rntT(F)xndt

for every n > 1, where rn -* 0 as n —► oo and {«„} is a sequence in [0,1]. 
If {on} is chosen so that an g [0,o] for some a with 0 < a < 1, then {xn} 
converges weakly to a common fixed point ofT(t),t g S.

Proof. Let S = R+, S = {T(f) : t g R+} and D = C(S). Define 
Ar(/) = r /0°° e-r‘/(t)cft for each r > 0 and f g D. Then, we have that for
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each s with O < s < oo,

roo roo
||Ar — i*Ar|| = sup r / e~rt f (L)dt — r / e~rtf(s + i)dt

||/||<i I Jo Jo
= sup Ir Z e~rłf(t)dt + r (1 - ers') Z e-rt/(f)df 

ll/ll<l I Jo Js

< rs + |1 - era 0,

as r —> 0. Therefore, using Theorem 3.4, we obtain Corollary 3.9.
□

Let Q = R+ x R+ —*■ R be a function satisfying the following conditions:

z°°
(a) sup / |Q(s, t)\dt < oo;

s>oJo

(b) lim [ Q(s,t)dt = 1; 
s-°°70

Z°°(c) lim / |Q(s,t + h) — Q(s,t)\dt = 0 for every h E R+.
s-*°°7o

Then, Q is called a strongly regular kernel.

Corollary 3.10. Let H and C be as in Corollary 3.5. Let S = {T(t) : 
t £ R+} be a one-parameter nonexpansive semigroup on C such that

/ 0. Suppose xi = x £ C and {a:n} is given by xn+i = otnxn + 
(1 — orn) Jo°° Q(sn, t)T(t)xndt for every n > 1, where where sn —► oo as n —» 
oo and {on} is a sequence in [0,1]. If {an} is chosen so that an £ [0,a] 
for some a with 0 < a < 1, then {xn} converges weakly to a common fixed 
point ofT(t),t £ S.

Proof. Let S = R+, S = {T(t) : / £ R+} and D = C(5). Define 
As(/) = J],00 Q(s,t)/(/)dt for every s > 0 and f £ D. Then, we have that 
for each h with 0 < h < oo,

IIAs - /;AS|| = sup |(A, - Z£A,)(/)| 
ll/ll<i

I roo roo
= sup / Q(s,i)f(t)dt - / Q(s, <)/(/ +h)df 

||/||<i IJo Jo
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= sup I / Q(s, L)f(t)dt + / Q(s,t + h)f(t + h)dt 
||/||<l|jO Jo

- f + h)dt
Jo

I fh II yOO
< / Q(s,t)dt + / |Q(s,t + h)-Q(s,t)|<

Jo I Jo
0,

as s —> oo. Therefore, using Theorem 3.4, we obtain Corollary 3.10.
□

4. Strong convergence theorems. In this section, we shall prove strong 
convergence theorems for iterates defined by (3).

Theorem 4.1. Let C be a nonempty closed convex subset of a Hilbert 
space H and let S be a semigroup.

Let 5 = {T(t) : t (E S) be a nonexpansive semigroup on C such that 
L)r(/)(C) C K C C for some compact subset K ofC. Let D be a subspace 
tes
of containing constants and invariant under every la,s E S. Suppose
that for each x € C and z € H, the function t t-> (T(t)x,z) is in D. Let
{pn} be a sequence of means on D such that lim ||pn — lapn || — 0 for every 

n—>oo
s € S. Suppose xi = x E C and {zn} is given by

®n+i = otnxn + (1 - an)T^nxn for every n > 1,
where {on}^i is a sequence in [0,1]. If {on} is chosen so that an E [0,a] 
for some a with 0 < a < 1, then {xn} converges strongly to a common fixed 
point y0 ofT(L),t E 5.

Proof. From Mazur’s theorem [5], co^fx!} U ^jT(t)(C)) is a compact 
tes

subset of C containing {in}. Then, there exist a subsequence {xni} of the 
sequence {xn} and a point yo E C such that xnj —► j/o- So, from Lemma 3.3, 
we obtain T(t)j/0 = Vo for every t € S. Then, since lim ||a:n — yo|| exists,

n—*oo
we have

lim ||a:„ - j/0|| = lim ||zni - j/o|| = 0.
71—>00 1—*OO

Therefore, {x„} converges strongly to a common fixed point of T(t),t € S.
□

The following is a strong convergence theorem which is connected with 
the metric projections.



14 S. Atsushiba and W. Takahashi

Theorem 4.2. Let C be a nonempty closed convex subset of a Hilbert
space H, let S be a semigroup and let S = {T(t) : t £ S} be a nonexpansive
semigroup on C such that F(S) 0. Let D be a subspace of B(S) containing
constants and invariant under every is,s € S. Suppose that for each x G C
and z G H, the function t e-+ (T(t)x,z) is in D. Let {pn} be a sequence of
means on D such that lim ||pn - I*pn || = 0 for every s € S. Let P be the 

n—*oo
metric projection of C onto F(S). Suppose that {xn} is given by x^ € C 
and

Xn+1 = Otnxn + (1 - an)rMni„ for every n > 1,

where an £ [0,1]- Then, lim Pxn exists. Further, if zq — lim Pxn,n—*oo n—+oo
zq is a unique element of F(S) such that

then

lim ||a:n - z0|| = inf{ lim ||x„ - w|| : w € F(S)}. 
i—*oo n—*oo

Proof. Since F(«S) is nonempty, as in the proof of Lemma 3.3, we may
assume that C is bounded. From Lemma 3.2, we know that p(w) =
lim ||a;n — w|| exists for all w G F(5). Let R = inf{g(w) : w 6 F(5)} 

n—*oo
and K = {u £ F(S) : p(u) = R}. Then, since g is convex and continuous on 
F(«S) and p(w) —► oo as ||w|| —> oo, K is a nonempty closed convex subset 
of F(«S). Fix zo G K with p(zo) = R- Since P is the metric projection of H 
onto F(<S), we have ||a:n — Pa;n|| < ||xn — y|| for all n > 1 and y G F(S) and 
hence

lim sup ||i„ — Pxn ,| < R. 
n—*oo

Suppose that limsup||a:n — Pa:n|| < R- Then, we may choose 6 > 0 and 
n—*oo

no > 1 so that ||a;n — Pa;n|| < R — 6 for all n > no. From Lemma 3.2, we 
have that

||xn+* - Pxn || < ||xn - Pxn || < R- 6 < R 

for all n > no and k > 0. Therefore, we obtain that

R < lim ||xn+fc - Pzn|| = lim ||a;fc - Pzn|| < R - 6 < R
k—KX> fc—»oo

for all n > n0. This contradicts the definition of R. So, we conclude that 
limsup||a;n - Px„|| = R.

n—*oo
Now, we claim that lim Pxn = z0. If not, then there exists e > 0 such

n—*oo
that for any k > 1, || Pxk> — ar0|| > £ for some k' > k. Choose a > 0 so that
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a < R2 + — R. Then, there exists k' such that - Pxk< || < R + a
and ||i— zqU < R + a. Therefore, we have, for n > 1,

R2 < xn+k'
Pxk- + Zq

Xk< - Pxk' + Zo

xk' ~ Pxk' Xk> — Z0 Pxk> - z0

-m-2 e2

= 2 + 2

= (B + a)2 - - < R2.

This is a contradiction. Thus, we have lim Pxn = zq. Consequently, then—+oo
element Zo € F(5) with g(zo) — inf{p(w): w 6 F(5)} is unique.

□
Using Theorems 3.4 and 4.2, we have also the following theorem.

Theorem 4.3. Let C be a nonempty closed convex subset of a Hilbert
space H and let S be a semigroup. Let S = {T(t) : t £ S} be a nonexpansive
semigroup on C such that F(S) 0 0 and let D be a subspace of B(S)
containing constants and invariant under every I,,s ę S. Suppose that for
each x £ C and z ę H, the function t i-> (T(t)x,z) is in D. Let {pn} be a
sequence of means on D such that lim ||pn — l*pn|, = 0 for every s € S. n—►cxd

Let P be the metric projection of C onto F(S). Suppose that {xn} is given 
by xj e C and

®n+i = anxn + (1 - an)T^nxn for every n > 1,

where an £ [0,a] for some a with 0 < a < 1. Then, {zn} converges weakly
to an element z of F(S), where z = lim Pxn.

n—>oo

Proof. From Theorem 3.4, {xn} converges weakly to an element yo of 
T(<S). From Theorem 4.2, {Pa;„} converges strongly to an element zo of 
T(«S). Since P is the metric projection of H onto T(5), we also know that 
(xn — Pxn, Pxn — w) > 0 for all w € T(<S). So, we have (yo — Zo,zo — w) > 0 
for all w 6 T(«S). Putting w = yo, vre obtain — ||2Zo — ^oll2 > 0 and hence 
Vo = zo-

□
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