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Abstract. Assuming that the characteristic function ip of the distribution 
function F in K'* is square integrable, we derive from Levy's inversion the­
orem a formula for probability density of F in terms of <p.

1. Introduction. Let : Rd —>■ C be a characteristic function determined 
by certain d-dimensional distribution function F : Rd —» (0,1) C R. The 
well-known Levy's inversion theorem enables us then to reproduce F in a 
unique manner, but the density of F with respect to the Lebesgue measure 
Xd in Rd can be evaluated by means of ip only in some special cases. More 
precisely, no satisfactory necessary and sufficient conditions for the existence 
of probability density expressed explicitly in terms of the characteristic func­
tion <p are known. As a matter of fact, some necessary and sufficient con­
dition exists, namely, a function ip : R -+ C is the characteristic function of 
absolutely continuous distribution function F iff ę>(<) = h,(t+9)h(0)d9,
where h : R —+ C satisfies the condition d9 = 1 ~ see [8, Th.
4.2.4, Ch. IV, §4.2, p. 100], but in spite of this, in many practical sit­
uations it cannot be easily applicable. Therefore many efforts have been
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undertaken to find other convenient criterions. The two main and by now 
classical results concerning this problem are as follows:

1°. If |ę>(Z)|' is integrable with respect to the Lebesgue measure on R, 
then F possessess a density f G Z2(R);

2°. If |ę>(Z)| is integrable with respect to the Lebesgue measure Ai in 
R, then F is absolutely continuous with respect to Aj and has a bounded, 
continuous density f.

The first statement was obtained perhaps by Berman [2, Lemma 2.1], 
and a version of it can be found in [6, Ch. XV, §3], but in most of the 
monographs and textbooks devoted to probability theory merely the second 
result is presented and 1° is even not mentioned, cf. [7, Part II, Ch. IV, 
§12.1, Corollary p. 188], [4, Ch. 8, §10, Th. 8.39, p. 178], [1], [5, Ch. 8, 
§ 8.3, Corollary 2, p. 270], [3, Ch. V, §26, Th. 26.2 and corollaries, p. 
342-343], [8, Ch. Ill, §3.2, Th. 3.2.2, p. 51].

The reason of such a situation is quite prosaic - to prove 1° far more 
advanced tools are needed, while for the proof of 2° Levy's inversion formula 
is quite sufficient.

However, it should be pointed out that 1° can be derived also from Levy's 
theorem. The aim of this note is to provide the proof of 1° based only on 
Levy's inversion formula. The presented method may be interested from the 
theoretical point of view, but it seems to be more important didactically, 
because it may serve as an easy approach to deeper results.

It is worth mentioning that a sufficient condition of another kind for the 
existence of probability density, ensuring at the same time that a given 
mapping is the characteristic function, was also given by Pólya, but only 
for real valued maps on R, cf. [8, Ch. IV, §4.3, Th. 4.3.1, p. 108].

A simple necessary condition, i.e. ę?(Z) vanishes as |Z| = (Z2 + ... + Z^)1/2 
tends to infinity, Z G Rd, follows from Riemann-Lebesgue theorem, see [1, 
Ch. V, §23, Th. 23.2, p. 191], or [8, Ch. II, §2.2, (A), p. 35].

2. Notation and preliminaries. In this section we introduce the basic 
terminology and recall some useful facts for the future reference.

The points of d-dimensional Euclidean space Rd are denoted by single 
letters x,y,a,b,t etc., and their coordinates by the same letters with sub­
scripts, so that the generic element (xj,...,Xrf) G Rf/ is written as x. The 
inequality a < b for a, b G Rd designates the relation a; < 6; for 1 < t < d, 
and in such a case (a, 6) is the rectangle {i G RJ : < x,- < 5, for
1 < i < d}. Rectangles closed or opened from other sides are defined in 
an analogous manner. In the sequel the sets of such a kind are said to be 
d-dimensional intervals, or simply d-intervals. If T G R, 0 < T < oo, then 
(-T,T)d = {x G Rd : -T < x, < T for 1 < i < d}. More generally,
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(/-dimensional intervals having edges of equal length, like (-T, T)d, but not 
necesserily centered at zero, are called for short cubes. The boundary of 
the (/-interval (a,b) is denoted by d(a,b). The usual scalar product in R'' 
is written by means of parentheses [•, •], and the notation f(-)dx signifies 
integration with respect to the Lebesgue measure A^ in Rd.

Suppose now that ip : X —► C is a complex-valued measurable function 
on a measure space (X,A,p) integrable with respect to p on the set A £ A. 
It can be easily seen that

(1) I I »
I J A I J A

- see e.g. [1, Ch. V, Th. 21.1, p. 179]. We shall use (1) mainly for Borel 
sets A C Rd and the Lebesgue measure. Also the inequalities of Schwarz 
and Holder will be applied later on for various integrals, but we do not quote 
them here.

To simplify the writing, throughout the paper the symbol F denotes cer­
tain distribution function on Rd as well as the probability measure generated 
by F on (Rd, Z?(Rd)), where /?(•) stands for the Borel cr-field.

3. The results. Our first goal is to prove a criterion for continuity of 
distribution functions expressed in terms of characteristic functions.

Theorem 1. Let <p : Rd —> C be a characteristic function corresponding to 
d-dimensional distribution function F : Rd -» (0,1) C R. If M G Lp(Rd) 
for some 1 < p < oo, i.e.

MPlp(^)= [ \^t)\Pdt < oo ,

then F is continuous, 
schitz - Holder type:

F[(a,b)] < Mp

Moreover, F satisfies the following condition of Lip-

d
’ n (^r — Gr)1;/P ’ for a,b € R!/, a < b ,
r=l

where 0 < Mp < oo is a constant.

Proof. Suppose first that 1 < p < oo and |<p| € £p(Rd). According to 
Levy's theorem, for an arbitrary (/-interval (a, h) C Rd with F[d(a,b)] = 0, 
we have

F[{a,b)} = lim (2%) 
T —»oo

z r dnJ <-T,T>d Lr=1
exp{—itrar} — exp{—itrbr}

itT <p(F)dt
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We will show that F[(a,6)] can be arbitrarily small as A,/((a,6)) is suffi­
ciently close to zero. Choose a real number 1 < q < oo in such a way that 
1/77+1/9 = 1. By(l) and Holder’s inequality we have

(2)

n< lim (27r) d I 
T—oo

exp{—itrar} — exp{—itrbr} 
itr

< lim (27r) [ rrT-.ooV U<-T,T>« rA=A!

1 'I 1/9exp{—itrar} — exp{— 
itr

lim j I iv’(cr^)
r->0° [J<-T,T><‘ J

1/P

Observe next that

(3)
exp{—itrar} — exp{—itrbr} 

itr

, r won I exp{-i/r(ar - tr)/2} - exp{-ifr(6r - ar)/2} = |exp{—itr{ar + f»r)/2}| • -------------------------------- --------------------------------
it r

2sin[fr(6r - ar)/2] I <- f l6r — ar| for |Zr| < 2/ |6r - or| ,
<r I " I 2/ |<r| for |tr| > 2/ |ór - or| ,

and therefore

f°° I exp{-i<rar} - exp{-i<r6r} |?

2/|6r — ar| zoo
|ftr - ar\qdtr + 2 / 2q/tgrdtr

h/\br-aT\

= 4 |br - ar|’-1 + 4 |hr - ar|’-1 /(ę - 1) = 4p |6r - ar\q/p .

Applying now the well-known Fubini theorem and (4) we conclude that 
the right-hand side of (2) is bounded by

exp{—itrar} — exp{ — itrbr} 
itr
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< (21)"'
' d 1/’

< 4p |6r - aT\qlp ► IISr’II/.pfRJ)

d

= (W~d {*p}d'q IK(Itq n^-ar)1/p.
r=l

d
Hence it follows that J1 [(a, 6)] —> 0 as Aj[(a,6)] = f] (br — ar) -+ 0.

r=l
If p = 1, then on the basis of (3) and the inequality

2 sin[tr(6r — ar)/2]

we obtain

(5) F[(o,i>)] < (2tt) d [J |6r - or| lim I |<p(*)ld*
7=i

d

= (2^) list’ll(Rd) JJ (&r - ar) •
r=l

In view of the lower-left continuity of each distribution function F in Rd, 
the above inequalities are valid for all a, b £ Rd, a < b.

The continuity of J" is a straightforward consequence of the obtained 
estimates when d = 1. To prove the continuity of F in Rd for d > 1, observe 
that the F-measure of each hyperplane H C Rd parallel to some axes of the 
system of coordinates is equal to zero. Indeed, let Hr = {x^Rd:xr = aT}. 
Consider the sequence of d-intervals , n > 1, such that = aT,
ar < br** \ ar, \ -oo and b^ Z oo for 1 < j < d, j / r, in such
a way that Aj b^)) —* 0 as n —* 00. Then Hr D n > 1,
forms an increasing sequence of sets, and so

F[Hr] = F[\J(Hr n (a<">, Mn>))] = lim F[Hr n (a<n),6(n))] .
n

However, on account of the above considerations

F[Hr n < Mp ■ Ad[(a<"+’n>>n+’">)]1/p

for an arbitrary m > 1, and thus F[Hr Cl = 0 for all n > 1.
Consequently, F[/fr] = 0 for r = 1,2, ...,d.
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Let now a,y^ £ Rd and —* a. Then |F(a) - F(j/^n^)| does not 
exceed the F-measure of the closure of symmetric difference (—00, a) 4- 
(—formed by means of infinite d-dimensional intervals (—00, a) = 
{a: € Rd : a: < a}, and similarly (—00,3/")) = {x € Rd : x < y^}. Clearly, 
cl [( — 00, a) -j- (—00, j/"))] is contained in the finite sum lJr=i of sets

A(rn) = {a: e R'' : min(ar, y^n+1),...) < xr

< max(or, 3/<n), 3/$n+1),...)} .

If y(n) —> a, then \ Hr, and so Ffylr"’] can be arbitrarily close to 
zero for sufficiently large n. Therefore

d
|F(a) - F(y(n))| < ^F[A(rn)]0 as yW - a . □

r=l

Remark. If d = 1, then

Tlim I
T-nx> J(-T,T)

is the sum of all the jumps of F, thus the condition |ę?(Z)| —► 0 as |t| —> 00 
implies that F is continuous, cf. [8, Ch. Ill, §3.3, Th. 3.3.4, p. 60].

Basing on this observation we can obtain a weaker sufficient condition 
for continuity of distribution functions F in Rd expressed in terms of their 
characteristic functions tp. Denote ę?(O;Zy) = ę?(0,..., 0, Zy, 0,..., 0). Since 
ę>(O;/j), 1 < j' < d, are characteristic functions of 1-dimensional marginal 
distributions, the condition

Vi<j<d k(0;tj)|-> 0 as |tj|-> 00

implies that the distribution function F in Rd corresponding to has no 
(d- l)-dimensional hyperplanes of discontinuity. Therefore F is continuous.

Using the above condition, one can derive another proof of continuity of 
F under the assumptions of Theorem 1. A contrario, suppose that there 
exist 1 < J < d, a number <5 > 0 and a sequence {/^}, /* 00, such

that |Zjn) — > 0 > 0, n,k > 1, and

j ę?(0; ) | > i > 0 for all n > 1 .
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(6) /(x) = lim

Since is uniformly continuous, a neighbourhood of zero can be found 
in Rd, say A'(0,t) = {Z € Rd : |Z| = (tj + ... + Z^)1/2 < r}, r < 0/2, such 
that

|ę?(Z)| > h/2 > 0 for all Z £ A'^(0; Z*'1’), .

Then A' ((0 ;Z^),r^, n > 1, are disjoint and

/ MOI’* > W2)’£a<[/f =00 ’
•'Rd n

which leads to a contradiction. Hence it follows that F is continuous. It is 
interesting that the behaviour of tp on the axes of the system of coordinates 
in Rd decides in advance about the continuity of F.

Theorem 2. Let <p and F be as in Theorem 1. If |ę>| £ £p(Rd) for some 
1 < P < 2, then F is absolutely continuous with respect to the Lebesgue 
measure Xd in Rd, and has density f £ A2(R</). Moreover, the density f of 
F is given by the formula

(2^)-“ []((,<:> - «!•>)-■ 
r=l

.. f A rexp{-iZra(4}-exp{-iZrh(4)
X lim / ------------------ - -------------------

T—-oo J<-T,T>d "i

fora.a. x £ Rd, where x £ x--x and 0 < h^i—=

ce —> 0 uniformly in 1 < r < d.

Proof. Obviously, if 1 < p < 2, then we have |ę>(Z)|2 < |ę>(Z)|p, Z £ Rrf. 
Therefore there is no loss of generality if we assume that |y>| £ A2(Rd). It is 
clear that the boundary d {a, b) of any d-interval (a, b) C Rd is contained in 
the sum of hyperplanes defined by its edges,

d(a,b) C {x € Rd : (a-’i = «i) V (xi = hi) V ... V (xd = ad) V (xd = bd)} ,

thus F[x £ Rd : xt = a,] = 0 = F[x £ Rd : x, = bj for 1 < i < d implies 
that F[d {a, h)] = 0.

Choose maximal sets Di C R in such a way that s £ Di iff -s £ Di and 
F[x £ Rd : Xi £ D/\ = 0, 1 < i < d, and next put D = Di X ... X Dd. Since 
each distribution function has at most countably many parallel hyperplanes 
of discontinuity, the sets Di are dense in R and in consequence V is dense 
in Rd. Furthermore, for all a,b £ D, a < b, we have F[d (a, h)] = 0.
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Denote by S the class of functions

n

v = cj^<gO).hO)) »
2=1

where Cj are arbitrary real numbers and C Kd are disjoint d-
intervals with endpoints a^\b^ € P, aW < b^\ 1 < j < n. Notice that S 
is a linear space. Using the Fourier transform of v,

$„(£)= / exp{z [t, i]}u(a:)dx ,
Jr**

define the linear functional L on S by the formula

Lv = (2tt)-d lim / 4*„(f)ę>(/)dt .
T_’°° J< — T,T>d

It can be easily seen that

d fc</)
£exp{i [(,»]} J<„u),l0J)(1:)di = 5/ exp{itrxr}dxr 

r— 1 (

and thus

=n (»iexp{iir6r^} — exp{itrarJI}

r=l
itr

lT, V" TT exp{itrb(r}’} - exp{itra(rJ)}
= x Mi--------- ~t---------- •

j=l r=l r

Note next that, by analogy to (3),

exp{ż/rórJ)} — exp{iZrGrJ'}
itr

2 sin t-
b(rj}-a(rj}' /t(j) z,O')\2(6^-a^)2 for |/r| < 1 ,

4/t? for |tr| > 1 ,

and in addition,

i*„(*)i2 <Ec>n
J=1 r=l

Ohexp{iir6r^} — exp-fz/rar^}
itr

<

2
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therefore ^„(Z)!2 is integrable over the whole space R'; with respect to the 
Lebesgue measure. Since |y?(Z)|2 dt < oo, from Holder's inequality we 
infer that

|Lu|<(2tt) |$v(Z)|2dt} ||ę>||L2(fi<i) < oo

and so the functional L is well-defined for all v € <S. Moreover, if w = 
Cj\7<a(,) (,(>>), where the d-intervals C Rd are disjoint and

their endpoints aV',b^ € Z>, then

(27r)2d |Iu|2

lim f
T—KXl J

lim Z
T_’°° J<—T,T>d

y-—> ,l—r exp{iZr6r
Ec> 11
j=i r=l

o) } — exp{zZrarJ)}
itr

n d
E^n

j=l r=l

exp{iZrf/rJ)} - exp{tZrar^} 

itr
<

= lim 
T—*oo

n n d

EE^n
j=l fc=i r=l

exp{iZr6r } - exp{iZra(rJ)} 
itr

exp{-ZZr6(/)} - exp{-tZra(rM} ,, 1|2 
X U----- 1------------—------------------dt ■ IMI^Rd) .

r=l r

To evaluate the above limiting expression we can use Levy's formula: for 
any continuity points a < b of distribution function G in Rd (such that 
<j[d (a, 6)] = 0) with characteristic function 7(Z), we have

G[(a,6)] = lim (2tt) -d.
f *

I<-T,T>d ,0
exp{—itrar} — exp{—itrbr}

itr
••y(t)dt.



210 A. M. Zapala

Suppose

7(0=n (j)iexp{z/r6r^} — exp{i/rarJJ} 
0)V, itr(W> -

is the characteristic function of the uniform distribution G concentrated 
on in Rd with density g = J<a(j),&<»)) FI (^ — Since

r=l
C(x) = J{yeRd y<x\ is then a continuous function of x in the whole
domain Rd, we conclude that

lim (27r) f TT 
T—»oo U<_r,T>-r=i

,(*)lexp{-iZrarA'} — exp{—itrbrK>}
itr

x jj exp{i<rhr } - exp{iZrCr

-L
= 1 t'Zr(h(rj) - a(rj)) r

0 if k / j, 

n(6^-4J;) if fc = j,
J<o<»,6O))(a:)dx - { £ (j) (j)

r=l

(recall that (atj)^(j)), 1 < j < n, are here disjoint). Therefore

(7) limim /
-*°° J<-T,T>d

n d

Źc;ń
j=l r=l

Uhexp{-itrar^} - exp{-itrbrJ>}

itr
dt

-{^L TT,żi><n
k J k=l j=l Lr=l

fOiexp{-itrark^} - exp{-itrbrK>}

*n
r=l

and so

exp{iZrcirJ)} — exp{itrbr^}

itr

n d

— itr

|Iu|2 < (27T)-d

On the other hand,

dti=(2»/£ c? -<#’).
' j=l r=l

E CJ IWJ) _arJ))
j=l r=l

IIV’lliAfR-*)

r=l '

<a<‘>,(>(*>)

/ (u(x))2dx=/ V y'cJcfcJ<oo)t6o))(i)J<o(*),fc(*))(a;)<ia 
JR" j=l k=1

= E CJ IW3 - “rj)) = II OIl^ro •
j=l r=l
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Consequently,

|£u| < (2tt) ||u|lz,2(Ra) ~ IIvIIl2(r<() ,

where 0 < C^d < oo is a constant. Hence it follows that L : S —► R is 
a continuous linear functional on S C £2(Rd) (taking only real values in 
view of Levy's formula). Since P is a dense set in RJ, the linear space S is 
dense in £2(Rd), and thus by continuity L can be extended uniquely into 
the whole Hilbert space £2(Rd). Basing on Riesz's representation theorem 
for continuous linear functionals in a Hilbert space, we conclude that there 
exists a real function f 6 £2(Rrf) such that

(8) Lv = I v(x)f(-x)dx for all v 6 £2(Rd) .
J Rd

According to definition of £, if v = J<-b,-a) for some points a,b £ P, 
a < b, then on account of Levy's theorem

nd exp{—itrar} — exp{—itrbr} ...,4
------------------------------------^dt

r=l “r

= P[(a,6)],

■LLv = (27t) d lim
<—T,T>d

while in view of (8),

Lv = / v(x)f(-x)dx = / j7<_(,i_a)(a;)/(-a;)da:
Jntd J«.d

= Z f(—x)dx = j f(u)du ,

i.e.
P[(a,f>)] = j f(u)du , a,6eP,a<6.

J (a,b>

However, P C Rd is dense in Rd, thus by continuity of the distribution 
function F on Rd (cf. Theorem 1) we conclude that the equality

F[(a,b)] = I f(u)du 
J <a,b>

is valid for all a, b 6 Rd, a < b. Hence it follows easily that F is absolutely 
continuous with respect to the Lebesgue measure A</ in Rd. Furthermore, 
basing on the properties of absolutely continuous additive set functions of 
(/-intervals in Rd, see e.g. [9, Th. 4.7, Ch. X, 4, p. 399], we infer that

= I
J <a,b>

F'(x)dx ,
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where

(9) F'(x) = lim i \ = f(x) f°r — a a- x € Rd,Aa(AT,«)-o Ad(AXj£)

and the limit is determined by a sequence {-/i'l.e} of d-dimensional closed 
cubes containing x. In other words, the density f of F is given by (6) and 
satisfies the condition f £ Z2(Rd) . □

The dichotomy between the case p = 1 and 1 < p < 2 becomes more 
apparent in view of the below result. Although the mentioned statement is 
rather known, we include it here for convenience of the reader.

Corollary. If |<p| £ Z1(Rd), i.e. JRd |<p(t)| dt < oo, then F is absolutely 
continuous with respect to the Lebesgue measure A^ in Rd and possesses 
bounded, uniformly continuous density £ i2(Rd) given by

= (27r)-d I exp{-i [t,x]} • <p(t)dt for all x £ Rd.
JR*

Furthermore, the derivative in (6) or (9) is equal to /i(x) for every x £ R , 
and we have

(10) ll/illoo = SUP IA(*)I •

Proof. The existence of density follows directly from Theorem 1, because 
for an arbitrary elementary figure E = (Jfc=i in Rd consisting of
a finite number of non-overlapping d-intervals we have

s d

F[E] < Mp £ n (brk} - ark}) = Mr • W) >
fc=l r=l

and so F is absolutely continuous with respect to the Lebesgue measure - 
cf. [9, Ch. X, §4, Th. 4.7, p. 399]. The same conclusion is also an easy 
consequence of Theorem 2. In fact, |<p(t)|2 < |<p(t)| for all t £ Rd, whence on 
account of our Theorem 2 we infer that F has density f £ L2(Rd) defined 
by (6) with respect to the Lebesgue measure Aj in Rd.

Let KXin — (x — l/n,x + 1/n) C Rd, a ±l/n = (xq ± l/n,...,Xd ± 1/n). 
Then

F(ffr,n)

= Hm (2tt) 
T-*oo 'V

J <—T,T>d r=1

exp{-itr(xr - A)} - exp{-i/r(xr -|- A)}
itr

ip(F)dt
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f d r
= lim (2%)“d / TT i

7<_t,T>-' A=A Lexp{—itrxr}
2sin(tr/n)

<p(t)dt .

Since

r=l

exp{-itrxr}
2 sin(Zr/n)

and |ę?(Z)| is integrable on Rd, we conclude that the last limit is equal to

d r
(2%) d f TI exp{-iirx,

J*d r = i L
2 sin(Zr/n)

tr
<p(t)dt

Moreover, A(;(A'Xin) = (2/n)d, thus the same estimate as above and the 
Lebesgue theorem on dominated convergence imply that

/(x) = hm —-™—A^(Arn)

d 2 sin(Zr/n)= lim(27r) d(2/n) d [ TT exp{-tZrxr} 
n-*° “ L tr

ip(i)dt

= (2ir) d JJ |exp{-i'Zrxr} lim 

r d
= (2ir)~d / TJ [exp{—z’Zrxr}] • ę>(Z)dZ for \d - a.a

J* r=l

Denote the last formula by /i(x) and observe that it is a continuous 
function of x G Rd. Indeed, taking h =■ (hi,...,hd) G Rd we obtain

2 sin(Zr/n)
2Zr/n

ęj(Z)dZ

.a. x G R .

|/i(x + h) - A(x)|

-d

d d

exp{—iZr(xr + hr)} - JJ exp{—?Zrxr}
r=l r=l

+(2tt)
Rd\(—T,T)“

d d

exp{—zZr(xr + hr)} - exp{—itrxr}
r=l r=l

• |ę>(Z)| dt .

Given any e > 0, one can choose 0 < T < oo so large that the second 
term is less than e/2, and next select h sufficiently close to the origin, 
|h| = (hl + ... + h2d)''2 < 6 = 6(e), in such a way that
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uniformly in t € (—T, T)d and x € Rd. The above argument then shows 
that

\fi(x + h) - < e whenever \h\ < 6 ,

i.e. /j is uniformly continuous on Rrf. Furthermore, /(x) = /i(a:) Xd — 
on Rd, thus /i € £2(Rd) and

F(A) = I f^dx , A e .
J A

Hence, on the basis of the well-known theorem concerning differentiability 
of integrals of continuous functions (see e.g. [9, Th. 4.10, Ch. X, § 4, p. 
400]) it follows that

lim
n—>0

F(/G,n)
ar,n) = /i(*) = lim . —r

>0 Xdyl\.
for all x G Rd.

The boundedness of j\ and (10) follows from (5). □

Remark. The upper bound in (10) cannot be improved, because it is 
attained for the standard normal distribution function in Rd.

References

[1] Bauer, H., Probability Theory, de Gruyter, Berlin, New York 1996.
[2] Berman, S., Local times and sample function properties of stationary Gausssian 

processes, Trans. Amer. Math. Soc. 137 (1969), 277-299.
[3] Billingsley, P., Probability and Measure, Wiley, New York 1979 (Polish ed. PWN, 

Warsaw 1987).
[4] Breiman, L., Probability, SIAM, Philadelphia 1993.
[5] Chow, Y. S. and H. Teicher, Probability Theory. Independence, Interchangeability, 

Martingales, Springer-Verlag, New York, Berlin, Heidelberg 1988.
[6] Feller, W., An Introduction to Probability Theory and its Applications, vol. II, Wiley, 

New York 1966 (Polish ed. PWN, Warsaw 1969).
[7] Loeve, M., Probability Theory, Van Nostrand, Princeton 1960.
[8] Lukacs, E., Characteristic Functions, Griffin, London 1960 (Russian ed. Nauka, 

Moscov 1979).
[9] Sikorski, R., Real Functions (Polish), vol. I, PWN, Warsaw 1958.

Instytut Matematyki UMCS 
pi. Marii Curie-Skłodowskiej 1 
20-031 Lublin, Poland

received January 21, 1997



ANNALES
UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA 

LUBLIN - POLONIA

VOL. L SECTIO A 1996

1. A. S. Abdullah, R. M. Ali, V. Singh: On Functions Starlike with Respect to a 
Boundary Point

2. Y. Avci, E. Zlotkiewicz: On Typically-Real Functions
3. K. Bolibok: Constructions of Lipschitzian Mappings with Non Zero Minimal Dis­

placement in Spaces /^(O, 1) and jL2(0,1)
4. M. Budzyńska, W. Kaczor, M. Koter-Mórgowska: Asymptotic Normal Structure, 

Semi-Opial Property and Fixed Points
5. M. Doupovec, J. Kurek: Some Geometrical Constructions with (0,2)-Tensor Fields 

on Higher Order Cotangent Bundles
6. Z. Grodzki, J. Mycka: Two-dimensional Markov-like Algorithms
7. E. R. Hassan: Nonlinear Volterra Integral Equation with Discontinuous Right-Hand 

Side
8. R. Hołubowicz, W. Mozgawa: An Example of a Non-Sasakian Five-Dimensional 

Contact Manifold
9. W. Kaczor, M. Koter-Mórgowska: Firmly Lipschitzian Mappings

10. G. Kohr: Certain Partial Differential Inequalities and Applications for Holomorphic 
Mappings Defined on the Unit Ball of Cn

11. J. G. Krzyż: Some Remarks on the Isomorphism of Fuchsian Groups
12. M. Lefebvre: Moment Generating Functions of First Hitting Times for the Bidi- 

mensional Geometric Brownian Motion
13. P. Matula: A Remark on the Weak Convergence of Sums of Associated Random 

Variables
14. M. Murat, D. Szynal: Moments of Certain Inflated Probability Distributions
15. I. R. Nezhmetdinov: Stability of Geometric Properties of Convolutions of Univalent 

Harmonic Functions
16. M. Nowak: Integral Means of Univalent Harmonic Maps
17. D. Partyka: Some Extremal Problems Concerning the Operator B-y
18. J. Pećarić, I. Raęa: Inequalities for Wright-Convex Functions
19. H. Renelt: Smooth Approximation of Solutions of Cauchy-Riemann Systems
20. H. Renelt: Mean Value Properties of Solutions of Cauchy-Riemann Systems
21. T. Sękowski, A. Stachura: Holomorphic Non-Equivalence of Balls in Banach Spaces 

Ip and Z<2 from the Geometrical Point of View
22. M. Startek, D. Szynal: On Types of Convergence of a Sequence of Defective Random 

Elements
23. K. J. Wirths, J. Xiao: Image Areas of Functions in the Dirichlet Type Spaces and 

their Mobius Invariant Subspaces







CZASOPISMA
Biblioteka Uniwersytetu 

MARII CURIE-SKŁODOWS: 
w Lubliniemw

5r
1

UMCS

WYDAWNICTWO

WYDAWNICTWO
UNIWERSYTETU MARII CURIE-SKŁODOWSKIEJ 

PI. Marii Curie-Skiodowskiej 5, 20-031 Lublin 
POLSKA


