ANNALES

UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN - POLONIA

VOL. LII. 1, 18
SECTIO A

JANINA ŚLADKOWSKA

Estimate of the Third Coefficient of a Univalent, Bounded, Symmetric and Nonvanishing Function

To Professor Eligiusz Zlotkiewicz on His 60th birthday

Abstract

Let $B_{0}^{(R)}(b), 0<b<1$, denote the class of functions $F(z)=$ $b+A_{1} z+A_{2} z^{2}+A_{3} z^{3}+\ldots$, analytic and univalent in the unit disk U, which satisfy the conditions $F(U) \subset U, 0 \notin F(U), \operatorname{Im} F^{(n)}(0)=0, n=1,2, \ldots$, $A_{1}>0$. The class $B_{0}^{(R)}(b)$, introduced by the authoress in [8], [9], is a subclass of the class B_{u} of bounded, nonvanishing, univalent functions in the unit disk. The last class and closely related ones have been studied recently by various authors in [6], [2], [1], [3], [7]. There was found the exact lower bound of the coefficient A_{3} in the class $B_{0}^{(R)}(b)$. The result was obtained by using the estimates of the functional $a_{3}+\alpha a_{2}$ in the family of univalent, bounded and symmetric functions. The lower bound of this functional was found by Jakubowski in [5].

Introduction. Let $\mathcal{B}_{0}^{(R)}(b), 0<b<1$, denote the class of all functions F that are analytic, univalent in the unit disk U and satisfy the conditions: $F(U) \subset U, F(0)=b, \quad 0 \notin F(U), \quad \operatorname{Im} F^{(n)}(0)=0, \quad n=1,2, \ldots, \quad F^{\prime}(0)>0$. Let

$$
\begin{equation*}
F(z)=b+A_{1} z+A_{2} z^{2}+A_{3} z^{3}+\ldots \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
L(z) & =K^{-1}\left(\frac{4 b}{(1-b)^{2}}\left(K(z)+\frac{1}{4}\right)\right) \tag{2}\\
& =b+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\ldots
\end{align*}
$$

where $K(z)=z /(1-z)^{2}$,

$$
\begin{align*}
& B_{1}=\frac{4 b(1-b)}{1+b} \\
& B_{2}=\frac{-8 b(1-b)\left(b^{2}+2 b-1\right)}{(1+b)^{3}} \tag{3}\\
& B_{3}=\frac{4 b(1-b)}{(1+b)^{5}}\left(3(1+b)^{4}-32 b\right)
\end{align*}
$$

$L(U)=U \backslash(-1,0]$. It is known from [7], [8], that

$$
\begin{aligned}
0<A_{1} & \leq \frac{4 b(1-b)}{1+b}, \\
-b(1-b)^{2} & \leq A_{2} \leq \begin{cases}\frac{-8 b(1-b)\left(b^{2}+2 b-1\right)}{(1+b)^{3}}, & 0<b \leq \frac{2}{3} \sqrt{3}-1, \\
\frac{1-b^{2}}{b+2}, & \frac{2}{3} \sqrt{3}-1 \leq b<1 .\end{cases}
\end{aligned}
$$

Let $\mathcal{B}_{0}^{(R)}(b, T), 0<T \leq 1$, denote a subclass of such functions from $\mathcal{B}_{0}^{(R)}(b)$, that $A_{1}=[4 b(1-b) /(1+b)] T . \mathcal{B}_{0}^{(R)}(b, T)$ are not empty because $L_{T}(z)=L(T z) \in \mathcal{B}_{0}^{(R)}(b, T)$. Moreover $\mathcal{B}_{0}^{(R)}(b)=\bigcup_{0<T \leq 1} \mathcal{B}_{0}^{(R)}(b, T)$ and $\mathcal{B}_{0}^{(R)}(b, T)$ is a compact family. Hence there exists in this family a function with the smallest coefficient A_{3} and

$$
\inf _{B_{0}^{(R)}(b)} A_{3}=\inf _{0<T \leq 1}\left(\min _{B_{0}^{(R)}(b, T)} A_{3}\right) .
$$

Let now $S_{1}^{(R)}(T)$ denote the class of all functions of the form

$$
\begin{equation*}
f(z)=T\left(z+a_{2} z^{2}+a_{3} z^{3}+\ldots\right) \tag{4}
\end{equation*}
$$

that are analytic and univalent in U and satisfy the conditions $f(U) \in U$, $\operatorname{Im} a_{n}=0 n=2, \ldots$. The class $\mathcal{B}_{0}^{(R)}(b, T)$ is related with the class $S_{1}^{(R)}(T)$ through the function (2).

In fact, if $f \in S_{1}^{(R)}(T)$, then $L \circ f \in \mathcal{B}_{0}^{(R)}(b, T)$ and conversely if $F \in \mathcal{B}_{0}^{(R)}(b, T)$, then $L^{-1} \circ F \in S_{1}^{(R)}(T)$. The relation $F=L \circ f$, the formulas (1), (2), (3), (4) and an application of the formula

$$
\begin{equation*}
A_{3}=B_{1} T\left(a_{3}-\frac{4\left(b^{2}+2 b-1\right)}{(1+b)^{2}} T a_{2}+\left(3-\frac{32 b}{(1+b)^{4}}\right) T^{2}\right) \tag{5}
\end{equation*}
$$

allow us to express the coefficient A_{3} of a function from $\mathcal{B}_{0}^{(R)}(b, T)$ through the coefficients a_{2} and a_{3} of the function from $S_{1}^{(R)}(T)$.

1. Estimation of the coefficient \boldsymbol{A}_{3} in the class $\mathcal{B}_{0}^{(R)}(b, T)$. To find the lower bound of the right-hand side of (5) we will use the Jakubowski Theorem [5], p. 213:

Theorem. Let $R_{T}, 0<T \leq 1$, denote the family of functions analytic and univalent in U of the form

$$
f(z)=b_{1}\left(z+a_{2} z^{2}+a_{3} z^{3}+\ldots\right)
$$

where $f(U) \in U, \operatorname{Im} a_{n}=0, n=1,2, \ldots, b_{1} \geq T$. Let

$$
\begin{equation*}
G(f)=a_{3}+\alpha a_{2}, \tag{6}
\end{equation*}
$$

where $\alpha \geq 0$. For each function $f \in R_{T}$:

$$
G(f) \geq \begin{cases}3-2 \alpha+2(\alpha-4) T+5 T^{2} & \text { for } \alpha>4(1-T), \tag{7}\\ -1-\frac{1}{4} \alpha^{2}+T^{2} & \text { for } 0 \leq \alpha \leq 4(1-T) .\end{cases}
$$

This estimate is sharp and the extremal functions $w=f(z)$ satisfy the equations

$$
\begin{align*}
\frac{w}{(1+w)^{2}} & =\frac{T z}{(1+z)^{2}}, \tag{8}\\
T\left(w+w^{-1}\right) & =z+z^{-1}+\frac{1}{2} \alpha, \tag{9}
\end{align*}
$$

respectively.

Remark 1. In the case $\alpha<0$ the lower bound of $G(f)$ is given by

$$
G(f) \geq \begin{cases}3+2 \alpha-2(\alpha+4) T+5 T^{2} & \text { for } \alpha<-4(1-T) \tag{10}\\ -1-\frac{1}{4} \alpha^{2}+T^{2} & \text { for }-4(1-T) \leq \alpha<0 .\end{cases}
$$

This estimate is sharp and the extremal functions $w=f(z)$ satisfy

$$
\begin{align*}
\frac{w}{(1-w)^{2}} & =\frac{T z}{(1-z)^{2}}, \tag{11}\\
T\left(w+w^{-1}\right) & =z+z^{-1}+\frac{1}{2} \alpha, \tag{12}
\end{align*}
$$

respectively.
In fact, let us notice that if f belongs to R_{T} then also $-f(-z)$ is in R_{T}, and hence the sets of values of the functionals $a_{3}+\alpha a_{2}$ and $a_{3}-\alpha a_{2}$ coincide and if f minimizes the functional $a_{3}+\alpha a_{2}$ then $-f(-z)$ minimizes $a_{3}-\alpha a_{2}$ and conversely.

Remark 2. Since for the extremal functions (8), (9) or (11), (12) we have $b_{1}=T$, it follows that the bounds (7) and (10) occur also in the class $S_{1}^{(R)}(T)$ which is a subclass of the class R_{T}.

Let us put $\alpha=\left[-4\left(b^{2}+2 b-1\right) /(1+b)^{2}\right] T$ in (6). If $0<b \leq \sqrt{2}-1$ then $\alpha \geq 0$, hence, according to (5) and (7), we have following inequalities in the class $\mathcal{B}_{0}^{(R)}(b, T)$:

$$
\begin{gather*}
A_{3}=B_{1} T\left(G(f)+\left(3-\frac{32 b}{(1+b)^{4}}\right) T^{2}\right) \\
\geq \begin{cases}B_{1} T\left(3-\frac{16}{(1+b)^{2}} T+\frac{16(1+b)^{2}}{(1+b)^{4}} T^{2}\right) & \text { for } \frac{(1+b)^{2}}{2} \leq T \leq 1 \\
B_{1} T\left(\frac{16 b^{2}}{(1+b)^{4}} T^{2}-1\right) & \text { for } 0<T \leq \frac{(1+b)^{2}}{2},\end{cases} \tag{13}
\end{gather*}
$$

and the extremal functions are compositions of the function L with the functions $w=f(z)$, where

$$
\frac{w}{(1+w)^{2}}=\frac{T z}{(1+z)^{2}} \text { or } T\left(w+w^{-1}\right)=z+z^{-1}-\frac{2\left(b^{2}+2 b-1\right)}{(1+b)^{2}} T,
$$

respectively.
If, on the contrary, $\sqrt{2}-1 \leq b<1$ then $\alpha \leq 0$, and hence, according to (5) and (10), the following inequalities hold in the class $\mathcal{B}_{0}^{(R)}(b, T)$:

$$
A_{3}=B_{1} T\left(G(f)+\left(3-\frac{32 b}{(1+b)^{4}}\right) T^{2}\right)
$$

$$
\geq \begin{cases}B_{1} T\left(3-\frac{16 b(b+2)}{(1+b)^{2}} T+\frac{16 b^{2}\left(b^{2}+4 b+5\right)}{(1+b)^{4}} T^{2}\right) \tag{14}\\ B_{1} T\left(\frac{16 b^{2}}{(1+b)^{4}} T^{2}-1\right) & \text { for } \frac{(1+b)^{2}}{2 b(b+2)} \leq T \leq 1 \\ & \text { for } 0<T \leq \frac{(1+b)^{2}}{2 b(b+2)}\end{cases}
$$

and the extremal functions are compositions of the function L with the functions $w=f(z)$, where

$$
\frac{w}{(1-w)^{2}}=\frac{T z}{(1-z)^{2}} \text { or } T\left(w+w^{-1}\right)=z+z^{-1}-\frac{2\left(b^{2}+2 b-1\right)}{(1+b)^{2}} T,
$$

respectively.
2. Estimation of the coefficient \boldsymbol{A}_{3} in the class $\mathcal{B}_{0}^{(R)}(b)$.

Theorem. In the class $\mathcal{B}_{0}^{(R)}(b)$

$$
A_{3} \geq \begin{cases}-2 b\left(1-b^{2}\right) \frac{10-54 b^{2}+\left(7-9 b^{2}\right)^{3 / 2}}{27\left(1+b^{2}\right)^{2}} & \text { for } 0<b \leq \frac{1}{2 \sqrt{3}} \tag{15}\\ -\frac{2}{3 \sqrt{3}}\left(1-b^{2}\right) & \text { for } \frac{1}{2 \sqrt{3}} \leq b<1\end{cases}
$$

These inequalities are sharp. The extremal functions are compositions of the function L and the functions $w=f(z)$, where

$$
\begin{gather*}
\frac{w}{(1+w)^{2}}=\frac{T z}{(1+z)^{2}}, T=\frac{4+\sqrt{7-9 b^{2}}}{12\left(1+b^{2}\right)}(1+b)^{2}, \tag{17}\\
T\left(w+w^{-1}\right)=z+z^{-1}-\frac{2\left(b^{2}+2 b-1\right)}{(1+b)^{2}} T, T=\frac{(1+b)^{2}}{4 \sqrt{3} b}, \tag{18}
\end{gather*}
$$

respectively.
The first function maps the disk U onto $U \backslash(-1,0] \backslash[c, 1)$, where c is a smaller root of the equation

$$
c^{2}-\frac{1}{b}\left(b^{2}-\frac{4+\sqrt{7-9 b^{2}}}{12\left(1+b^{2}\right)}\left(1-b^{2}\right)^{2}\right) c+1=0
$$

and the second one maps the disk U onto $U \backslash(-1, c] \backslash[d, 1)$, where c is a smaller root of the equation

$$
\frac{c}{(1-c)^{2}}=\frac{1}{(1-b)^{2}} \frac{2 \sqrt{3} b-1}{2 \sqrt{3}+b+2}
$$

and d is a smaller root of the equation

$$
\frac{d}{(1-d)^{2}}=\frac{1}{(1-b)^{2}} \frac{2 \sqrt{3} b+1}{2 \sqrt{3}-b-2} .
$$

Proof. In order to find the infimum of the coefficient A_{3} in the class $\mathcal{B}_{0}^{(R)}(b)$ it is necessary to calculate the infimum with respect to $T \in(0,1]$ of the functions that are on the right-hand side of the inequality (13) in the case $0<b \leq \sqrt{2}-1$, and inequality (14) in the case $\sqrt{2}-1 \leq b<1$.

Let $0<b \leq \sqrt{2}-1$. Let us put:

$$
P(T)= \begin{cases}3 T-\frac{16}{(1+b)^{2}} T^{2}+\frac{16\left(1+b^{2}\right)}{(1+b)^{4}} T^{3}, & \frac{(1+b)^{2}}{2} \leq T \leq 1 \\ \frac{16 b^{2}}{(1+b)^{4}} T^{3}-T, & 0<T \leq \frac{(1+b)^{2}}{2}\end{cases}
$$

First, we are going to find the infimum of $P(T)$ in the interval $\left[(1+b)^{2} / 2,1\right]$. Since $T_{1,2}=\left[\left(4 \pm \sqrt{7-9 b^{2}}\right) / 12\left(1+b^{2}\right)\right](1+b)^{2}$ are zeros of the derivative $P^{\prime}(T), T_{1}<(1+b)^{2} / 2$ for $0<b \leq \sqrt{2}-1$ and $T_{2}<(1+b)^{2} / 2$ for $\frac{1}{2 \sqrt{3}} \leq b \leq \sqrt{2}-1$ as well as $T_{2} \in\left[(1+b)^{2} / 2,1\right]$ for $0<b \leq \frac{1}{2 \sqrt{3}}$, then
$\inf _{\left[(1+b)^{2} / 2,1\right]} P(T)=\left\{\begin{array}{r}P\left(T_{2}\right)=-\frac{(1+b)^{2}}{2} \frac{10-54 b^{2}+\left(7-9 b^{2}\right)^{3 / 2}}{12\left(1+b^{2}\right)^{2}} \\ P\left(\frac{(1+b)^{2}}{2}\right)=-\frac{(1+b)^{2}}{2}\left(1-4 b^{2}\right) \\ \text { for } \quad 0<b \leq \frac{1}{2 \sqrt{3}} \\ \text { for } \frac{1}{2 \sqrt{3}} \leq b \leq \sqrt{2}-1 .\end{array}\right.$
Analogously, looking for the infimum of $P(T)$ in the interval $\left(0,(1+b)^{2} / 2\right]$, we notice that for $0<b \leq 1 / 2 \sqrt{3}$ we have

$$
\left[0,(1+b)^{2} / 2\right] \subset\left[T_{1}, T_{2}\right]
$$

where $T_{1,2}= \pm(1+b)^{2} /(4 \sqrt{3} b)$ are zeros of the derivative $P^{\prime}(T)$, and $T_{2} \in\left(0,(1+b)^{2} / 2\right)$ for $\frac{1}{2 \sqrt{3}} \leq b \leq \sqrt{2}-1$. Hence
$\inf _{\left(0,(1+b)^{2} / 2\right]} P(T)=\left\{\begin{aligned} & P\left(\frac{(1+b)^{2}}{2}\right)=-\frac{(1+b)^{2}}{2}\left(1-4 b^{2}\right) \\ & \text { for } 0<b \leq \frac{1}{2 \sqrt{3}} . \\ & P\left(T_{2}\right)=-\frac{(1+b)^{2}}{6 \sqrt{3} b} \text { for } \frac{1}{2 \sqrt{3}} \leq b \leq \sqrt{2}-1 .\end{aligned}\right.$
Comparing the estimates (19) and (21), we come to a conclusion that for $0<b \leq \frac{1}{2 \sqrt{3}}$ the coefficient A_{3} of an arbitrary function from the class $\mathcal{B}_{0}^{(R)}(b)$ satisfies the inequality (15) and the equality occurs for the composition of L and the function (17). Comparing the estimates (20) and (22), we conclude that for $\frac{1}{2 \sqrt{3}} \leq b \leq \sqrt{2}-1$ the coefficient A_{3} of an arbitrary function from the class $\mathcal{B}_{0}^{(R)}(b)$ satisfies the inequality (16) and the equality occurs for the composition of the function L and the function (18). Let now $\sqrt{2}-1 \leq b<1$. Let us put
$P(T)= \begin{cases}3 T-\frac{16 b(b+2)}{(1+b)^{2}} T^{2}+\frac{16 b^{2}\left(b^{2}+4 b+5\right)}{(1+b)^{4}} T^{3}, & \frac{(1+b)^{2}}{2 b(b+2)} \leq T \leq 1, \\ \frac{16 b^{2}}{(1+b)^{4}} T^{3}-T, & 0<T \leq \frac{(1+b)^{2}}{2 b(b+2)} .\end{cases}$
First, looking for the minimum $P(T)$ in the interval $\left[(1+b)^{2} /(2 b(b+2)), 1\right]$, we conclude that

$$
T_{1,2}=\frac{4(b+2) \pm \sqrt{7 b^{2}+28 b+19}}{12 b\left(b^{2}+4 b+5\right)}(1+b)^{2}
$$

are zeros of the derivative $P^{\prime}(T)$ and $T_{2}<(1+b)^{2} /(2 b(b+2))$. Hence

$$
\begin{equation*}
\inf _{\left[(1+b)^{2} /(2 b(b+2)), 1\right]} P(T)=P\left(\frac{(1+b)^{2}}{2 b(b+2)}\right)=-\frac{(1+b)^{2}(b+4)}{2(b+2)^{3}} . \tag{23}
\end{equation*}
$$

Analogously, looking for the minimum $P(T)$ in $\left(0,(1+b)^{2} /(2 b(b+2))\right]$, we conclude that

$$
P^{\prime}(T)=0 \quad \text { for } \quad T_{1,2}= \pm \frac{(1+b)^{2}}{4 \sqrt{3} b} \text { and } T_{2}<\frac{(1+b)^{2}}{2 b(b+2)}
$$

Hence

$$
\begin{equation*}
\inf _{\left(0,(1+b)^{2} /(2 b(b+2))\right]} P(T)=P\left(\frac{(1+b)^{2}}{4 \sqrt{3} b}\right)=-\frac{(1+b)^{2}}{6 \sqrt{3} b} . \tag{24}
\end{equation*}
$$

Comparing (23) and (24) we come to a conclusion that for $\sqrt{2}-1 \leq b<1$ the coefficient A_{3} of an arbitrary function from the class $\mathcal{B}_{0}^{(R)}(b)$ satisfies the inequality (16) and the equality occurs for the composition of the function L with the function (18). The theorem is thus proved.

Remark 3. There is also known the upper bound of the functional $a_{3}+\alpha a_{2}$ in R_{T} [4], but by using this estimate we can not find the exact upper bound of A_{3} in the explicit form in the whole class $\mathcal{B}_{0}^{(R)}(b)$.

References

[1] Duren, P. and G. Schober, Nonvanishing univalent functions, Math. Z. 170 (1980), 195-216.
[2] Hummel, J., S. Scheinberg and L. Zalcman, A coefficient problem for bounded nonvanishing functions, J. Anal. Math. 31 (1977), 169-190.
[3] Hummel, J. A., B. Pinchuk, Variations for bounded nonvanishing univalent functions, J. Anal. Math. 44 (1984-85), 183-199.
[4] Jakubowski, Z. J., Maksimum funkcjonalu $A_{3}+\alpha A_{2} w$ rodzinie funkcji jednolistnych o wspólczynnikach rzeczywistych, Zeszyty Naukowe U.L. Seria II 20 (1966), 147-160.
[5] , Sur les coefficientes des fonctions univalentes dans le cercle unité, Ann. Polon. Math. 19 (1967), 207-233.
[6] Krzyż, J. G., Coefficient problem for bounded nonvanishing functions, Ann. Polon. Math. 70 (1968), 314.
[7] Prokhorov, D. V. and J. Szynal, Coefficient estimates for bounded nonvanishing functions, Bull. Polish Acad. Sci. Math. 29 (1981), 223-230.
[8] Sladkowska, J., On the univalent, bounded, non-vanishing and symmetric functions in the unit disk, Ann. Polon. Math. 64(3) (1996), 291-299.
[8] \qquad Estimations of the second coefficient of the univalent, bounded, symmetric and non-vanishing functions by means of Loewner's parametric method, Ann. Polon. Math. (to appear).

Instytut Matematyki Politechniki Śląskiej received October 10, 1997
ul. Kaszubska 23, 44-100 Gliwice

