ANNALES UNIVERSITATIS MARIAE CURIE – SKŁODOWSKA LUBLIN – POLONIA

VOL. L II. 1, 17	SECTIO A	1998
------------------	----------	------

where d is a complete frame (0, H, which is independented.) Lies super-different

HEINRICH RENELT

On the Growth of Generalized Powers

Dedicated to Eligiusz Złotkiewicz on the occasion of his 60th birthday

ABSTRACT. It is shown here that generalized powers $[\lambda(z-z_0)^n]_{\nu,\mu}$, *n* being a nonzero integer, satisfy an inequality

$$\kappa^{-|n|} |\lambda(z-z_0)^n| \le |[\lambda(z-z_0)^n]_{\nu,\mu}| \le \kappa^{|n|} |\lambda(z-z_0)^n|,$$

where κ is a constant depending only on (certain quantities of) the coefficients ν , μ of the corresponding Cauchy-Riemann system. An application to convergence of generalized power series is given.

I. Generalized powers are special solutions of a Cauchy-Riemann system

(1)
$$f_{\overline{z}} = \nu f_z + \mu f_z$$

in C with the topological structure

(2)
$$f(z) = (\chi(z) - \chi(z_0))^n, \quad n \in \mathbb{Z} \setminus \{0\},$$

where $\chi(z)$ is a quasiconformal mapping of \mathbb{C} onto itself. We denote them by $[a(z-z_0)^n]_{\mu,\nu}$ (for the notation used here and in the following cf. [5], [7]).

¹⁹⁹¹ Mathematics Subject Classification. Primary 30G20, 35B05, Secondary 30C62.

These special solutions possess interesting properties (cf. [4], [6], [7]). In particular, under the conditions on ν, μ from [8], every solution f of (1) in a disk $\{|z - z_0| < R\}$ admits a series expansion

(3)
$$f(z) = \sum_{n=0}^{\infty} [a_n(z-z_0)^n]_{\nu,\mu} \text{ in } \{|z-z_0| < \vartheta R\},$$

where ϑ is a constant from (0, 1], which is independent of f but depends on the growth behaviour of generalized powers, namely on bounds for

(4)
$$\sup\left\{\left|\frac{\chi(z)}{z-z_0}\right|: z \in \mathbb{C} \setminus \{z_0\}\right\}$$

and

(5)
$$\inf\left\{\left|\frac{\chi(z)}{z-z_0}\right|: z \in \mathbb{C} \setminus \{z_0\}\right\}$$

where $(\chi(z))^n = [\lambda(z-z_0)^n]_{\nu,\mu}$ with $\lambda = 1$. We want to determine such bounds here. Without loss of generality we may assume that $z_0 = 0$.

II. Let (1) satisfy the usual conditions

(6)
$$\nu, \mu \in L_{\infty}, \quad || |\nu| + |\mu| ||_{L_{\infty}} =: k < 1.$$

Additionally we suppose

(7)
$$\nu(z) = \mu(z) \equiv 0 \text{ for } |z| > R \ge 1,$$

as well as the validity of the Bojarski condition (cf. [2, p. 499]) at $z_0 = 0$, i.e.

(8)
$$\frac{\nu(z) - \nu(0)}{z}, \frac{\mu(z) - \mu(0)}{z} \in L_{p^*}$$
 with a $p^* > 2$.

Further, we may assume (by diminution of $p^* > 2$ if necessary) that

$$kC(p^*) < 1,$$

where C(p) means the norm of the complex Hilbert transformation T in L_p . By reasons which become clear later (cf. (48) below) we also choose a p' such that

(10)
$$2 < p' \le p^*, \ k'C(p') < 1 \text{ with } k' := 1 - \frac{(1-k)^3}{(1+k)^2}.$$

Let

(11)
$$w(z) = \left(\frac{[\lambda z^n]_{\nu,\mu}}{z^n}\right)^l, \quad n \in \mathbb{Z} \setminus \{0\}, \ l \in \{+1, -1\}, \lambda \in \mathbb{C} \setminus \{0\}$$

and

(12)
$$d(\nu,\mu;p) = \left\| \frac{\nu(z) - \nu(0)}{z} \right\|_{L_p} + \left\| \frac{\mu(z) - \mu(0)}{z} \right\|_{L_p}.$$

We want to prove the following

Theorem. Let ν, μ satisfy (6), (7), (8), and let p' be chosen so that (10) is satisfied. There exists a constant $\kappa \geq 1$ depending only on k, p', R and $d(\nu, \mu; p')$ such that, for every w(z) defined by (11) with $|\lambda| = 1$,

 $\kappa^{-|n|} \le |w(z)| \le \kappa^{|n|} \quad \forall_z \in \mathbb{C} \setminus \{0\}.$

For a different type of generalized powers (connected with Carleman-Vekua systems), while using the theory of pseudoanalytic functions, a (formally) similar result has been established in [1].

As a consequence of the theorem we obtain (according to [8])

(13)
$$\vartheta = 1/\kappa^2$$

(κ given by (50) below) is one ϑ for (3) to hold. (By the way, this also implies that (3) remains valid even without continuity of ν, μ at z_0 (condition (6) in [8]).)

The proof of the theorem essentially rests on the following

Lemma. Let ν^* , μ^* satisfy (6), (7), (8), (9) and $\nu^*(0) = \mu^*(0) = 0$. There exists a positive constant $r(k, p^*)$ (explicitly given by (20) below) such that for every w(z) defined by (11) (with ν, μ replaced by ν^*, μ^*) we have

$$|\lambda|^{l} e^{-2|n|r(k,p^{*})D(\nu^{*},\mu^{*};p^{*})} \le w(z)| \le |\lambda|^{l} e^{2|n|r(k,p^{*})D(\nu^{*},\mu^{*}p^{*})} \quad \forall z \in \mathbb{C}.$$

Here

(14)
$$D(\nu^*, \mu^*; p^*) = \left\| \frac{\nu^*(z)}{z} \right\|_{L^{p^*, q^*}} + \left\| \frac{\mu^*(z)}{z} \right\|_{L^{p^*, q^*}}, \ \frac{1}{p^*} + \frac{1}{q^*} = 1,$$

and $||g||_{L^{p,q}} := \max\{||g||_{L_p}, ||g||_{L_q}\}$ for $g \in L_p \cap L_q$.

Proof of Lemma. Let $f(z) := [\lambda z^n]_{\nu^*,\mu^*}$. Then $w(z) = (f(z))^l \cdot z^{-nl}$ satisfies

(15)
$$w_{\overline{z}} = \nu^* w_z + \mu^* \frac{\overline{f}w}{\overline{fw}} \overline{w_z} + \nu^* \frac{nl}{z} w + \mu^* \frac{\overline{f}}{\overline{f}} \frac{nl}{\overline{z}} \overline{w}.$$

At z = 0, f(z) possesses the asymptotic expansion

$$f(z) = \lambda z^n + O(|z|^{n+\alpha})$$
 with $\alpha > 0$,

and at infinity, $f(z) = \alpha_n(\lambda) \cdot z^n + O(|z|^{n-1})$ with an unknown but welldefined constant $\alpha_n(\lambda) \neq 0$. Hence

(16)
$$\lim_{z\to 0} w(z) = \lambda^l =: w(0), \quad \lim_{z\to\infty} w(z) = (\alpha_n(\lambda))^l.$$

Thus, w(z) is a solution of (15) bounded in C. By the Bers-Nirenberg Representation Theorem and Liouville's Theorem for analytic functions,

(17)
$$w(z) = \operatorname{const} \cdot e^{s(z)},$$

where s(z) is Hölder continuous in C and $\lim_{z\to\infty} s(z) = 0$. Hence

(18)
$$w(z) = (\alpha_n(\lambda))^l e^{s(z)}.$$

Moreover, by [5, p. 45], s(z) satisfies the estimate

(19)
$$|s(z)| \leq K_{p^*,q^*}(1-kC(p^*))^{-1}|n|D(\nu^*,\mu^*;p^*)$$

 $(C(p^*) = C(q^*)$ because of $(1/p^*) + (1/q^*) = 1$, (cf. e.g. [3], [9, p. 33]).

Let

(20)
$$r := r(k, p^*) := K_{p^*, q^*} (1 - kC(p^*))^{-1}.$$

Because $w(0) = \lambda^l = (\alpha_n(\lambda))^l e^{s(0)}$ we have

(21)
$$e^{-|n|rD(\nu^*,\mu^*;p^*)} \le \left|\frac{\alpha_n(\lambda)}{\lambda}\right| \le e^{+|n|rD(\nu^*,\mu^*;p^*)}.$$

Then (18), (19), (21) yield the assertion of the lemma.

III. Proof of Theorem. We have to reduce the ν, μ of the theorem to ν^*, μ^* of the lemma.

To this end we first submit the z-plane to the mapping

(22)
$$t = \begin{cases} z + b\overline{z} & \text{if } |z| < R\\ z + \frac{bR^2}{z} & \text{if } |z| \ge R, \end{cases}$$
where

where

(23)
$$\mathfrak{b} = \frac{2\sigma}{1 + \sqrt{1 - 4|\sigma|^2}}, \quad \sigma = \frac{\nu(0)}{1 + |\nu(0)|^2 - |\mu(0)|^2}.$$

Then b satisfies $|b| \le k$ (cf. [5, p. 52]). A (ν, μ) -solution f(z) in $\mathbb{C} \setminus \{0\}$ changes into a (ν_1, μ_1) -solution g(t) := f(z(t)) in $\mathbb{C} \setminus \{0\}$, where

$$\nu_1(t) = \begin{cases} \frac{\overline{\nu} b^2 - (1 + |\nu|^2 - |\mu|^2)b + \nu}{N_1} & \text{if } |z(t)| < R\\ 0 & \text{if } |z(t)| \ge R, \end{cases}$$

$$\begin{split} & \mu_1 = |1 - \overline{\nu} \mathfrak{b}|^2 - |\mu \mathfrak{b}|^2, \quad N_1 \ge (1 - k^2)^2, \\ & \mu_1(t) = \begin{cases} \mu \frac{1 - |\mathfrak{b}|^2}{N_1} & \text{if } |z(t)| < R \\ 0 & \text{if } |z(t)| > R, \end{cases} \end{split}$$

 $\nu = \nu(z(t)), \ \mu = \mu(z(t)), \ cf. \ [5, p. 51].$ Then, in particular,

(24)
$$\nu_1(t) = \mu_1(t) = 0$$
 if $|t| > R(1+k) =: R^*$,

(25) $|| |\nu_1| + |\mu_1|||_{L_{\infty}} \le 1 - \frac{(1-k)^2}{(1+k)} =: k_1 < 1$

cf. [4, 1.11], and

(26)
$$\nu_1(0) = 0.$$

An elementary calculation gives

(27)
$$|\nu_1(t)| \le \frac{1}{(1-k)^2} (|\nu - \nu(0)| + |\mu - \mu(0)|)$$

and

(28)
$$|\mu_1(t) - \mu_1(0)| \le \frac{2}{(1-k)^3} (|\nu - \nu(0)| + |\mu - \mu(0)|).$$

For $f(z) = [\lambda z^n]_{\nu,\mu}$ we obtain $f(z(t)) =: g(t) = [\lambda t^n]_{\nu_1,\mu_1}$, i.e. λ remains unchanged. The latter is a consequence of the asymptotic expansion

(29)
$$f(z) = \lambda (z + b\overline{z})^n - b\overline{\lambda}(\overline{z} + \overline{b}z)^n + O(|z|^{n+\alpha})$$

of f at z = 0, cf. [5, p. 70].

Next we have to apply appropriate transformations of the g-plane to arrive at a (ν^*, μ^*) -system satisfying the conditions of the lemma. Here we have to distinguish the cases $n \ge 1$ and $n \le -1$. First let $n \ge 1$. Then, with $g = g(t) = [\lambda t^n]_{\nu_1,\mu_1}$, we put

(30)
$$h_1(t) = \begin{cases} g + b\overline{g} & \text{if } |g(t)| < \rho \\ s(g) := g + \frac{b\rho^2}{g} & \text{if } |g(t)| \ge \rho , \end{cases}$$

 ρ being a positive constant to be specified later and

(31)
$$b = -\mu_1(0).$$

Again $|b| \le k (\le k_1)$ (by the way, it is the same b as in (29)). Then

(32)
$$h_1(t) = [\lambda^* t^n]_{\nu^*, \mu^*}$$
 with $\lambda^* = (1 - |b|^2)\lambda$

and

$$\nu^{*}(t) = \begin{cases} \nu_{1}(t) \frac{1-|b|^{2}}{N_{0}} & \text{if } |g(t)| < \rho \\ \nu_{1}(t) & \text{if } |g(t)| \ge \rho \\ \end{cases}$$
$$\mu^{*}(t) = \begin{cases} \frac{\overline{\mu_{1}}b^{2} + (1+|\mu_{1}|^{2} - |\nu_{1}|^{2})b + \mu_{1}}{N_{0}} & \text{if } |g(t)| < \rho \\ \mu_{1}(t) s'(g(t))/\overline{s'(g(t))} & \text{if } |g(t)| \ge \rho \\ \end{cases}$$

with

$$N_0 = |1 + \overline{\mu_1}b|^2 - |\nu_1b|^2, \ N_0 \ge (1 - k_1|b|)^2 \ge (1 - k_1^2)^2.$$

Now

(33)
$$\nu^*(0) = \mu^*(0) = 0.$$

A similar, but even simpler calculation as with (27), (28) yields

$$|\nu^*(t)| \le \frac{1}{1-k_1^2} |\nu_1(t)|, \ |\mu^*(t)| \le \frac{1}{(1-k_1)^2} (|\nu_1(t)| + |\mu_1(t) - \mu_1(0)|).$$

From (27), (28), (25) we finally obtain

(34)
$$|\nu^*(t)| \le \frac{(1+k)^2}{(1-k)^6} \left(|\nu(z(t)) - \nu(0)| + |\mu(z(t)) - \mu(0)| \right),$$

Mark.

(35)
$$|\mu^{*}(t)| \leq 3 \frac{(1+k)^{2}}{(1-k)^{7}} (|\nu(z(t)) - \nu(0)| + |\mu(z(t)) - \mu(0)|)$$

if $|g(t)| < \rho$.

As to an appropriate specification of ρ we first observe that

$$g(t) = [\lambda t^n]_{\nu_1,\mu_1} = \alpha_n(\lambda)(X(t))^r$$

where X(t) is the unique homeomorphic solution of $X_{\overline{t}} = \nu_g X_t$, $\nu_g(t) = \nu_1(t) + \mu_1(t)\overline{g_t}/g_t$, satisfying

$$X(0) = 0$$
, $X(t) = t + \alpha_0 + \frac{a_{-1}}{t} + \cdots$ for $|t| > R^*$.

This homeomorphism admits the representation X(t) = t + Ph(t) - Ph(0)with P the Cauchy transformation and h the unique solution of $h = \nu_g + \nu_g Th$ in $L^{p',q'}$ with p' > 2, (1/p') + (1/q') = 1 (note that $||\nu_g||_{L_{\infty}} \leq k_1 < k' < 1$). Hence

(36)
$$||h||_{L^{p',q'}} \leq \frac{k'}{1-k'C(p')}||1_{R^*}||_{L^{q'}} =: Q,$$

where 1_{R^*} is the characteristic function of $\{|t| < R^*\}$.

Then X(t) satisfies (cf. [5, p.14])

(37)
$$|t| - K \le |X(t)| \le |t| + K$$
 with $K := 2K_{p',q'} \cdot Q$.

Now we put

(38)
$$\rho = \rho_q = |\alpha_n(\lambda)| (R^* + K)^n.$$

Then

$$(39) {t: |g(t)| \ge \rho} \subseteq {t: |t| \ge R^*},$$

10.

hence

(40)
$$\nu^*(t) = \mu^*(t) = 0 \text{ if } |g(t)| \ge \rho.$$

Further, if $|t| \ge R^* + 2K$ then $|g(t)| \ge \rho$, thus

(41)
$$\{t : |g(t)| < \rho\} \subseteq \{t : |t| < R^* + 2K\}.$$

Now we come to the case of $g(t) = [\lambda t^n]_{\nu_1,\mu_1}$, $n \leq -1$. We put, with b from (31),

$$h_2(t) = \left\{egin{array}{cc} (1-|b|^2)g & ext{if} & |g+b\overline{g}| <
ho \ s_*(g+b\overline{g}) & ext{if} & |g+b\overline{g}| \geq
ho \,, \end{array}
ight.$$

where $s_*(w) := w - (b\rho^2)/w$. Then $h_2(t) = [\lambda^* t^n]_{\nu^*,\mu^*}, \ \lambda^* = (1 - |b|^2)\lambda$, where

$$\nu^{*}(t) = \begin{cases} \nu_{1}(t) & \text{if } |g + b\overline{g}| < \rho \\ \nu_{1}(t) \frac{1 - |b|^{2}}{N_{0}} & \text{if } |g + b\overline{g}| \ge \rho, \end{cases}$$

$$\mu^{*}(t) = \begin{cases} \frac{\mu_{1}(t)}{\overline{\mu_{1}}b^{2} + (1 + |\mu_{1}|^{2} - |\nu_{1}|^{2})b + \mu_{1}}{N_{0}} \cdot \frac{s'_{*}(g + b\overline{g})}{s'_{*}(g + b\overline{g})} & \text{if } |g + b\overline{g}| \ge \rho \,, \end{cases}$$

 N_0 as above.

Again (34), (35) hold, first if $|g + b\overline{g}| \ge \rho$, and again $g(t) = \alpha_n(\lambda)(X(t))^n$ with X as above which, in particular, satisfies (37). We now put

(42)
$$\rho = \rho_g := (1-k)|\alpha_n(\lambda)|(R^*+K)^n$$

Then $\{t: |g+b\overline{g}| < \rho\} \subseteq \{t: |t| > R^*\}$, hence

(43)
$$\nu^*(t) = \mu^*(t) = 0 \text{ if } |g + b\overline{g}| < \rho.$$

Further, $|g + b\overline{g}| \ge \rho$ implies $|X(t)|^{|n|} \le [(1+k)/(1-k)](R^* + K)^{|n|}$, and this again implies

(44)
$$|t| \le \frac{1+k}{1-k}(R^* + K\frac{2}{1+k}) < \frac{1}{1-k}(4R+2K) =: R'.$$

Thus

(45)
$$\{t: |g+b\overline{g}| \ge \rho\} \subseteq \{t: |t| < R'\}.$$

Because of (34), (35), (40), (41), (43), (45) we obtain for any p > 2 (in both cases $n \ge 1$ and $n \le -1$)

$$\begin{split} \left\| \frac{\nu^*(t)}{t} \right\|_{L_p} &\leq \frac{(1+k)^2}{(1-k)^6} \bigg[\left(\int_{\{|t| < R'\}} \left| \frac{\nu - \nu(0)}{t} \right|^p d\sigma_t \right)^{1/p} \\ &+ \left(\int_{\{|t| < R'\}} \left| \frac{\mu - \mu(0)}{t} \right|^p d\sigma_t \right)^{1/p} \bigg]. \end{split}$$

Further

$$\begin{split} \int_{\{|t| < R'\}} \left| \frac{\nu(z(t)) - \nu(0)}{t} \right|^p d\sigma_t &\leq \int_C \left| \frac{\nu(z) - \nu(0)}{z} \right|^p \left| \frac{z}{t} \right|^p \frac{d\sigma_t}{d\sigma_z} d\sigma_z \\ &\leq \int_C \left| \frac{\nu(z) - \nu(0)}{z} \right|^p \frac{(1+k)^2}{(1-k)^p} d\sigma_z \,, \end{split}$$

and the same inequality holds with ν replaced by μ . Hence

$$\left\|\frac{\nu^*(t)}{t}\right\|_{L_p} \leq \frac{(1+k)^3}{(1-k)^7} \, d(\nu,\mu;p).$$

In the same way we obtain

$$\left\|\frac{\mu^*(t)}{t}\right\|_{L_p} \le 3\frac{(1+k)^3}{(1-k)^8}\,d(\nu,\mu;p).$$

By Hölder's inequality, for any $a \in L_p$ vanishing outside $\{|t| \leq R'\}$,

$$||a||_{L_q} \le ||a||_{L_p} (\pi {R'}^2)^{1-(2/p)}$$
 if $p > 2$, $\frac{1}{p} + \frac{1}{q} = 1$.

9

This finally gives the crucial estimate

(46)
$$D(\nu^*, \mu^*; p') \le 4 \frac{(1+k)^3}{(1-k)^8} (\pi R'^2)^{1-(2/p')} \cdot d(\nu, \mu; p').$$

Let now w(z) be defined by (11) above. Then

(47)
$$|w(z)| = |h_j(t)/t^n|^l \cdot |t/z|^{nl} \cdot |g(t)/h_j(t)|^l$$

j = 1 or = 2 if $n \ge 1$ or ≤ -1 , respectively. The second states are straightforward to be a second state of $n \ge 1$ or $n \ge 1$.

Since

(48)
$$|| |\nu^*| + |\mu^*| ||_{L_{\infty}} \le k'$$

(cf. [4, 1.11]), we first obtain by the Lemma

(49)
$$\begin{aligned} |\lambda^*|^l e^{-2|n|r(k',p')D(\nu^*,\mu^*;p')} &\leq \left|\frac{h_j(t)}{t^n}\right|^l \\ &\leq |\lambda^*|^l e^{2|n|r(k',p')D(\nu^*,\mu^*;p')}. \end{aligned}$$

Since (for every $\rho > 0$) $1 - k \le |t/z| \le 1/(1-k)$ and

$$(1-k)^2 \le \left|\frac{g(t)}{h_j(t)}\right| \le 1/(1-k)^2$$

we have

$$\begin{aligned} |\lambda|^{l}(1-k)^{|n|+3}(1+k)e^{-|n|\delta} &\leq |w(z)| \\ &\leq |\lambda|^{l}(1-k)^{-(|n|+3)}(1+k)^{-1}e^{|n|\delta} \end{aligned}$$

in $\mathbb{C} \setminus \{0\}$, where

$$\delta := 8r(k',p') \frac{(1+k)^3}{(1-k)^8} (\pi {R'}^2)^{1-(2/p')} \cdot d(\nu,\mu;p').$$

Thus

(50)
$$\kappa = \frac{e^{\delta}}{(1-k)^4(1+k)^4}$$

satisfies the assertions of the Theorem.

REFERENCES

- [1] Bers, L., Formal powers and power series, Comm. Pure Appl. Math. 9 (1956), 693-711.
- [2] Bojarski, B. W., Generalized solutions of a system of differential equations of the first order and elliptic type with discontinuous coefficients, Mat. Sb. (N.S.) 43(85) (1957), 451-503 (Russian).
- [3] Iwaniec, T., L^p-theory of quasiregular mappings. Quasiconformal Space Mappings -A collection of surveys 1960 - 1990. Lectures Notes in Math. 1508, Springer-Verlag, 1992.
- [4] H. Renelt, Generalized powers in the theory of (ν, μ)-solutions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 40 (1986), 217-235.

- [5] _____, Elliptic Systems and Quasiconformal Mappings, J. Wiley & Sons, New York, 1988.
- [6] _____, An integral formula for the derivatives of solutions of certain elliptic systems, Ann. Polon. Math. 54 (1991), 45-57.
- [7] _____, Mean value properties of solutions of Cauchy-Riemann systems, Ann. Univ. Mariae Curie-Skłodowska Sect. A 50 (1996), 201-211.
- [8] _____, Reihenentwicklungen für Lösungen Cauchy-Riemannscher Differentialgleichungssysteme, Mitt. Math. Seminar Giessen Heft 228 (1996), 31-38.
- [9] Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.

Fachbereich Mathematik und Informatik received February 11, 1998 Martin-Luther-Universität Halle-Wittenberg D-06099 Halle/S