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Abstract. The paper is devoted to the analysis of pointwise convergence of 
sequences of projections in Lp-spaces. Also some approximation problems 
for the operators in Z2~spaces are discussed.

1. Monotone sequences of projections in Banach spaces are important ob
jects in both classical and functional analysis. Pointwise convergence theo
rems for the Fourier expansions with respect to general or special orthonor
mal systems of functions or martingale convergence theorems are typical 
classical examples concerning such sequences. One can say that all other 
results on the pointwise convergence of (monotone) sequences of projections 
are more or less connected with theorems just mentioned.

This paper is devoted to the analysis of the almost sure convergence of 
sequences of projections in £p-spaces. The last sections of the paper are a 
survey of some results obtained recently by the authors. They concern sev
eral special problems arising in L2 for sequences of orthogonal projections.

In the sequel, we shall also consider an ‘unbounded’ situation. That is 
why we adopt the following general definition.
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2. Definition. Let (An) be a sequence of bounded linear operators in Lp 
over a probability space, say (12, J7,//), and let A be linear (bounded or not). 
We say that (An) converges to A almost surely (An —> A a.s.) if Anf —► Af 
p-almost everywhere, for all f G D(A).

Let us start with some generalization of pointwise convergence theorems 
for conditional expectations.

A natural and important generalization of the classical martingale con
vergence theorem was obtained by E. Stein [17] who proved the following 
result.

3. Theorem. Let (Pn) be an increasing sequence of positive orthogonal 
projections on L2(fi, P,p). Then (Pn) converges almost surely to its strong 
limit P.

The original proof of E. Stein was complicated. Very short and elegant 
proof was found by R. Duncan [8].

We say that an operator T acting in Lp(fi, is a positive contractive 
projection (p.c.p.) if

1° Tf > 0 a.e. for f > 0 a.e.,
2° l|r||p < i,
gO p2 _ p

A sequence (Tn) of p.c.p. operators is increasing (decreasing, resp.) when 
TnTm = TnAm {TnTm = Tnvm, resp.) for all n,m G N.

4. Theorem. (Martingale-type convergence theorem). Let L =
Lplfi^P,fi) with p > 1. Assume that (7n) is an increasing sequence of 
p.c.p. operators in Lp. Then Tn —> T a.s. where T is the limit of (Tn) in 
the strong operator topology.

Our proof of the above theorem is different for p > 1 and for p = 1
In the case p > 1 the argument is based on the famous theorem of Akcoglu 

[1]. We just reduce the problem to the Akcoglu’s maximal inequality via 
the result of Neveu [15] on the connection between ergodic theory and mar
tingales. In the case p = 1 we use the structure of positive contractive 
projections in Li and submartingale convergence theorem. Let us remark 
that in both cases i.e. simply for p > 1 it is possible to use the charac
terization of contractive projections in Lp [2, 7, 13]. In our argument we 
do not use this characterization, being rather advanced, and give a direct 
simple proof. This is possible because of the positivity of projections under 
consideration.

Let us fix p > 1. In this case the proof is based on the following results.
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(A) (Theorem of Akcoglu [1]). If T : Lp —► Lp is a positive contraction, p > 1, 
then the Dominated Ergodic Estimate holds for T. That is

||A//||p < ^7-j-ll/llp, for each f £ Lp,

where
1 n_1

(W/)(u,) = s«p |-£(T‘/)(u,)|.

(B) Theorem of Neveu [15]. Let (Tn) be p.c.p. operators in Lp, p > 1.
Assume that the sequence (Tn) is decreasing. Let (an) be a sequence 
such that

0 = a0 < ai < a2 < ... < an < ... < 1, and an —> 1.

PutS = ^i(a4-ai_i)Ts.
Then, obviously, S is a positive contraction in Lp. Moreover, for each 

£ > 0 one can choose (a4) in such a way that for some increasing sequence 
(ns) of positive integers, we have

(1) < £. 
P

Going back to the proof of our theorem, let us assume that (Tn) is an 
increasing sequence of p.c.p. operators in L\.

Let us fix N for a moment and put T'n = Tyv-n+i, f°r n = 1,2,... , N, 
and = Ti, for n > TV. Then T/ > T2 > .... Let 0 < eN —► 0, eN < 1, for 
N = 1,2,.... By (B), for N = 1,2,..., we can choose (a(sN)), (n4N^) such 
that for OO

Sn = £(a(/) - a^T'„
S=1

we have

Let f £ Lp, f > 0. Putting

n‘N>-l

&s,N = —777? 57 S^jf, 1s,N ~ T'sf &s,N,

k=0
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we can write T'sf = + aa^N. Thus T'sf < gs>N + cts N, where gs,N =
|'ys,7v|- Consequently, for f 6 Lp, / > 0, we have

sup Tsf - sup T'af < sup gs<N + sup as<N. 
l<s<N l<a<N l<a<N l<s<N

By Akcoglu Theorem,

sup <7s,/v||p < ~ 1 ||J IIP-
Ks<N P- 1

Moreover, by (2) and since eN < 1,

II sup 0s,n||£ = / sup (ps,/v)p < / J2(ff,,7v)p 
1<3<AT J l<a<N J “J

= 12 /12 [ /(Sadv)P] 7 = 52 11^,
S=1 J , 3=\ J S=1

7v||p < £w.

Finally, we get

II sup T5/||p <£'/’ + ll/llp, N = 1,2,.... 
l<s<N P ~ 1

Passing with N —> oo, we obtain

||supTs/||p < —ttII/Hp, 
s>1 P -L

which means that the Dominate Estimate holds for the sequence (Ts) of our 
projections. This implies in a standard way, the a.e. convergence of Tsf to 
Tf, for every f € Lp (see, for example, [9], Chapter 1]).

Indeed, for functions f of the form f = fx + f2, where fx e (J Tfc(£p) 
and f2 € H^ikerTfc, obviously, T,f -> Tf a.e. Clearly, the seVof such 
functions is dense in Lp.

Let us pass to the case p = 1. Our proof is mostly based on the analysis 
of the structure of increasing sequences of p.c.p. operators.

The structure of p.c.p. operators in £j is known [2, 7, 13]. Our approach 
is rather different and seems to be more elementary and better fitting to 
the situation of positive projections we are just interested in. That is why 
we reproduce our argument in some details.

Before starting the proof of Theorem 4 we analyse in some details in
creasing sequences of p.c.p. operators in L\.
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Let us observe that for any positive nilpotent operator N (i.e. satisfying 
N2 f = 0, IV/ > 0 for / > 0) and for a set L?o = (A/1 > 0), we have

(3) 2Vlpe = = N.

Roughly speaking, any positive nilpotent operator in ‘transfers from Cq 
into Co’. Indeed, we have, for f > 0,

(4) l(/>0) = lim
' ' n—>oo \n /

Thus, for A C I?, we obtain

NIa < N lim n( — A Nl') < lim nlV2l = 0.
n—KX> \n / n—>oo

Obviously, the set Co in (3) is not uniquely determined by N.
It is natural to distinguish a class of regular p.c.p. operators. We adopt 

the following definition.

5. Definition. Let Co € 7". We say that a p.c.p. operator T is C0-regular 
if Co = (T1 > 0) and Tlpg = 0. C-regular T is said to be regular.

Obviously, T1 = T1q0 for any Co-regular T.
Clearly, any p.c.p. Co-regular operator can be identified with the regular 

p.c.p. operator acting in Li(Co,7b,po) where 7b (a*o, resp.) is restriction 
of fF (p, resp.) on Co-

Let us remark that for any p.c.p. Co-regular operator and any 
positive contractive nilpotent operator N satisfying (3) and

(5)

the sum T = + N is a p.c.p. operator.
We are in a position to formulate the following representation theorem

6. Proposition. Every p.c.p. operator in Li is the sum

T = T(r} + N,

where is an Co-regular p.c.p. operator and N is a positive contractive 
nilpotent operator satisfying (3) and (5) (with Co = (7T > 0)). Moreover, 
the regular part is of the form

(6) T(r)/ = <pE*/,
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with a a-field 21 C Fq such that iS J'ts atom and a function y satisfying 
(y? > 0) = and Eay> = 1. Then <p = T1q0 and

Hl = {AeJ::T(lAV>) = lAlp}.

Proof. Let as previously f?o — (Tl > 0). Put

Nf = Tl„cf, T^f = Tlnof,

for f € Ti(f2,7?, fi). Then N is a positive contraction and, for A € IF, 

NN1A < TlncTl < Tlpj(l„0Tl) = 0,

so N2 = 0. Obviously, T(r)lne = 0, (T(r)lp0 > 0) = (T(r)l > 0) = L?o.
It remains to show that is of form (6). Clearly, it is enough to 

consider the case F2q = FI.
Let us assume that T is a regular p.c.p. operator and y> = Tl. Then 

> 0) = 1.
Let us put 21 = {X e T : T(y> • lx) = • 1^}. 21 is a o-field. In fact,

let A, B 6 21 which means that T(y> • 14) = <p-lA and T(y> • lfl) = ę? • 1B. 
But y? • 1/inB < F ' 1a, s° ^'(<P ’ Iadb) < T(y? • 1a) = 95 • I4. Similarly, 
T(<P • Iaob) < F ■ Is- Consequently, T(y? • 1^) < (y,. iA) A _
<p(1a A Ib) = F • Iacib- Op the other hand, since T preserves the integral, 
we have J T(<fi ■ Uns) = f • Iąhb, thus T(y> • lAnB) = . iAnB which
means that A 0 B 6 21. The rest is standard.

Now, we observe that for x G Li we have Tx = x if and only if x/p is an 
2l-measurable function. In fact, let Tx = x and a ę R. Then (x/qp > «) 
= (x-a</> > 0) and T(x-ay?) = x-ap, so it is enough to show (x > 0) G 21. 
Let us assume additionally that x > 0. Using the fact that for every function 
z : Fi —> R, z > 0, n[z A £) -* l(z>0), n -> 00, we get

n(x A y>/n) = ę? • n(x/y> A -) - y> • l(l/v>0) = ■ l(x>0), „ - a.e. .

But
T(x A y>/n) = Tx A T(y?/n) = xA ip/n, 

so
(n(x A y>/n) = T(n(x A y?/n)) - T(y> • l(l>0)), n -> 00.

Thus T(y? • l(r>o)) = F ■ l(r>o) and consequently, (x > 0) G 21.
For an arbitrary x G £j with Tx = x it suffices to consider the decom

position x = x+ -x~ (where x+ = x V 0) because Tx1 = x±. Then x/<p is 
21-measurable.
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Conversely, if x/93 is 21-measurable, then x/ę> is the a.e.-limit of simple 
functions of the form with A* 21- Thus x is the a.e.-limit of
the functions • 1a* = T(Ek ak • <p • lx*), so x = Tx.

Since T = T2, the above observation implies that Tx/kp\s, 21-measurable 
for x € Li.

Next, let us remark that

(7) TlA = p-lA for A e 21.

In fact, for suitable 0 < a \ 0, B / A, B 6 21, we have «1b < yj-lx- Thus, 
TIb < ^T{ifi-1A) = l^-lx- But T1b < (fi,soTlB < 9>aT</?-1a < ‘/’•Ia 
for sufficiently small a. Hence T1A < ę> • I4. If the sharp inequality 
TlA < ■ 1A were true on some set C of positive measure then, replacing
A by Ac, we would have ę> = Tl < ip on C, a contradiction. Thus, we get 
T1a = ę>l4.

The last equality leads immediately to

y 1 = y T(1a) = y • 1A = y ęj, for A G 21

which means = 1.
Now, let us notice that, for 0 < x < 99, we have

(8) T(xlA) = (Tx)lx for A € 21.

Indeed, a: • lx < 9> • 1a implies T(x ■ lx) < lx) and x 1A < x implies 
T(x • lx) < Tx. Consequently T(x - lx) < Tx A ę> • lx = (Tx A ę?) • lx = 
(Tx) • lx. This implies (8) in the same way as in the proof of formula 
(7). Let us notice that the assumption x < <p, used in the proof of (8), 
is not essential because for x > 0 one can easily find a sequence (ys) with 
0 < ys < and such that x = ys.

Finally, for x > 0, A 6 21 we obtain by (8)

which means that Ea/ = — for f 6 L\. ■
93 _ _

We conclude this section describing the inequality T\ < T} for p.c.p 
operators.
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7. Proposition. For any two regular p.c.p. operators in L\, say Tj = 
<piEa’, T2 — <p2Ea2, the following are equivalent

(i) 1\ < T2 (that is kerT2 C kerTi and Fi(Ii) C T2(Li), or, equiva
lently, T\T2 =T2T\ = Tj);

(ii) T^CTtlh);
(iii) ^C^2}lp2 = ^-.

Proof, (i) => (ii) obvious.
(ii) => (iii). Clearly Tjl = <pi G Ti(Zi) C ^(Zi), so <pj = T2q>i = 

<p2Ea3q?i. To prove the inclusion C 2l2, let us take A G 2li. That means 
that = Ti(<pilA) and (ii) implies <pil,t G T2(Li). Thus =
<p2Ea2g, for some g. Consequently,

so 1 a is 2l2-measurable.
(iii) => (i). Under asssumption (iii)

T,T2f = = <p1E2‘]Ea2(ę>2E2‘2/) = ^E2' f = Txf,

since Ea2<p2 = 1,

T2TJ = ^E^OpiE**/) = ]^-(Ea2^)(EaV) = TJ.

It is worth noting that if p.c.p. operators T), T2 are not regular, then 
the inclusion Ti(Zi) C T2(Li) does not imply the inequality of projections 
Ti < T2. ■

By Proposition 6, every p.c.p. operator T is of the form

T = <pEa(ln0.) + lV(lng.),

so we can write shortly T = (Co, <p, 21, TV).
In the proof of a strong limit theorem for increasing sequence of projec

tions we shall use the following consequence of the inequality between two 
p.c.p. operators.

8. Proposition. Let Ts = (Cs, <p5,2ls, N,), s = 1,2 be two arbitrary p.c.p. 
operators. Then we have that
(A) The inclusion T^M) C T2(Zi) implies the following conditions 

1° Vi Q Li2;
2° f?! G 2l2;

3° 117^2 = 1^^7;
4° 2li C2l2nPj.
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(B) The inequality < T2 additionally implies 
5° Ea>(lp,N2f).

Proof. Assume that Ti(£i) C T^Zi). Then we have
1° f?! = (Tjl > 0) = (TjTil > 0) = (^E^CTjl) > 0) C (<p2 > 0) =

12 2 •
2° Til = <p2Eaa(Til), (ę>2 > 0)P2 D I?i, so (Tjl > 0) = (Eas(Til) > 

0) € 2l2.
3° Obviously, T2Ti = Tj. Thus ^2Ea2(v>iEa’lfl,) = (piE91'!^ so 

4° Let A € 211, A Q . That means that

IaV’i = Ti(1a<pi) = T2(lĄipi) = V72E212 (1 ).

Consequently,

lx = — Ea2(lxę>i) = —Ea2(lx</>i) is 2l2-measurable.

Part (A) is thus proved.

Inequality 5° concerning the nilpotents is a consequence of the additional 
assumption kerTi D kerT2. Indeed, for f > 0, (/ > 0) C we have 
N2f = T2f and T2(-N2f + /) = -N2f + T2f = 0. In consequence,

0 = Ti(—A2/ + /) = -^(1^, + ln^on2N2f) + Ti/)
= -r}r) 1 A2 / - M1 noa N2f + Nrf 

= - NM+ N'f.

Thus, as Ap = (ę>iEa‘ lnJJVr, we get 5°. ■

Remark. Actually, we have proved the following characterizations (which 
are interesting themselves, though they will not be used.

(A') The inclusion 7i(Li) D T2(Ti) is equivalent to l°-4°.
(Bz) The inequality T\ < T2 is equivalent to l°-4° and

(5°°) Ea*A1l„e/ = Ea'lniA2/ + EaiAiA2/.

This can be obtained by the use of Theorem 1 and the implication

l«fnr?2/ € kerT2 implies lpjnn2/ = 0.

Now we go back to the proof of Theorem 4 in the case p = 1.
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First, let us remark that our theorem holds for the regular p.c.p. opera
tors. Indeed, in this case, by Proposition 8 we have that

rn/ = ę>nEa“/,

with an increasing sequence (2l„) of cr-fields and y>n = • It is enough
to apply the martingale convergence theorem.

Now, let Ti < T2 < ... be p.c.p. operators. Let, according to Proposi
tion 6, L?n = (Tnl > 0) and

Tn = + Nn,
T(r)/ = <PnEaV

with (ę>n > 0) = J?n € 21n, E21"^ = 1. Moreover,

Nn =

Then, by Proposition 8, 121 C J?2 C • • • • Let us fix arbitrary no > 1. In the 
sequel always n > no and f denotes a fixed positive function. Obviously, 
!(U nnyTn^ ~ lniTnf = °- 11 is enouSh to show that con
verge? a.e.

Step 1. ln^T^f converges a.e. Indeed, for n > n0, f2no e 2ln by Propo
sition 8. This implies that the operators

(9) l/7noy?nEa", n>n0,

are f?no-regular p.c.p. Obviously, they can be treated as regular operators 
acting in the space Zi(f?„0, -^n0,Mn0) being the restriction of Li(P, on 
12„O. By Proposition 7, sequence (9) is increasing in Li(J?no) so it converges 
//-almost everywhere.

Step 2. lnno^nf converges a.e. Indeed, for a sequence of functions 

£„ = Ea-lPnoJVn/, n>n0, / > 0,

defined on J2„o, one has, by Proposition 8,

Ea’£„+i = ln„oEa"7Vn+1/ < l^E2*-ATnl„e f

<lnW0Ea’JV„/ = en.

Consequently, «„) converges a.e. as a supermartingale. Thus the sequence 
ln„0Nnf = V’nE21" ln„o Nnf = </>„£„ converges a.e.

For decreasing sequence of p.c.p. operators in Lp the a.s. convergence 
depends heavily on p. Namely, we have the following result.
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9. Theorem. If (Tn) is a decreasing sequence of p.c.p. operators in Lp 
(p > I), then Tn —> T a.s. but there exists a decreasing sequence of regular 
p.c.p. operators in L\ which does not converge almost surely.

Proof. The case p > 1 can be considered in the same way as in the proof 
of Theorem 4, even easier (because we do not need to pass from increasing 
(Tn) to decreasing (7^) to use the result of Neveu).

Thus it remains to construct a suitable decreasing sequence (T„) of reg
ular p.c.p. operators which does not converge almost surely.

To this end we construct a probability space (f2,P, P), a decreasing 
sequence (2l„) of sub-o-ideals of P and a sequence (</?n) of strictly positive 
measurable functions on (f?,P) satisfying the conditions

 ¥>»+!

in particular,

(11) E«-y>n = l, n=l,2,...,

(12) ipn does not converge P-a.s.

Then, obviously, it is enough to put Tnf = ^„E5*"/ for f E
because by (10) and (11), (Pn) is decreasing sequence of p.c.p. operators, 
and by (12) Tnl = <pn a-s.

By P[o,/3] we denote the cr-field of Borel subsets of the interval [a,/?]. 
For a E [0,1] we set Ba = P[0, a] U {[a, 1]}. Let us consider a product prob
ability space (f2,P,P) = ([0,1], Z?[0,1], A)°°, where A denotes the Lebesgue 
measure on [0,1].

For a sequence (nj, n2,...) of positive integers (which will be fixed later) 
we define a decreasing sequence (2l„) of cr-fields by putting

2li = ® Bi® Bi® ...
2 Tlj

= P^_2 0 0 ® . ..
2ni

2lni

2l„1+i = Bo®

® Pi ® Bx ® ...
2«i

2n2

(13)
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2l„1+„2 = Bo® — ® Bi® ...
JJ

2l„l+„2+i = Bo® Bo® ® Bi ® ...

We define on (12, JT-", 7s*) a sequence of measurable functions (^(wi, W2,...), 
k = 1,2,...) by putting
(14) i
*(0,,,^,...) = (l (o + a'1’1 [^i, ^) + 5 1

^,(^1,^2,...)= (1[0,^_) + " 

V„,+l(u.„u,2,...)=(l[0^)

fc.+n.fWl.U.j,...) - +On2’l[0 ji_) + 2 1[

((3)
[°» ° 1 ) 1 ~ 1 j

We postulate that fn ifrkdp = 1. It is equivalent to the condition

(15)
Ttm * . (m) 1 , 1 7lm -+- i 1---------- (- a-------- 1--------------------= 1.
2nm 2 27im

The coefficients o-m) are determined by (15). It can be easily seen that 
then we have

(16)
(m) _ 7lm . .

>— (t=l,2,...; m = l,2,...).

The form of 2lfc, V’fc and the condition f i/>k = 1 imply

(17) Ea*V>fc = l (*= 1,2,...).

Also we have

(18) i/’k is 2lfe_i measurable,

which can be easily checked.
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Let us put

(19) lpk = ^1^2 •••V’fc-

By (17) and (18), we have

Ea*yjfc = Ea‘(V>i ...4>k) = E^V’jtE21*-1^-! ...E^^E811^! = 1

and
Vk+l V’fc+i

V’jfe+iE21*^ = V’i •••V’fc = Vk-

Thus the conditions (10)—(12) are satisfied. Since the sequence of tr-fields 
(2lfc) is decreasing and the functions (ę>fc) satisfy (10)—(12), the operators 
Tfc(-) = </?fcEa‘(-) form a decreasing sequence of regular p.c.p. operators.

The sequence (nTO) can be fixed in such a way that P(w : </>fc(w) -*») = 1. 
More exactly, we will show that for a suitable (nm, m = 1,2,...)

(20) .max |^ni+...+nm(w)-y>n] + ...+nm+t(w)| > 1

on the set Zm = € C : u>m+i G [0, 1/2]}, m = 1,2,... .

Obviously, P(Zm) = 1/2 and the cylinders Zm are independent.
Putting Z = lim sup Zm, by the Borel-Cantelli Lemma we have P(Z) = 1,

and ę>n(u>) does not satisfy the Cauchy condition on Z.
The sequence (nm) will be defined by induction. Let n\ = 1. Assume

that we have already fixed ni, «2,... , in such a way that (20) holds on 
the set Zm, for m = 1,... ,m- 1. We put /J(w) = minwę>m+...+„« (<*>)• 
Note that (3 > 0 a.e. and take nm+i large enough to have that

(21) > 1 a.e.

We shall prove (20) for m = m. Indeed, let us take u>m+i G [0, 1/2]. In the 
situation when u^+i e (^77, ) ’ W® haVG

l<Pn1 + ...+nmG‘>) - <p„1 + ...+ „m+i(w)l

~ Pni + ...-|-nm (w)|l — (V’ni + ...+nm + l(u;)V’ni + ...+nm+2(u;) • • • V’ni + ...+nm+t(u,)| 
= V’n1+...+nm(u,)|l- 1^1 ar+1|>/?(ar+1-l)>l

(i-1) times

by (16) and (21). Thus (20) holds for m = m. The proof is completed. ■
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In [11] we described all possible quasi-strong limits of monotone sequences 
of projections in a Banach space. These limits are always some idempotent 
operators unbounded, in general. In the case of almost sure convergence, 
sequences of projections may converge to operators of a very general form. 
For example the following theorem holds.

10. Theorem [11]. Let X = L2(ft,P,p) be a separable Hilbert space 
such that 0 < p(Zn) —> 0 for some (Zn) C P. Let A be an unbounded closed 
and densely defined operator in X. Then there exists an increasing sequence 
(Sn) of finite-dimensional projections in X such that (Sn) converges almost 
surely to A.

Obviously, the projections in the above theorem are not selfadjoint, in 
general. The situation is drastically different if we want to approximate 
the operators in £2 by the orthogonal projections. As an example let us 
consider an unbounded positive selfadjoint operator A in X = (12, P, p). 
Let A = f0°° Ae(dA) be its spectral representation.

11. Theorem [10, 12]. The following conditions are equivalent
(i) there exists a sequence (Pn) of orthogonal projections and positive 

coefficients An / 00, such that AnP„ —> A a.s.;
(ii) for every e > 0 and m > 0, there exists a normalized vector f £ X 

such that f € e[m,oo)(X) and p(u £ fi : |/(tu)| >£)<£.
In condition (i) finite-dimensional projections Pn can be taken.

In the last theorem the sequence (P„) is not monotone.
The proofs of two above results concerning the a.s. approximation of 

linear operators in £2 are based, among others, on the following general 
theorem.

12. Theorem [4, 6, 10]. Let (An) be a sequence of finite dimensional 
operators acting in X = L2(fl,P,p), satisfying condition 

(*) there exists (Y„) C P with 0 < p(Yn) -> 0.

Assume that An —> A in the strong operator topology. Then there exists 
an increasing sequence (n(s)) of indices such that An(s) —> A a.s.

Proof. The theorem is in fact a consequence of the existence in X of 
increasing sequence of finite dimensional orthogonal projections Pn tending 
to 1 strongly and almost surely as n —> 00. Namely, Bn - An - P. 4 — 
0 strongly and Bn are finite dimensional. Moreover, one can define, by 
induction, sequences n(s) / 00, t(s) / 00 satisfying Z(l) = 1 and

||Pn(s)^’t(s)ll < 2 , || || < 2-4.
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Then

and
ooOO oo

Thus .0n(s) —> 0 a.s. Consequently, An(s) —> A a.s.

The above theorem can and should be treated as an extension of the
following classical theorem of Marcinkiewicz [14].

13. Theorem [14]. Let (ę>„) be an orthonormal system in £2(0,1). Put 
Pn = Z)£=i(‘’ V’fc)- Then there exists an increasing sequence n(fc) such that 
Pn(k) P a.s., P being the strong limit of Pn.

The proof of Theorem 12 seems to be as short as possible. In compari
son with the original proof of Marcinkiewicz [14] and the reasoning of the 
authors [2], it is much simpler.

It should be stressed here that the assumption in Theorem 12 that the 
operators An are finite dimensional cannot be omitted. Namely, one can 
construct a sequence (Pn) of orthogonal projections in £2(0,1) increasing 
to the identity and such that, for any increasing sequence (n(s)) of indices, 
(-Pn(s)) does not converge almost surely [5].

The counterexample just mentioned has an interesting implication in the 
ergodic theory. Namely, there exists a unitary operator U in £2(0,1) such 
that for every increasing sequence (n(s)) of indices, there exists a vector 
f G £2(0,1) such that

Ukf does not converge a.s. [5].

The assumption on the strong convergence of operators An in Theorem 12 
cannot be replaced by the assumption that An —> A weakly. Indeed, let us 
consider H = £2(-l, 1) and put = l(-i,o), while {ę>fc} is the Rademacher 
system in £2(0,l). Put Vr-(z) = ^(V’(a:) + Vk(x)),x € (-1,1) (here <pk 
equals zero outside the interval (0,1)).

Let P (Pk, resp.) stand for the orthogonal projection onto the space 
generated by <p(V>fc, resp.), k = 1,2,.... Obviously, Pk -> jP weakly, as
k —> 00.
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On the other hand, Pfcę> = (ę>, VbJVbfc = tW2 , that is |(Pfcę>)(x)| = 1/2, 
x e (0,1), however, (Pę>)(z)/2 = 0, for x e (0,1). Clearly, for every 
sequence {Pn} C Proj(P), P„ -> A a.s. implies Pn —> A weakly. This 
implies immediately Pn —* A weakly.

It is worth noting here that from Theorem 12 one can deduce the following 
corollaries.

14. Corollary. If An —> A in the strong operator topology for some finite 
dimensional operators An in H, then one can choose indices n(s) / oo in 
such a way that —»• Ak a.s. as s —> oo, for any k = 1,2,....

Proof is given by diagonal method.

15. Corollary [4]. Let 0 < A < 1. Then there exists a sequence (Pn) of 
finite dimensional projections such that Pn~> A a.s.

16. Corollary [12]. Let A be a closed densely defined linear operator in 
H such that, for some finite dimensional A„, we have ||Anf — Af || —> 0 for 
all f € L>(A). Then 4n(a) -> A a.s., for some increasing sequence (n(s)).

Proof. It is enough to consider the operator B = f^Q min(l, A_1)e(dA), 
where e(-) is the spectral measure of |A|, and apply Theorem 11 to the 
sequence (AnB).

17. Corollary. Let A be a normal (unbounded) operator in H. Then 
there exists a sequence (An) of finite dimensional normal operators such 
that Ak —► Ak a.s. as n oo, for k € Z.

Proof. It is enough to take An = £"=1 Ans with finite dimensional normal 
operators Ans converging strongly to /(a_1S|A|<a) Ae(dA) as n — oo. Then
||A£/ - Akf\\ 0 as n oo, for any f e T>(Ak), k <= Z, and Corollary 16 
can be used.

We conclude with few remarks concerning y-mixing sequences of projec
tions.

Let 0 < 7 < 1. A sequence {Pn} C Proj (P) is said to be mixing almost 
surely with the density 7 if P„@ > a.s. >> 7I i.e. Pnf -* yf a.s. for all 
f e H. In particular, every mixing a.s. with the density 7 sequence {Pn} 
is also mixing with the density 7 in the sense that P„ —► 71 weakly
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Let us remark that Pn 7I implies Pnf —► 7/ in Li(0,1) for f G H 
(since the functions fn = Pnf are uniformly integrable).

Let us remark that there are projections Pn such that Pn —► 7I weakly 
but the sequence {Pn} is not mixing almost surely with the density 7. For 
example, let {Zn} be a sequence of sets which is strongly mixing in the sense 
of Renyi [16] and put Pnf = lznf for f € H. Then Pnf —► 7I weakly but 
{Pn} is not mixing a.s. with the density 7. Indeed, if the contrary, then we 
would have, for / €

l|Pn/-7/lll<2||/||oo||Pn/-/||l-0

which is impossible since Pnf —> 7/ strongly in H implies that 7 = 0 or 1.
It is easy to give some examples of sequences {Pn} C Proj(P) which are 

mixing with the density 7 (i.e. Pn —> 7I weakly) and mixing a.s. with the 
density 7.
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