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Abstract. The Steffensen inequality is applied to derive quantile and mo
ment bounds for the expectations of order and record statistics based on 
independent identically distributed random variables.

1- Introduction. Let X,X\,X2,... be i.i.d. random variables with a 
common distribution function F and the quantile function F_1. Let Aj>n 
denote the i-th order statistics from the sample Ai,... ,Xn. The fc-th 
record statistics from the sequence Ai, X2,.. ■ are defined by

= A^L*(n),L*(n)+fc-lł n = 0,1,2,..., A: = 1,2,...,

where £fc(0) = 1, Lk(n + 1) = min{j : ALjfc(n))Ll(n)+fc_i < Ajj+*<i} for 
n = 0,1,2,... (c.f. [4]).

In Section 2 we present quantile lower and upper bounds for the cr-th 
moment of the order statistics Xk<n. The bounds are derived by the use of 
Steffensen inequality (Lemma 1). In general we do not have to assume that 
the a-th moment of X exists in order to get meaningful bounds on EX£n.
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It is worth pointing out that for some distributions our upper bounds 
are more precise than their counterparts obtained by Moriguti (1951) and 
Ludwig (1960)

(1) (
( 2k-2\ ( 2n-2k\ \

nU-i A-» j-A

(V) )
who applied the Schwarz inequality (under the assumptions EJ = 0, 
E.Y2 = 1) instead of the Steffensen inequality. Our inequalities have the 
form similar to the upper bounds

(2) EXfc,n < Ft f1 _ J (k—l)/nn +

obtained by Caraux and Gascuel (1992) and Rychlik (1992) via a different 
approach for possibly dependent identically distributed random variables. 
However for some values of k (close to n) our bounds are in general more 
precise than (2) for all distribution functions F. A summary of known 
bounds for order statistics is presented in [1]. In the case of restricted fam
ilies of distributions Moriguti’s result was improved by Gajek and Rychlik 
(1996 a, b). The method of projection developed by them is applicable 
for independent [8], as well as dependent [7] identically distributed random 
variables. In [5] Holder type inequalities for order and record statistics were 
proved (in [6] some improvements were derived under restrictions on their 
distributions).

Section 2 contains also some moment bounds for order statistics based on 
i.i.d. r.v.’s with a bounded support (Proposition 3 and 4) and the bounds 
on E Xgn involving the quantiles of X only (Proposition 2).

In Section 3 we give analogous inequalities for A:-th record statistics and 
compare them with the following bound of Grudzień and Szynal (1983)

(3)
k2n+2 (2n\

(2k - 1)2"+1 V n )
1/2

which is the record analogue of (1).

2. Inequalities for order statistics. We shall frequently apply the 
following Steffensen inequalities (see Mitrinovic (1972)).
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Lemma 1. Let f and g be integrable functions defined on [a; b], / be 
nondecreasing and let 0 < g(t) < 1 fort G [a; b]. If we denote g(t)dt by 
A then the following inequalities hold

(4) [ f(t)dt < f f(f)g(f)dt < I f(t)dt.
J a J a Jb — X

The first equality is attained iff one of the following conditions is satisfied:
(a) g(-) = I[a;o+A](’) a.e. on [a; b];
(b) f is equal to some constant a.e. on the set

{x G [a; a + A] : g(x) < 1} U {x G [a + A; b] : q(x) > 0}.

The second equality is attained iff one of the following conditions is satisfied: 
(a') g(-) = I[(,_A;6](-) a.e. in [a; b\;
(bz) f is equal to some constant a.e. on the set

{z G [a; b - A] : q(a;) > 0} U {z G [b - A; b] : g(x) < 1}.

Corollary 1. If f is nonincreasing then all signs of inequalities in (4) are 
reverse.

Proof. Apply Lemma 1 for the function —f. □

We can now formulate our first result.

Proposition 1. Let k,n G N be such that k < n. Let ko = [(n + l)/2]. If 
a = 2t — 1, t = 1,2,... then

(i) EAf,n >
A(k, n) f01/A(k’n) [F 1(/)]“dt for h < h0 

„ A(L0,n) Jo1M(fco,n) [F-1(t)]"dt fork > k0,

(H) EXfc“n < <
' ^,n^;_1/A(k<n}[F-\t}]adt for k > ko 

. A(k0,n) n) [E_1(<)]a^ for k < ho,

where

(5) A(k, n) = <

nBk.i<n.i (£_i) forn>l

1 for n = k = 1,
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and Bjtm(x) = J xJ(l — x)m i is the classical Bernstein polynomial. 

If a = 2i, i = 1,2,..., then

(iii) EĄ“n<<«)( Z"' [F-\t)]adt+ [' [F-'W]adt >

(./O Jl-A2

{/•ZO+^2 )
/ [F-1(Z)] dt > ,

Ao-Ai I
where zo = F(0),

_ IZo(k,n- fc + 1) _ 1 - IZo(k,n- fc + 1)
1 A(k,n) ’ 2 A(k,n)

and Iz(a, h) = t“-1(l - t)b~1dt/ J()' t“-1(l - t)b~idt, z € [0; 1], a, b > 0,
denotes the normalized incomplete Beta-function. The equalities in (i)-(iv) 
are attained iff k = n = 1 or F has one atom only.

Proof. For n = 1 (i)-(iv) are obvious. So let us consider the case n > 2. 
From David (1981) we have

(6) EX£n = £ [F-\t)]°k(  ̂tk~\l - t)n~kdt.

Let us define f/i(Z,h,n) = k **-1(l - t)n-fc and

A(k,n) = max{gi(t, k,n) : t € [0; 1]}, k,n € N, k < n.

An easy computation shows that

A(k,n) = nBjt-i.n-! ’

Applying Lemma 1 for /(t) = [F ^f)]0 and <y(t) = gi(t,k,?i)/A(k,n) we 
can get

and

EXfc“n> A(fc,n) / [F~\t)]adt 
Jo

EXt“B<A(h,») f [F~'(t)]adt, 
Ji-x
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where A = g(t)dt = 1/A(k, n). The proof of (i) and (ii) will be completed 
whenever we show that

1) the function hi : R+ —> R defined by hi(t) = / [F~1 (f)]° dt is
nonincreasing,

2) the function ho : R+ —* R defined by /i2(t) = t fi_i/t [F-1(/)] ° dt is 
nondecreasing,

3) A(k, n) = A(n — k + 1, n) for 1 < k < n,

4) A(k + 1, n) < A(k, n) for k € N such that 2k < n.

It is easy to check that l)-3) hold. The inequality 4) can be proved by 
considering the difference 7?(h, n) = A(k, n) — A(k + 1, n) and showing that 
F(fc, n) > 0 for k < n - k. To this end it suffices to rewrite R(k, n) as

(n\ kk(n - k)n~k FT ( !_ 1
\k) (n-l)n-i kJ n-k)

and to check that the function r : (1; +oo) —* R defined by

is decreasing. Finally observe that the equality in (i) may hold iff either 
9(z) = 1 a.e. on [0; 1], which is equivalent to n = fc = 1, or F-1(Z) = 
const on (0; 1), which means that F has one atom. The proof of (ii) uses 
respectively the right hand side inequality in (4) and the fact that the 
function hi(f) = t Ji_1,t [F-1(t)]“d/ is nondecreasing. In order to prove 
(iii) and (iv) we rewrite (6) as

ex?.„ = £’ [f-'(i)l“t(”)
+ /l [F-'(l)]“ t (")

where z0 = F(0). Applying now Corollary 1 and Lemma 1 in the same way 
as in the first part of the proof we get

EX£n<A(fc,n) [F~'(tj\a dt + A(k, n) [ [F"1^]"*
Jo Ji-x2

and
rzo rZa + X2

EĄ°,n>A(M) / [F~l^}adt + A(k,n^ / [F-1(/)]“dt,
Jzq — Xi J Zq
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where

This completes the proof of Proposition 1.

A(k,n)I^k’’1 fe+1)’

□

Remark 1. The bounds given in Proposition 1 (i)-(iv) may be meaningful 
even when E.Ya does not exist (see Example 4 below). Therefore from now 
on we assume that the corresponding lower and upper bounds on EX£n 
are finite, without making stronger assumptions.

Remark 2. Note that if supp F C [0; exo) then (iii) and (iv) follow from (ii) 
and (i) respectively. A similar remark concerns the case supp F C (—oo; 0].

Proposition 2. Let k,n € N be such that k < n.
(i) If the quantile function F-1 is convex on [0; 1/A(k, n)], where A(k,n) is 

defined by (5), then

' F~x (1/2 A(k,n)) for k < ko
EA\in >

F-1(l/2A(h0,n)) for k > ko,

where k0 = [(n + l)/2].
(ii) If F~x is concave on [1 — 1/A(fc,n); 1], then

' F_1(l - l/2A(h,n)) for k > ko

E-Yfc,n < *
F-1(l - 1/2A(LO, n)) for k < ko-

Proof. Applying the Jensen inequality to the bound (i) of Proposition 1, 
taken with a = 1, we get

EXfc,„ > F_1 F~1(l/2A(k,n)),

for k < ko- Other cases can be proven in a similar way. □

Remark 3. An important fact to note here is that in comparison with 
the bounds (1) and (2) our inequalities have got several advantages. First
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of all, they work under weaker assumptions than (1) (we even do not need 
Elbe finite). Secondly they always give upper and lower bounds. Finally, 
for some distributions our upper bounds are more precise than the bound 
(1) and for some k (closed to n) our bound (ii) is better than (2) for all 
distribution functions. Moreover, for a = 2 (or, more generally, a even) 
our bounds (iii) and (iv) are meaningful while (1) and (2) are useless if the 
support of X contains both positive and negative reals. The advantages are 
illustrated in the examples below.

Example 1. For

F(x)
1 - A- for x > 1 x* —
0 else

it is easy to check that: E.Y = 2, EAE3 = 1-6 (EX > E.E3) and the 
second moment does not exist. From Proposition 1 (i) and (ii) we have 
EX2i3 >3 — \/3 ~ 1.26 and E.Y2i3 < \/6 ~ 2.50, respectively. Observe that 
the same upper bound follows from (2).

Example 2. Let

'0 for x < 0
0.1(z - 0.1)3 + (0.1)4 for a: € [0; 0.1)
x4 for x £ [0.1; 1]
1 for x > 1.

Computations show (see Table 1) that bounds on e.g. EXfc.io obtained from 
Proposition 1 (ii) are better than the ones derived from (1) for k = 1,... , 10. 
We also compare the former bounds with the quantile bounds provided in 
Proposition 2.

TABLE 1

k Lower bound 
Proposition l(i)

Upper bound 
Proposition l(ii)

Upper bound 
Proposition 2

Upper bound 
given in (1)

1 0.4498 0.9464 0.9481 1.1373
2 0.5692 0.9464 0.9481 1.0183
3 0.6048 0.9464 0.9481 0.9811
4 0.6229 0.9464 0.9481 0.9634
5 0.6295 0.9464 0.9481 0.9658
6 0.6295 0.9464 0.9481 0.9658
7 0.6295 0.9492 0.9558 0.9634
8 0.6295 0.9553 0.9634 0.9811
9 0.6295 0.9657 0.9663 1.0183

10 0.6295 0.9872 0.9873 1.1373
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Example 3. Let

for x e [0; |] 
for x e ( j; 1].

In Table 2 below we compare the exact value of EA^ 10 with the lower and 
upper bounds obtained from Proposition 1. Observe that (1) and (2) are 
useless in this example.

TABLE 2

k Lower bound
Proposition l(iv)

Upper bound 
Proposition l(iii)

The exact value of

1 0.00332 0.20324 0.17424
2 0.02124 0.14368 0.11358
3 0.03005 0.12360 0.06779
4 0.02538 0.11522 0.03609
5 0.01194 0.10639 0.01678
6 0.00305 0.08521 0.00726
7 0.00163 0.05470 0.00484
8 0.00172 0.03216 0.00794
9 0.00082 0.02633 0.01685

10 0.00002 0.04224 0.03378

Now, we shall use the Steffensen inequalities to obtain some moment 
bounds for order statistics based on samples from distributions with boun
ded support.

Proposition 3. Let supp F = [0; A], A > 0. Then for every real a > 0, 
k,n € N such that k <n

(7)

The equality holds iff either F has one atom at 0, or k = 1 and F has one 
atom in 1, or k = n. Given n, the right hand side of (7) may decrease as a 
function of k. Therefore (7) implies immediately a better inequality

Proof. Let us denote f(t) = (1 -t)n k,g(t)=[F 1(t)]“tfc 1 for t 6 [0; 1] 
and observe that f is nonincreasing and 0 < </(t) < Aa on [0; 1]. Applying
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Corollary 1 we get by (6)

EX?,„ > (^ ,) A-‘«

where

Remark 4. Using Lemma 1 with /(t) = tk 1 and g(t) = [J1-1 (t)] “ 
x(l-/)"-*, one gets the following inequality

Lfi- E5”-‘« )‘l
V Aa(n-k + F)J

Inequality (8), though obtained like (7) by the use of Steffensen’s in
equality, works much worse than (7). One explanation is that (7) and
(8) were derived under the same assumption 0 < g(t) < Aa. In the case

Aa is the best possible upper bound on g for every
E; in the case §(<) = [F~1 (/)] ° (1 - Z)n_fc the upper bound Aa on g is 
attainable iff n = k or F has one atom in A. Therefore the right hand side 
°f (8) is evidently too large (may be even larger than A").

Remark 5. It is possible to check that for i.i.d. r.v.’s the following in
equalities hold:

(9) EXfc.n < EX*,* and EA\,n > EXiin_*;+i,

for every 1 < k < n. Let us observe that even in the case a = 1, (7) does 
not follow from (9). In fact (7) is somehow reverse to (9).

Remark 6. Inequality (7) has the following very interesting features:
1) The lower bound on E.Yt°n involves quantities which, by definition, are 

greater than EĄ°n, i.e. Aa and

2) The assumption that supp F be bounded is necessary to get a lower 
bound on EĄ“n in the form (EX£fc)n-fc+1 times a positive constant 
(compare Remark 8 and Example 4 below).

Remark 7. When supp F C [0; oo), the inequalities proven above can 
extended easily to all a E R+. On the other hand, the corresponding

'uequalities for every a < 0 can be obtained immediately by introducing a



50 L. Gajek and A. Okolewski

new random variable Z = 1/X and observing that since Z£ n = X~°k+1 n, 
the bounds for Zkn follow from the ones for X~“fc+1 n (—a being positive 
now).

Remark 8. Putting a = k = 1 we get from (7) the following simple bound

(10) EXi,n > A for n = 1,2,... .

Example 4. The example presented below shows necessity of our assump
tion that the support be bounded. Let

+ t) 1 for t > 0
elsewhere .

It is easy to check that EXj2 = 1 but the first moment of X is -f-oo. So 
it is impossible to get a lower bound on EXi)n in the form (EX)n times 
a positive constant. The same example shows that the lower bound in 
Proposition 1 (i) is meaningful (and equals 0.39) while EX is not finite. 

Now we shall extand (10) to cover the case 1 < k < n.

Proposition 4. Let supp F = [0; 4], A > 0. Then for every k,n E N such 
that k < n

EXm > A
n—fc+1

VXk,n<A 1-
('-¥)■

Proof, (i) From (9) and (7) we get

EXfc,n > EXi)n_fc+i > A
n—fc+1

(ii) From (9) and (8) we obtain

EXjt.n < EXfcjt <4 1 -
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Remark 9. Though obtained via (8), the bound given in (ii) is not greater 
than A, so in many cases it is better than (8) (the trick relied on using first 
(9) in order to work with Xk,k in which case (8) may be attainable).

Example 5. Let us consider the random variable X with Lebesgue density

x) 5 when x € [0; 1] 
otherwise,

where c is a norming constant. In Table 3 below we present lower bounds, 
upper bounds and exact values of EX^, n = 10, k = 1,... , 10.

TABLE 3

k Lower bound 
(7')

Lower bound
Proposition 4(i)

The exact value 
of E Xk,w

Upper bound 
Proposition 4(ii)

1 0.713143 0.713143 0.880904 0.966758
2 0.713143 0.737665 0.935072 0.998895
3 0.713143 0.763029 0.955670 0.999963
4 0.713143 0.789266 0.967693 0.999999
5 0.713143 0.816406 0.975960 1.000000
6 0.713143 0.844478 0.982161 1.000000
7 0.713143 0.873516 0.987071 1.000000
8 0.713143 0.903552 0.991103 1.000000
9 0.713143 0.934621 0.994506 1.000000

10 0.997436 0.966758 0.997436 1.000000

Remark 10. It is interesting to compare Proposition 4 (ii) with the fol
lowing inequality

(U) EA,„< " EX
n + 1 - k

which follows from (2). Since (11) does not take into account that the 
support of F is bounded, for EX close to A and k large the right hand side

(11) may be of order nA, while the bound given in (ii) is never greater 
than A.

Remark 11. In Propositions 1-4 above several lower and upper bounds on 
E -^fc,n were proven. Combining them with known inequalities enables one 
to get further improvements.

Remark 12. Grudzień and Szynal (1980, 1982) considered distributions 
and moments of order statistics from sample with random size. The question
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arises whether bounds similar to the ones given in the present paper can be 
derived in their case too.

3. Inequalities for record statistics. An analogous result to Proposition 
1 can be obtained for A:-th record statistics.

Proposition 5. Let n = 0,1,2,..., k = 2,3,.... If a = 2i — 1, i 6 N, then

(i)
, ( C(fc,n)/01/c(‘'n| [£-'(!)]“ di for n < [fc/2]

. C(fc,[fc/2])/0‘/C“'l‘/2|) [£-*(<))“<« forn > [t/2],
(ii)

' \\_xjc{k n} [F~l(t)]adt for n > [fc/2]

<
. c (t, [*/2]) };_,lclkW2n [F-*(1)] “ di for n < [*/2].

If a = 2», i € N, then 

(Hi)
E[yW]“<C(*,n)|jfJ’ [F->(l))°di+^ [F-'(i)]“di

[«*>]"<

(iv)
r I Q f -0 T A 4

E[ynW] >C(k,n) [F~\t)]adt,
J Zq—\$

where z0 = F(0),

(12) C(fc,n)= — 

A3 = |

and

kn
n! (e(fc - 1)J ’

7(n+ 1,—fclog(l - zo))/C(k,n) for z0 € [0; 1)
1/C(fc,n)

1 -A3
for z0 = 1,

C(fc,n)

7(m,x)
= tix-'-'e^dx 

Jo°° xm~1e~xdx ’
m > 0,

Aa —



Steffensen-type Inequalities ... 53

denotes the normalized incomplete Gamma-function. The equalities in (i)- 
(iv) are attained iff F has one atom only.

Proof. We shall apply the following formula for a-th moment of the fc-th 
record statistics which was proved by Grudzień and Szynal (1983),

(13) =

a 6 N, A: = 2,3,4,... , n = 0,1,2,... .

Let us define

\ J £(n!)-1[-A:log(l - t)]n(l - t)fc_1 for t G [0; 1)
(0 for f = 1,

and

C(fc, n) = max{</2(<, k, n); t G [0; 1]} A: = 2,3,... , n = 0,1,2,....

It is easy to check that (here the assumption k > 2 is essential to have g2 
bounded)

C(fc,n)

Using Lemma 1 to functions 

f(t) = [F-1^)]" and

k nk 
n! e(k — 1)

«/(*) = 52(t,^,n)/C(A:,n), t G [0; 1],

we get

e[y^Y >C(k,n) [F~\t)]a dt

and
E[y< <C(k,n) f [F~\t)]adt,

J1 ~ A
where

A=ć(b)Z ,J",il = cikXy

Using Lemma 3 below gives (i) and (ii). In order to prove (iii) and (iv) we 
can rewrite (13) as

E [yW]“ = l’° [/“‘(I)]" lj[-Hog(l - »)]“(! - ()*-’*+ 

+ /' [/■-'(<)]* Al-fciogti-qni-O4-1*,
Zq
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where zo = F(0). Applying now Corollary 1 and Lemma 1 in the same way 
as in the first part of the proof we have

e[y(*>]“ <C(fc,n)^A3 [F-1(t)]“dt + ^ [F~\t)]adt >

and

Ma yZo+^4
>C(k,n)J * [F~\t)]adt,

where

-fclog(l-Zo) 1
Aune-“d«
n!

-7(n+ l,-fclog(l - 20))C(k, n)

A- = J sMJ, = ^(1 - A3).

When zo = 0, A3 is understood to equal 1/C(fc, n). This completes the 
proof. □

Lemma 2. For every real x > 4, it holds

(x/2)-l

1 +
(x/2) - l)

(* - l)/2

(x-l)/2

Proof. Let us consider an auxiliary function fi : [4; 00) —> R defined by

The first derivative of fi has the following property

(* - l)/2
x \(x-l)/2 / j< (‘ + (x- lJAł)

<1+(737572) 5'w-

(("('B)-rn-i)
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Simple calculation shows that < 0 for x > 4 and in consequence
fi(x) > 0 for x > 4. Defining the function /2 : [4; oo) -*Ras

and deriving the first derivative we have

4W = + dh)

2 \(x_2)/2 1 ___ 2 A
2 n x - 2 x x2 \ x -2/

2 \ (-»/!(, x 
In

1/2'

> 1 + x — 2
(x-2)/2

52(x) > 0

because lim^oo q2(x) = 0 and

02(*) = -• + ~z\ 1+x2(x - 2) x3 V x - 2 x2(x - 2)2+
x - 2

+< - x2(x - 2) ' x3 
—x + 4

<0

+ -dl + x — 2 J x2(x — 2)2

x3(x - 2)2

for 1 > 4. Since lim^oo /2(x) = 0, the assertion holds. □

Lemma 3. Let C(k,n) be defined by (12), where k = 2,3,..., n = 
1)2,.... For fixed k the following inequalities hold:

C(k,n + 1) < C(k,n) for n < [k/2]

And
C(k,n + 1) > C(k,n) for n> [k/2].

Proof. Let us consider the quotient Q(k,n) = C(k,n + 1)/C(fc,n) and 
rewrite it as Q(k,n) = (l + £)” [e (l - |)]_1 for n > 0 and Q(fc,0) =
[e ~ I)] 1 for n = 0. Denoting no = min{n € N; (l + L.) > e (l - |)} 
We can easy observe that Q(k, n) < 1 for n < n0 and Q(k, n) > 1 for n > n0. 
The proof will be completed if we show that n0 = [fc/2] for k = 2,3,....
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In case k = 2 and 3 we can do it by direct computations. So, it suffices to 
check that

1 -B)
1 + > e[k/2]J

and

for each k = 4,5,... or equivalently that the following inequalities are 
satisfied for all x > 4

(i)

(“)

(iii)

(iv)

(x,

1 \(*_1)/2 f 1\
(x-l)/2/ >eV x)’

V + (x/2)-1) <e(1 x)'

/ 1 \<*"1)/2-1 Z i\0 + (x - l)/2 - 1)

Id-

Let us observe that (i) and (iv) follow from (ii) and (iii) which hold by 
Lemma 2, respectively. Since

fc/2,

(fc - l)/2,
[fc/2] =

when k is even

when k is odd

the proof is completed. □

Remark 13. Analogous observations to Remarks 1 and 2 are valid.

Proposition 6. Let fc = 2,3,..., n = 0,1,....
(i) If the quantile function F~x is convex on [0; 1/C(fc,n)], where C(fc,n) is 

defined by (12), then

F~\l/2C(k,n)) for n < [k/2]

F-' (1/2C (fc, [fc/2])) for n> [k/2].
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(ii) If F 1 is concave on [1 - I/C(k, n); 1], then

F-^l- l/2C(fc,n)) for n > [Ar/2]

F~l(l-l/2C(k,[k/2])) for n < [fc/2].

Proof. The same reasoning as in the proof of Proposition 2 applied for 
Proposition 5 (i) and (ii) gives the result. □

Remark 14. Note that (i)-(iv) in Proposition 5 always give upper and 
lower bounds and in comparison with (3) (for a = 1) they work under 
weaker assumptions (we even do not need EX be finite). Moreover, for 
Q = 2i, i G N, our bounds (iii) and (iv) are meaningful while (3) is useless if 
the support of X contains both positive and negative reals. The advantages 
are illustrated in the example below.

Example 6. Let

F-1
t2 - 0.0016 
(Z — 0.04)1/4

for t G [0; 0.04] 
for t G (0.04; 1],

Computations show (see Table 4) that bounds on e.g. El^'’ obtained 
from Propositions 5 and 6 are better then the ones derived from (3) for 
n = 1,... , 10. In Table 5 we also compare the exact value of E j with 

the lower and upper bounds from Proposition 5.

TABLE 4

n Lower bound 
Proposition 5(i)

Upper bound 
Proposition 5(ii)

Upper bound 
Proposition 6(ii)

Upper bound 
given in (3)

1 0.5176 0.9314 0.9335 1.0018
2 0.5509 0.9314 0.9335 0.9708
3 0.5585 0.9314 0.9335 0.9632
4 0.5585 0.9325 0.9345 0.9665
5 0.5585 0.9355 0.9373 0.9760
6 0.5585 0.9394 0.9409 0.9896
7 0.5585 0.9436 0.9447 1.0061
 8 0.5585 0.9479 0.9489 1.0249
 9 0.5585 0.9521 0.9529 1.0455

0.5585 0.9561 0.9567 1.0679
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TABLE 5

n Lower bound

Proposition 5(iv)

Upper bound

Proposition 5(iii)

The exact value of

e[k„(7)]2
1 0.3653 0.8623 0.4070
2 0.4132 0.8705 0.5183
3 0.4223 0.8686 0.5976
4 0.4188 0.8708 0.6586
5 0.4092 0.8762 0.7075
6 0.3960 0.8834 0.7474
7 0.3806 0.8912 0.7807
8 0.3640 0.8992 0.8085
9 0.3469 0.9071 0.8321

10 0.3296 0.9145 0.8521

Remark 15. For extensions to real a, see Remark 7.
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