
ANNALES
UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA

LUBLIN - POLONIA

VOL. LI. 1,14 SECTIO A 1997

JOANNA NOWICKA and ALEKSANDER WERON (Wroclaw)

Measures of Dependence for ARMA Models 
with Stable Innovations

Abstract. A relation between different measures of dependence for stable 
time series is explained in this paper. We point out some errors in Kokoszka 
and Taqqu (1994) leading to a wrong asymptotic behavior of the dependence 
structure for stable ARMA processes and demonstrate this in the simplest 
case of AR(1) model.

1. Introduction. Let {%„} (n = 0,±l,±2,...) be a symmetric a-stable 
(SaS) stationary time series with 0 < a < 2. When a = 2, the covariance 
function Cov(n) = £(XnAro) describes the dependence structure of the 
process {An}. As for a < 2 the covariance function is not defined, let us 
consider three most popular measures of dependence which are extensions 
of the covariance and are defined for stable time series.

Definition 1.1. Measures of dependence.
• Covariation CV(n) of Xn on Ao, defined for 1 < a < 2 (cf. [2])

(1.1) CV(n) = CV(An,A0) = Z s^"1^),
Js2

where T is the spectral measure of Xq and An, z<p> = |z|p-1z,
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• Codifference CD(n) (cf. [9])

CD(ra) = CP(Xn,X0) = ln£exp{t(Xn - Xo)}
(1-2)

— In Eexp(iXn') — In E exp(-iXo) ,

• Dynamic'al functional DF(n) (cf. [3])

(1.3) PF(n) = DF(Xn, Xo) = Eexp{i(Xn - Xo)} •

Remark 1.1. Interpretation of the dynamical functional.
Let us consider two stationary symmetric a-stable sequences {X„} and 
{Xn} with scaling parameters equal to 1 and suppose that for some n 

(1-4) DFx(n)< DFjffnff

Formula (1.4) is, by (1.3), equivalent to

Eexp{i(Xn - Xo)} < £exp{t(Xn - Xo)} •

It follows from the form of the characteristic function for SaS variables that

exp(-crj) < exp(-a-),
so < 1 (ox and a* are scale parameters of X„ — Xo and Xn —
Xo, respectively). Since Ox\Xn - Xo) and cF^Xn - Xo) have the same 
distribution, we get for any a > 0

P(|Xn - Xo| > a) = P(ax1|Xn - Xo| > a*1 a)

= P(a^I|Xn - Xo| > axla) = P(|X„ - Xo| > afj^a^a)

> P(|Xn-X0| >a)-

The above inequality means that Xn and Xo are less likely to differ than 
Xn and X'o, and so are ’’more dependent”.

Remark 1.2. One can easily define the following more general measures 
of dependence for any , 02 € R :

(1.5) DF(n;9h82) = exp{i(0iXn + 02XO)} ,
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(1.6) C £>(n;0j,02) = -/„(#!,

= In E exp{ t(#i%n 4- #2Ao)} - In £exp(t'0i An) - In E exp(i02Ao) •

Remark 1.3. For a = 2 the following identities hold

CV(n) = jcov(n),
CD(n) = Cov(n),

DF(n) = exp{Cov(n) - Var Ao} •

For 0 < a < 2 the following relation between 7?F(n) and CD(n) holds for 
every n

(1.7) DF(n) = exp{C£>(n) - C£>(0)} .

2. ARMA processes with stable innovations. Let ARMA(p, </) pro­
cess be defined by the equations

(2.1) Vn ^1 An —1 ... 6pA'n—p — £n 4" 1 4" ... 4" Qq^n—q i

where the innovations {£n} are independent, symmetric o-stable with the 
scale parameter 1, i.e. with the characteristic function given by

(2.2) £exp(i0£n) = exp(-|0|°'), 0 < a < 2 .

The polynomials B(z) — l-byz-.. .-bpzp and A(z) = 1 + aiz +.. -AagZ11 
are assumed to have no common roots and R(^) is assumed to have no roots 
in the closed unit disk {z : |^| < 1}. By Proposition 2.1 in [4], the system
(2.1) has a unique solution of the form

OO
(2.3) Xn — } Cj£n—j a.s.

j=o

with real CjS satisfying |cj| < Q~j eventually, for some Q > 1. (”aj < bj 
eventually” means that there is a jo such that aj < bj for all j > jo-) Ihe 
cjS are the coefficients in the series expansion of A(z)/B(z),\z\ < 1.

Remark 2.1. Note that the coefficients aj,... , aq and bi,... ,bp are time- 
invariant and if 1 < a < 2, then the innovations {£„} are independent,
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symmetric a-stable with finite first order moments. Therefore, for index 
of stability 1 < a < 2, Proposition 2. 1 in [4] can be considered as a 
special case of a more general result obtained in [7]. Indeed, the F1-ARMA 
models with time-dependent coefficients and nonstationary noise processes 
are described in [7] and regularity conditions under which there exists a 
unique, purely nondeterministic solution of such an ARMA equation are 
given.

Proposition 2.1. For ARMA models defined in this section

(2-4)

(2-5)

(2-6)

CV(n) = £cj+ncJ<“-1>, q>1,
>0

oo

CF>(n) = £(|CjP + |cJ+n|“ - |cJ+n - Cj|“),
l=o

n —1

FF(n) = exp [ - KI" ~ 52 lcl+n ” c>l“
l=o j=o

Proof. Using (1.3), we have

PF(n) = Fexp <

= Fexp <

1=0 1=0

' n — 1 oo
i J ' Cj£n-j + ^(Cj4-n — Cj)£_j

1=0 1=0

n—1 oo

= exp | - 52 icji" - 52 ic>+n ~ cjI“ I •
1=0 l=o

For (2.4) and (2.5) see [5]. □

Kokoszka and Taqqu (cf. [4]) investigate the function In (given by (1.6)) 
for ARMA processes in two cases. When the ’’smallest” root of F(z) (i.e. 
the root with the smallest modulus) is real and positive, they determine the 
asymptotic behavior of In. In the case when the ’’smallest” root is complex, 
they give an exact formula for the function by which \In | is asymptotically 
bounded from above. Unfortunately, there are some errors in theorems 
describing the asymptotic behavior of In for a < 1 and a = 1. Namely, in
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Theorem 3.1 in [4] there should be the sign in front of the expression 
of the limit, formula (3.11), page 212, and in Theorem 3.3 there should be 

between two terms of sum instead of ”+”, formula (3.23), page 215.
These incorrect formulas are consequences of a misprint in formula (3.13) 
(page 212) where the sign in front of the last term is missing. Moreover, 
errors in theorems in [4] cause incorrect results in the analysis of their AR(2) 
example.

The analysis carried out in [4] is extended in [8]. Three classes of roots, 
i.e. real positive, real negative and complex, are considered there and the 
correct asymptotic behavior of the covariation and the codifference in these 
cases is determined. In AR(1) example in the next section we do not use, 
however, general results, since we are able to give explicit proofs in this 
simple case.

3. AR(1) model. Let us consider the autoregressive process of order 1 
defined by

(3.1) Xn-biXn-i=£n

as an example of ARMA(p, <y) process defined in Section 2.
The covariance and the codifference are given by (2.4) and (2.5), re­

spectively, in terms of the coefficients Cj. Therefore, we have to determine 
them in order to study the behavior of the measures of dependence. For 
AR(1) process the coefficients Cj depend on a root Z\ of the polynomial 
B(z) = 1 — b\z. The assumption |zj| > 1 is made in order to get a unique 
moving average (2.3) representation of the process {An}. The explicit for­
mulas for CjS in the series expansion of 1/B(z) in two possible cases (positive 
and negative) are presented in Proposition 3.1 and the asymptotic behavior 
of the covariation and the codifference is stated in Theorems 3.1 and 3.2, 
respectively.

Proposition 3.1. The coefficients Cj.

a) If B(z) has one positive root Z\ = eKi, «i > 0, then

(3.2) Cj = e~K'j.

b) If B(z) has one negative root Z\ = —e"1, > 0, then

(3.3) cj = (-l)je-'lj.

Proof. If Z! = e”1, «i > 0, then hi = e-*1. Thus, the coefficients Cj in the 
series expansion of 1/B(z) = 1/(1 — e~K'z) are given by (3.2).
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Similarly, if z\ = —e"1, JĄ > 0, then hj = -e Vx. Since 1/B(z) = 
1/(1 + e-tZl2), it is not difficult to see that Cj = (—l)Je-Pl<

Theorem 3.1. The asymptotic behavior of CV. 

Suppose 1 < a < 2.

a) If B(z) has one positive root Zi = eKl, /q > 0, then

(3-4) lim e*inCV(n) = 
n—>-oo

1
1 - e~Kia '

b) If B(z) has one negative root Z\ = -e"1 ,Vi > 0, then

(3-5) lim e"inCV(n) = <
' —1/(1 — e l'ia) for odd ns

1/(1 —e (/1“) for even ns.

Proof, a) If B(z) has one positive root zx = eK‘, kj > 0, then, by the 
formula (3.2) defining the coefficients Cj and by (2.4), we have

(3-6) CV(n) = V e-K'(j+n}e-K'j{a-l} = e~*xn-------- ------V 7 / _ g-KiO
j=0

Thus,

(3.7) e*inCV(n) = ----- -
1 — e'

and the formula (3.4) holds.

b) If B(z) has one negative root zi = > 0, then, by (3.3),
sign(cj) = (—1)J. Thus

OO
(3.8) CV(n) = ^(-iy+"e-‘'ib'+n)e-1/1i(a-i)sign(Cj.) 

>=o

("l)n

and so

(3.9) e">nCV(n) (~l)w
1 - e~^a

-1/(1- e l'1") for odd ns 

, 1/(1 — e-"1") for even ns,

= e""1’1
1

implying (3.5). □
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If the root of B(z) is real and positive then CV(n) is proportional to 
e-«in. if fhe rooi of 5(2:) is real and negative then CV(n) is oscillating and 
the best idea is to investigate its behavior taking even and odd ns separately. 
CV(n) is proportional to e-"1" for each of these two subsequences of ns. 

Theorem 3.2. The asymptotic behavior of CD.

a) Suppose B(z) has one positive root z = eKl,Ki > 0.

(i) If 1 < a < 2, then

(3.10) lim eK'nCD(n) =-----------
v 7 n-*oo v 7

(ii) If a = 1, then

(3.11) lim eK'nCD(n) = -—- ---- .
n—>00 1 — e *1

(iii) If 0 < a < 1, then

(3.12) lim eK'anCD(n) = ----- ------
n—*oo 1 — e Kl a

b) Suppose B(z~) has one negative root z = > 0.

(i) If I < a < 2, then

—q/(1 - e-1/1“) for odd ns
(3.13) lim e"inCD(n) = 

n—►oo

(ii) If a — 1, then

o/(l — e l'ia) for even ns.

0 for odd ns
(3.14) lim e1/inC£>(n) = <

2/(1 - e "*) for even ns.

(iii) If 0 < a < 1, then

(3.15)

Proof, a) If B(z) has one positive root z = eKl,Ki > 0, then CD(n) is 
given by the following formula

e-Kion + e"*’")0]
1 - e~Kia(3.16) CP(n)
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Indeed, in this case the coefficients Cj are positive and Cj > Cj+n. Therefore, 
using (3.2) in (2.4), we get

C£>(n)
oo

(e~Kl^a +

3=0

_ c-«i(i+n)

OO
= (1 + - (1 - e"*1")")

i=o

— Kian
1 _ e-*ia

If 1 < a < 2, then the following facts

(3.17) lim e-«i(«-i)n = o 
n—>oo

and

(3.18) lim e*in[l - (1 - e"'51’1)"] = a 
n—*oo

imply that (3.10) holds.
Setting a = 1 in (3.16) we obtain the simple formula describing CD(n)

(3.19) CP(n) =
2e — Ki n

1 - e-"> ’

1 + e (1 e-«ln)«

which, in turn, yields (3.11).

If 0 < a < 1, then, by (3.16),

e-«ian+[1_(1_e-«1n)aj
Urn e"anCD(n) = lim eKl‘

n—*oo n—*oo

1

1 _ e-«ia

= ------------ lim (l + eKl"n[l - (1 — e-*1")"])1 _ e-«i» n—oo V 1 V ’ J'

and in order to get (3.12) it is enough to notice that

(3.20) lim eKl“n fl - (1 - e-"in)“] = 0.

b) Suppose B(z) has one negative root z — — > 0. In this case
(2.5) and (3.3) yield

e-Pio,n + ! _ [(_1)ne-i>1n _

1 - e~^a
(3.21) CP(n) =
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Notice that considering even ns we get the same formula for CD(n) as in 
the case of one positive root. Thus, using arguments as in part a) of this 
proof one can obtain (3.13), (3.14) and (3.15) for the sequence of even ns.

We now focus on the case of odd ns.

If 1 < a < 2, then applying (3.17) and

(3.22)

in

(3.23)

lim e1"1” [1 - (l + e-l'in)“l = —a
■n_L J

lim e"inCJ9(n) = lim e „ e-^an + [l-(l + e-‘/in)a]
1 - e-^a

we get (3.13) for the sequence of odd ns.

If a — 1, then (3.14) results immediately from the following explicit 
formula for CD(n)

(3.24) cp(n) = e—^i-(i+cr)]=o.
1 - e-"’

If 0 < a < 1, then, using the simple fact that

(3.25) lim el'1“n[l - (1 + e"1'1")0'] = 0,
n-*oo

we get (3.15) in the case of odd ns. Indeed,

,,.n^lQn + [1 - (1 + e-Pin)Q]
lim e1'lttnCP(n) = lim eb 1 - e~^‘

= ----- ------  lim e*'1“n[l - (1 + c-*'in)a] = ----- 1~—.
1 _ e-t'ia 1 v

□

Theorem 3.3. If 1 < a < 2, then for AR(1) processes the following formula 
holds

(3.26) lim
n—>oo

CP(n)
CV(n)

a.

Proof. If 1 < a < 2, then both the codifference and the covariation are 
defined. If B(z) has one positive root, then one can get (3.26) dividing
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(3.10) by (3.4). In the case of one negative root, formula (3.26) results from
(3.13) and (3.5).

This fact can be considered as a natural extension of the behavior of 
C7?(n) and CV(n) for a = 2.

□

The method of computer approximation of the covariation and the cod­
ifference for AR(1) time series provides us with the visualization of the 
theoretical results obtained in Theorem 3.3 and can be used as a tool to 
show errors in [4].

Figure 3.1: The plot of the vs n = 0,1,... ,40 for a — 1.2 and
aCF(n)

a = 1.5 in the case of (a) one positive root z\ — 2, (b) one negative root 
Zj — —2.

Fig. 3.1 contains the plot of the numerical approximation of the function 
CD{n)/aCV(n) for n = 0,1,... ,40 and for two selected values of a, i.e. 
for a = 1.2 and for a = 1.5. Fig. 3.1(a) presents the case of one real 
positive root zi = 2 and Fig. 3.1(b) shows the case of one real negative root 
Zi = —2. It can be noticed that for small n values of CV(n) and CP(n) 
are different, but the numerical evaluation of the fraction CD(n)/aCV(n) 
gives 1 for sufficiently large ns. This observation is not surprising because, as 
stated in Theorem 3.3, formula (3.26) holds for AR(1) processes. Moreover, 
if B(z) has a positive root, presented function is decreasing. In case of 
negative root, in turn, there are apparent oscillations. More precisely, taking 
odd ns and even ns one can distinguish two sequences of values (the first 
one is increasing while the second one is decreasing) that reach the same
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limit. This is the consequence of the behavior of the covariation and the 
codifference - there are two different formulas for two subsequences of ns in 
Theorem 3.1 b) and Theorem 3.2 b) (i).

Figure 3.2: (a) Theoretical limit values (cf. (3.10), (3.11) and (3.12)) for 
C£)(n) vs a.
(b) Incorrect theoretical limit values for —Jn(l, — 1) vs a obtained in Kokoszka 
and Taqqu (1994).

Suppose now that B(z) has the positive root zx = 2. Since for every n 

CP(n)=-/„(l,-l),

general theorems for the asymptotic behavior of In should, in particular, 
give the same results for AR(1) process as we state in this paper in Theorem 
3.2. There are, however, some errors in [4], which are discussed in detail in 
Section 2.

Fig. 3.2 allows us to compare theoretical limit values and incorrect results 
obtained in [4]. For 0 < a < 1 Fig. 3.2(a) gives the plot of

lim eKl"nCP(n) = lim 2anC£>(n) n—»oo n—>oo

(see RHS. of (3.12)) against the index of stability a. For a - 1 and 1 < a < 
2, in turn, this figure presents

lim e*'nCD(n) = lim 2nC£>(n)
n—>oo n—foo

(see RHS. of (3.10) and (3.11), respectively). Fig. 3.2(b) illustrates the 
incorrect asymptotic behavior of —/„(!,—!) as presented in [4].
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Remark 3.1. Since the relation (1.7) holds for every n, an information 
about the asymptotic behavior of the codifference CD(n) gives us the as­
ymptotic behavior of the dynamical functional DF(n).
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