ANNALES

UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN - POLONIA

VOL. LII. 1, 17
SECTIO A

HEINRICH RENELT

On the Growth of Generalized Powers

Abstract. It is shown here that generalized powers $\left[\lambda\left(z-z_{0}\right)^{n}\right]_{\nu, \mu}$, n being a nonzero integer, satisfy an inequality

$$
\kappa^{-|n|}\left|\lambda\left(z-z_{0}\right)^{n}\right| \leq\left|\left[\lambda\left(z-z_{0}\right)^{n}\right]_{\nu, \mu}\right| \leq \kappa^{|n|}\left|\lambda\left(z-z_{0}\right)^{n}\right|,
$$

where κ is a constant depending only on (certain quantities of) the coefficients ν, μ of the corresponding Cauchy-Riemann system. An application to convergence of generalized power series is given.
I. Generalized powers are special solutions of a Cauchy-Riemann system

$$
\begin{equation*}
f_{\bar{z}}=\nu f_{z}+\mu \overline{f_{z}} \tag{1}
\end{equation*}
$$

in \mathbb{C} with the topological structure

$$
\begin{equation*}
f(z)=\left(\chi(z)-\chi\left(z_{0}\right)\right)^{n}, \quad n \in \mathbb{Z} \backslash\{0\} \tag{2}
\end{equation*}
$$

where $\chi(z)$ is a quasiconformal mapping of \mathbb{C} onto itself. We denote them by $\left[a\left(z-z_{0}\right)^{n}\right]_{\mu, \nu}$ (for the notation used here and in the following cf. [5], [7]).

[^0]These special solutions possess interesting properties (cf. [4], [6], [7]). In particular, under the conditions on ν, μ from [8], every solution f of (1) in a disk $\left\{\left|z-z_{0}\right|<R\right\}$ admits a series expansion

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty}\left[a_{n}\left(z-z_{0}\right)^{n}\right]_{\nu, \mu} \text { in }\left\{\left|z-z_{0}\right|<\vartheta R\right\}, \tag{3}
\end{equation*}
$$

where ϑ is a constant from $(0,1]$, which is independent of f but depends on the growth behaviour of generalized powers, namely on bounds for

$$
\begin{equation*}
\sup \left\{\left|\frac{\chi(z)}{z-z_{0}}\right|: z \in \mathbb{C} \backslash\left\{z_{0}\right\}\right\} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\inf \left\{\left|\frac{\chi(z)}{z-z_{0}}\right|: z \in \mathbb{C} \backslash\left\{z_{0}\right\}\right\} \tag{5}
\end{equation*}
$$

where $(\chi(z))^{n}=\left[\lambda\left(z-z_{0}\right)^{n}\right]_{\nu, \mu}$ with $\lambda=1$. We want to determine such bounds here. Without loss of generality we may assume that $z_{0}=0$.
II. Let (1) satisfy the usual conditions

$$
\begin{equation*}
\nu, \mu \in L_{\infty}, \quad\||\nu|+|\mu|\|_{L_{\infty}}=: k<1 . \tag{6}
\end{equation*}
$$

Additionally we suppose

$$
\begin{equation*}
\nu(z)=\mu(z) \equiv 0 \quad \text { for } \quad|z|>R \geq 1, \tag{7}
\end{equation*}
$$

as well as the validity of the Bojarski condition (cf. [2, p. 499]) at $z_{0}=0$, i.e.

$$
\begin{equation*}
\frac{\nu(z)-\nu(0)}{z}, \frac{\mu(z)-\mu(0)}{z} \in L_{p^{*}} \quad \text { with a } p^{*}>2 . \tag{8}
\end{equation*}
$$

Further, we may assume (by diminution of $p^{*}>2$ if necessary) that

$$
\begin{equation*}
k C\left(p^{*}\right)<1, \tag{9}
\end{equation*}
$$

where $C(p)$ means the norm of the complex Hilbert transformation T in L_{p}. By reasons which become clear later (cf. (48) below) we also choose a p^{\prime} such that

$$
\begin{equation*}
2<p^{\prime} \leq p^{*}, k^{\prime} C\left(p^{\prime}\right)<1 \text { with } k^{\prime}:=1-\frac{(1-k)^{3}}{(1+k)^{2}} \tag{10}
\end{equation*}
$$

Let

$$
\begin{equation*}
w(z)=\left(\frac{\left[\lambda z^{n}\right]_{\nu, \mu}}{z^{n}}\right)^{l}, n \in \mathbb{Z} \backslash\{0\}, l \in\{+1,-1\}, \lambda \in \mathbb{C} \backslash\{0\} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
d(\nu, \mu ; p)=\left\|\frac{\nu(z)-\nu(0)}{z}\right\|_{L_{p}}+\left\|\frac{\mu(z)-\mu(0)}{z}\right\|_{L_{p}} \tag{12}
\end{equation*}
$$

We want to prove the following
Theorem. Let ν, μ satisfy (6), (7), (8), and let p^{\prime} be chosen so that (10) is satisfied. There exists a constant $\kappa \geq 1$ depending only on k, p^{\prime}, R and $d\left(\nu, \mu ; p^{\prime}\right)$ such that, for every $w(z)$ defined by (11) with $|\lambda|=1$,

$$
\kappa^{-|n|} \leq|w(z)| \leq \kappa^{|n|} \quad \forall_{z} \in \mathbb{C} \backslash\{0\}
$$

For a different type of generalized powers (connected with CarlemanVekua systems), while using the theory of pseudoanalytic functions, a (formally) similar result has been established in [1].

As a consequence of the theorem we obtain (according to [8])

$$
\begin{equation*}
\vartheta=1 / \kappa^{2} \tag{13}
\end{equation*}
$$

(κ given by (50) below) is one ϑ for (3) to hold. (By the way, this also implies that (3) remains valid even without continuity of ν, μ at z_{0} (condition (6) in [8]).)

The proof of the theorem essentially rests on the following
Lemma. Let ν^{*}, μ^{*} satisfy (6), (7), (8), (9) and $\nu^{*}(0)=\mu^{*}(0)=0$. There exists a positive constant $r\left(k, p^{*}\right)$ (explicitly given by (20) below) such that for every $w(z)$ defined by (11) (with ν, μ replaced by ν^{*}, μ^{*}) we have

$$
|\lambda|^{l} e^{-2|n| r\left(k, p^{*}\right) D\left(\nu^{*}, \mu^{*} ; p^{*}\right)} \leq w(z)\left|\leq|\lambda|^{l} e^{2|n| r\left(k, p^{\bullet}\right) D\left(\nu^{\bullet}, \mu^{i} p^{*}\right)} \quad \forall z \in \mathbb{C} .\right.
$$

Here

$$
\begin{equation*}
D\left(\nu^{*}, \mu^{*} ; p^{*}\right)=\left\|\frac{\nu^{*}(z)}{z}\right\|_{L^{p^{*}, q^{*}}}+\left\|\frac{\mu^{*}(z)}{z}\right\|_{L^{p^{*}, q^{*}}}, \frac{1}{p^{*}}+\frac{1}{q^{*}}=1 \tag{14}
\end{equation*}
$$

and $\|g\|_{L^{\text {p.q }}}:=\max \left\{\|g\|_{L_{p}},\|g\|_{L_{q}}\right\}$ for $g \in L_{p} \cap L_{q}$.

Proof of Lemma. Let $f(z):=\left[\lambda z^{n}\right]_{\nu^{*}, \mu^{*}}$. Then $w(z)=(f(z))^{l} \cdot z^{-n l}$ satisfies

$$
\begin{equation*}
w_{\bar{z}}=\nu^{*} w_{z}+\mu^{*} \frac{\bar{f} w}{f \bar{w}} \overline{w_{z}}+\nu^{*} \frac{n l}{z} w+\mu^{*} \frac{\bar{f}}{f} \frac{n l}{\bar{z}} \bar{w} . \tag{15}
\end{equation*}
$$

At $z=0, f(z)$ possesses the asymptotic expansion

$$
f(z)=\lambda z^{n}+O\left(|z|^{n+\alpha}\right) \text { with } \alpha>0
$$

and at infinity, $f(z)=\alpha_{n}(\lambda) \cdot z^{n}+O\left(|z|^{n-1}\right)$ with an unknown but welldefined constant $\alpha_{n}(\lambda) \neq 0$. Hence

$$
\begin{equation*}
\lim _{z \rightarrow 0} w(z)=\lambda^{l}=: w(0), \quad \lim _{z \rightarrow \infty} w(z)=\left(\alpha_{n}(\lambda)\right)^{l} . \tag{16}
\end{equation*}
$$

Thus, $w(z)$ is a solution of (15) bounded in \mathbb{C}. By the Bers-Nirenberg Representation Theorem and Liouville's Theorem for analytic functions,

$$
\begin{equation*}
w(z)=\text { const } \cdot e^{s(z)} \tag{17}
\end{equation*}
$$

where $s(z)$ is Hölder continuous in \mathbb{C} and $\lim _{z \rightarrow \infty} s(z)=0$. Hence

$$
\begin{equation*}
w(z)=\left(\alpha_{n}(\lambda)\right)^{\prime} e^{s(z)} \tag{18}
\end{equation*}
$$

Moreover, by [5, p. 45], $s(z)$ satisfies the estimate

$$
\begin{equation*}
|s(z)| \leq K_{p^{*}, q^{*}}\left(1-k C\left(p^{*}\right)\right)^{-1}|n| D\left(\nu^{*}, \mu^{*} ; p^{*}\right) \tag{19}
\end{equation*}
$$

$\left(C\left(p^{*}\right)=C\left(q^{*}\right)\right.$ because of $\left(1 / p^{*}\right)+\left(1 / q^{*}\right)=1$, (cf. e.g. [3], [9, p. 33]).
Let

$$
\begin{equation*}
r:=r\left(k, p^{*}\right):=K_{p^{*}, q^{*}}\left(1-k C\left(p^{*}\right)\right)^{-1} . \tag{20}
\end{equation*}
$$

Because $w(0)=\lambda^{l}=\left(\alpha_{n}(\lambda)\right)^{l} e^{s(0)}$ we have

$$
\begin{equation*}
e^{-|n| r D\left(\nu^{*}, \mu^{*} ; p^{*}\right)} \leq\left|\frac{\alpha_{n}(\lambda)}{\lambda}\right| \leq e^{+|n| r D\left(\nu^{*}, \mu^{*} ; p^{*}\right)} . \tag{21}
\end{equation*}
$$

Then (18), (19), (21) yield the assertion of the lemma.
III. Proof of Theorem. We have to reduce the ν, μ of the theorem to ν^{*}, μ^{*} of the lemma.

To this end we first submit the z-plane to the mapping

$$
t= \begin{cases}z+\mathrm{b} \bar{z} & \text { if }|z|<R \tag{22}\\ z+\frac{\mathrm{b} R^{2}}{z} & \text { if }|z| \geq R\end{cases}
$$

where

$$
\begin{equation*}
\mathfrak{b}=\frac{2 \sigma}{1+\sqrt{1-4|\sigma|^{2}}}, \quad \sigma=\frac{\nu(0)}{1+|\nu(0)|^{2}-|\mu(0)|^{2}} \tag{23}
\end{equation*}
$$

Then b satisfies $|\mathfrak{b}| \leq k(c f$. [5, p. 52]). A (ν, μ)-solution $f(z)$ in $\mathbb{C} \backslash\{0\}$ changes into a $\left(\nu_{1}, \mu_{1}\right)$-solution $g(t):=f(z(t))$ in $\mathbb{C} \backslash\{0\}$, where

$$
\begin{gathered}
\nu_{1}(t)= \begin{cases}\frac{\bar{\nu} b^{2}-\left(1+|\nu|^{2}-|\mu|^{2}\right) b+\nu}{N_{1}} & \text { if }|z(t)|<R \\
0 & \text { if }|z(t)| \geq R,\end{cases} \\
N_{1}=|1-\bar{\nu} b|^{2}-|\mu \mathrm{b}|^{2}, \\
N_{1} \geq\left(1-k^{2}\right)^{2}, \\
\mu_{1}(t)= \begin{cases}\mu \frac{1-|\mathfrak{b}|^{2}}{N_{1}} & \text { if }|z(t)|<R \\
0 & \text { if }|z(t)| \geq R,\end{cases} \\
\nu=\nu(z(t)), \mu=\mu(z(t)), \text { cf. }[5, \text { p. } 51] .
\end{gathered}
$$

Then, in particular,

$$
\begin{equation*}
\nu_{1}(t)=\mu_{1}(t)=0 \text { if }|t|>R(1+k)=: R^{*} \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
\left\|\left|\nu_{1}\right|+\left|\mu_{1}\right|\right\|_{L_{\infty}} \leq 1-\frac{(1-k)^{2}}{(1+k)}=: k_{1}<1 \tag{25}
\end{equation*}
$$

cf. $[4,1.11]$, and

$$
\begin{equation*}
\nu_{1}(0)=0 \tag{26}
\end{equation*}
$$

An elementary calculation gives

$$
\begin{equation*}
\left|\nu_{1}(t)\right| \leq \frac{1}{(1-k)^{2}}(|\nu-\nu(0)|+|\mu-\mu(0)|) \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\mu_{1}(t)-\mu_{1}(0)\right| \leq \frac{2}{(1-k)^{3}}(|\nu-\nu(0)|+|\mu-\mu(0)|) \tag{28}
\end{equation*}
$$

For $f(z)=\left[\lambda z^{n}\right]_{\nu, \mu}$ we obtain $f(z(t))=: g(t)=\left[\lambda t^{n}\right]_{\nu_{1}, \mu_{1}}$, i.e. λ remains unchanged. The latter is a consequence of the asymptotic expansion

$$
\begin{equation*}
f(z)=\lambda(z+\mathfrak{b} \bar{z})^{n}-b \bar{\lambda}(\bar{z}+\bar{b} z)^{n}+O\left(|z|^{n+\alpha}\right) \tag{29}
\end{equation*}
$$

of f at $z=0, \mathrm{cf} .[5, \mathrm{p} .70]$.
Next we have to apply appropriate transformations of the g-plane to arrive at a $\left(\nu^{*}, \mu^{*}\right)$-system satisfying the conditions of the lemma. Here we have to distinguish the cases $n \geq 1$ and $n \leq-1$. First let $n \geq 1$. Then, with $g=g(t)=\left[\lambda t^{n}\right]_{\nu_{1}, \mu_{1}}$, we put

$$
h_{1}(t)= \begin{cases}g+b \bar{g} & \text { if }|g(t)|<\rho \tag{30}\\ s(g):=g+\frac{b \rho^{2}}{g} & \text { if }|g(t)| \geq \rho\end{cases}
$$

ρ being a positive constant to be specified later and

$$
\begin{equation*}
b=-\mu_{1}(0) \tag{31}
\end{equation*}
$$

Again $|b| \leq k\left(\leq k_{1}\right)$ (by the way, it is the same b as in (29)).
Then

$$
\begin{equation*}
h_{1}(t)=\left[\lambda^{*} t^{n}\right]_{\nu^{*}, \mu^{*}} \text { with } \lambda^{*}=\left(1-|b|^{2}\right) \lambda \tag{32}
\end{equation*}
$$

and

$$
\begin{gathered}
\nu^{*}(t)= \begin{cases}\nu_{1}(t) \frac{1-|b|^{2}}{N_{0}} & \text { if }|g(t)|<\rho \\
\nu_{1}(t) & \text { if }|g(t)| \geq \rho\end{cases} \\
\mu^{*}(t)= \begin{cases}\frac{\mu_{1}^{-} b^{2}+\left(1+\left|\mu_{1}\right|^{2}-\left|\nu_{1}\right|^{2}\right) b+\mu_{1}}{N_{0}} & \text { if }|g(t)|<\rho \\
\mu_{1}(t) s^{\prime}(g(t)) / \overline{s^{\prime}(g(t))} & \text { if }|g(t)| \geq \rho\end{cases}
\end{gathered}
$$

with

$$
N_{0}=\left|1+\overline{\mu_{1}} b\right|^{2}-\left|\nu_{1} b\right|^{2}, \quad N_{0} \geq\left(1-k_{1}|b|\right)^{2} \geq\left(1-k_{1}^{2}\right)^{2}
$$

Now

$$
\begin{equation*}
\nu^{*}(0)=\mu^{*}(0)=0 \tag{33}
\end{equation*}
$$

A similar, but even simpler calculation as with (27), (28) yields

$$
\left|\nu^{*}(t)\right| \leq \frac{1}{1-k_{1}^{2}}\left|\nu_{1}(t)\right|, \quad\left|\mu^{*}(t)\right| \leq \frac{1}{\left(1-k_{1}\right)^{2}}\left(\left|\nu_{1}(t)\right|+\left|\mu_{1}(t)-\mu_{1}(0)\right|\right) .
$$

From (27), (28), (25) we finally obtain

$$
\begin{equation*}
\left|\nu^{* \prime}(t)\right| \leq \frac{(1+k)^{2}}{(1-k)^{6}}(|\nu(z(t))-\nu(0)|+|\mu(z(t))-\mu(0)|) \tag{34}
\end{equation*}
$$

$$
\begin{equation*}
\left|\mu^{*}(t)\right| \leq 3 \frac{(1+k)^{2}}{(1-k)^{7}}(|\nu(z(t))-\nu(0)|+|\mu(z(t))-\mu(0)|) \tag{35}
\end{equation*}
$$

if $|g(t)|<\rho$.
As to an appropriate specification of ρ we first observe that

$$
g(t)=\left[\lambda t^{n}\right]_{\nu_{1}, \mu_{1}}=\alpha_{n}(\lambda)(X(t))^{n}
$$

where $X(t)$ is the unique homeomorphic solution of $X_{\bar{t}}=\nu_{g} X_{t}, \nu_{g}(t)=$ $\nu_{1}(t)+\mu_{1}(t) \overline{g_{t}} / g_{t}$, satisfying

$$
X(0)=0, \quad X(t)=t+\alpha_{0}+\frac{a_{-1}}{t}+\cdots \quad \text { for }|t|>R^{*}
$$

This homeomorphism admits the representation $X(t)=t+P h(t)-P h(0)$ with P the Cauchy transformation and h the unique solution of $h=\nu_{g}+$ $\nu_{g} T h$ in $L^{p^{\prime}, q^{\prime}}$ with $p^{\prime}>2,\left(1 / p^{\prime}\right)+\left(1 / q^{\prime}\right)=1$ (note that $\left\|\nu_{g}\right\|_{L_{\infty}} \leq k_{1}<$ $\left.k^{\prime}<1\right)$. Hence

$$
\begin{equation*}
\|h\|_{L^{p^{\prime}, q^{\prime}}} \leq \frac{k^{\prime}}{1-k^{\prime} C\left(p^{\prime}\right)}\left\|1_{R^{*}}\right\|_{L^{q^{\prime}}}=: Q \tag{36}
\end{equation*}
$$

where $1_{R^{*}}$ is the characteristic function of $\left\{|t|<R^{*}\right\}$.
Then $X(t)$ satisfies (cf. [5, p.14])

$$
\begin{equation*}
|t|-K \leq|X(t)| \leq|t|+K \text { with } K:=2 K_{p^{\prime}, q^{\prime}} \cdot Q \tag{37}
\end{equation*}
$$

Now we put

$$
\begin{equation*}
\rho=\rho_{g}=\left|\alpha_{n}(\lambda)\right|\left(R^{*}+K\right)^{n} \tag{38}
\end{equation*}
$$

Then

$$
\begin{equation*}
\{t:|g(t)| \geq \rho\} \subseteq\left\{t:|t| \geq R^{*}\right\} \tag{39}
\end{equation*}
$$

hence

$$
\begin{equation*}
\nu^{*}(t)=\mu^{*}(t)=0 \text { if }|g(t)| \geq \rho \tag{40}
\end{equation*}
$$

Further, if $|t| \geq R^{*}+2 K$ then $|g(t)| \geq \rho$, thus

$$
\begin{equation*}
\{t:|g(t)|<\rho\} \subseteq\left\{t:|t|<R^{*}+2 K\right\} \tag{41}
\end{equation*}
$$

Now we come to the case of $g(t)=\left[\lambda t^{n}\right]_{\nu_{1}, \mu_{1}}, \quad n \leq-1$. We put, with b from (31),

$$
h_{2}(t)= \begin{cases}\left(1-|b|^{2}\right) g & \text { if }|g+b \bar{g}|<\rho \\ s_{*}(g+b \bar{g}) & \text { if }|g+b \bar{g}| \geq \rho\end{cases}
$$

where $s_{*}(w):=w-\left(b \rho^{2}\right) / w$. Then $h_{2}(t)=\left[\lambda^{*} t^{n}\right]_{\nu^{*}, \mu^{*}}, \lambda^{*}=\left(1-|b|^{2}\right) \lambda$, where

$$
\nu^{*}(t)= \begin{cases}\nu_{1}(t) & \text { if }|g+b \bar{g}|<\rho \\ \nu_{1}(t) \frac{1-|b|^{2}}{N_{0}} & \text { if }|g+b \bar{g}| \geq \rho\end{cases}
$$

$\mu^{*}(t)= \begin{cases}\mu_{1}(t) & \text { if }|g+b \bar{g}|<\rho \\ \frac{\overline{\mu_{1}} b^{2}+\left(1+\left|\mu_{1}\right|^{2}-\left|\nu_{1}\right|^{2}\right) b+\mu_{1}}{N_{0}} \cdot \frac{s_{*}^{\prime}(g+b \bar{g})}{\overline{s_{*}^{\prime}(g+b \bar{g})}} & \text { if }|g+b \bar{g}| \geq \rho,\end{cases}$
N_{0} as above.
Again (34), (35) hold, first if $|g+b \bar{g}| \geq \rho$, and again $g(t)=\alpha_{n}(\lambda)(X(t))^{n}$ with X as ábove which, in particular, satisfies (37). We now put

$$
\begin{equation*}
\rho=\rho_{g}:=(1-k)\left|\alpha_{n}(\lambda)\right|\left(R^{*}+K\right)^{n} \tag{42}
\end{equation*}
$$

Then $\{t:|g+b \bar{g}|<\rho\} \subseteq\left\{t:|t|>R^{*}\right\}$, hence

$$
\begin{equation*}
\nu^{*}(t)=\mu^{*}(t)=0 \text { if }|g+b \bar{g}|<\rho . \tag{43}
\end{equation*}
$$

Further, $|g+b \bar{g}| \geq \rho$ implies $|X(t)|^{|n|} \leq[(1+k) /(1-k)]\left(R^{*}+K\right)^{|n|}$, and this again implies

$$
\begin{equation*}
|t| \leq \frac{1+k}{1-k}\left(R^{*}+K \frac{2}{1+k}\right)<\frac{1}{1-k}(4 R+2 K)=: R^{\prime} \tag{44}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\{t:|g+b \bar{g}| \geq \rho\} \subseteq\left\{t:|t|<R^{\prime}\right\} \tag{45}
\end{equation*}
$$

Because of (34), (35), (40), (41), (43), (45) we obtain for any $p>2$ (in both cases $n \geq 1$ and $n \leq-1$)

$$
\begin{array}{r}
\left\|\frac{\nu^{*}(t)}{t}\right\|_{L_{p}} \leq \frac{(1+k)^{2}}{(1-k)^{6}}\left[\left(\int_{\left\{|t|<R^{\prime}\right\}}\left|\frac{\nu-\nu(0)}{t}\right|^{p} d \sigma_{t}\right)^{1 / p}\right. \\
\left.+\left(\int_{\left\{|t|<R^{\prime}\right\}}\left|\frac{\mu-\mu(0)}{t}\right|^{p} d \sigma_{t}\right)^{1 / p}\right]
\end{array}
$$

Further

$$
\begin{aligned}
\int_{\left\{|t|<R^{\prime}\right\}}\left|\frac{\nu(z(t))-\nu(0)}{t}\right|^{p} d \sigma_{t} & \leq \int_{C}\left|\frac{\nu(z)-\nu(0)}{z}\right|^{p}\left|\frac{z}{t}\right|^{p} \frac{d \sigma_{t}}{d \sigma_{z}} d \sigma_{z} \\
& \leq \int_{C}\left|\frac{\nu(z)-\nu(0)}{z}\right|^{p} \frac{(1+k)^{2}}{(1-k)^{p}} d \sigma_{z}
\end{aligned}
$$

and the same inequality holds with ν replaced by μ. Hence

$$
\left\|\frac{\nu^{*}(t)}{t}\right\|_{L_{p}} \leq \frac{(1+k)^{3}}{(1-k)^{7}} d(\nu, \mu ; p)
$$

In the same way we obtain

$$
\left\|\frac{\mu^{*}(t)}{t}\right\|_{L_{p}} \leq 3 \frac{(1+k)^{3}}{(1-k)^{8}} d(\nu, \mu ; p)
$$

By Hölder's inequality, for any $a \in L_{p}$ vanishing outside $\left\{|t| \leq R^{\prime}\right\}$,

$$
\|a\|_{L_{q}} \leq\|a\|_{L_{p}}\left(\pi R^{\prime 2}\right)^{1-(2 / p)} \text { if } p>2, \frac{1}{p}+\frac{1}{q}=1
$$

This finally gives the crucial estimate

$$
\begin{equation*}
D\left(\nu^{*}, \mu^{*} ; p^{\prime}\right) \leq 4 \frac{(1+k)^{3}}{(1-k)^{8}}\left(\pi R^{\prime 2}\right)^{1-\left(2 / p^{\prime}\right)} \cdot d\left(\nu, \mu ; p^{\prime}\right) \tag{46}
\end{equation*}
$$

Let now $w(z)$ be defined by (11) above. Then

$$
\begin{equation*}
|w(z)|=\left|h_{j}(t) / t^{n}\right|^{t} \cdot|t / z|^{n l} \cdot\left|g(t) / h_{j}(t)\right|^{l} \tag{47}
\end{equation*}
$$

$j=1$ or $=2$ if $n \geq 1$ or ≤-1, respectively.

Since

$$
\begin{equation*}
\left\|\left|\nu^{*}\right|+\left|\mu^{*}\right|\right\|_{L_{\infty}} \leq k^{\prime} \tag{48}
\end{equation*}
$$

(cf. [4, 1.11]), we first obtain by the Lemma

$$
\begin{align*}
\left|\lambda^{*}\right|^{l} e^{-2|n| r\left(k^{\prime}, p^{\prime}\right) D\left(\nu^{*}, \mu^{*} ; p^{\prime}\right)} & \leq\left|\frac{h_{j}(t)}{t^{n}}\right|^{\prime} \tag{49}\\
& \leq\left|\lambda^{*}\right|^{l} e^{2|n| r\left(k^{\prime}, p^{\prime}\right) D\left(\nu^{*}, \mu^{*} ; p^{\prime}\right)} .
\end{align*}
$$

Since (for every $\rho>0$) $1-k \leq|t / z| \leq 1 /(1-k)$ and

$$
(1-k)^{2} \leq\left|\frac{g(t)}{h_{j}(t)}\right| \leq 1 /(1-k)^{2},
$$

we have

$$
\begin{aligned}
|\lambda|^{\prime}(1-k)^{|n|+3}(1+k) e^{-|n| \delta} & \leq|w(z)| \\
& \leq|\lambda|^{\prime}(1-k)^{-(|n|+3)}(1+k)^{-1} e^{|n| \delta}
\end{aligned}
$$

in $\mathbb{C} \backslash\{0\}$, where

$$
\delta:=8 r\left(k^{\prime}, p^{\prime}\right) \frac{(1+k)^{3}}{(1-k)^{8}}\left(\pi R^{\prime 2}\right)^{1-\left(2 / p^{\prime}\right)} \cdot d\left(\nu, \mu ; p^{\prime}\right) .
$$

Thus

$$
\begin{equation*}
\kappa=\frac{e^{\delta}}{(1-k)^{4}(1+k)} \tag{50}
\end{equation*}
$$

satisfies the assertions of the Theorem.

References

[1] Bers, L., Formal powers and power series, Comm. Pure Appl. Math. 9 (1956), 693711.
[2] Bojarski, B. W., Generalized solutions of a system of differential equations of the first order and elliptic type with discontinous coefficients, Mat. Sb. (N.S.) 43(85) (1957), 451-503 (Russian).
[3] Iwaniec, T., L^{p}-theory of quasiregular mappings. Quasiconformal Space Mappings A collection of surverys 1960-1990. Lectures Notes in Math. 1508, Springer-Verlag, 1992.
[4] H. Renelt, Generalized powers in the theory of (ν, μ)-solutions, Ann. Univ. Mariae Curie-Sklodowska Sect. A 40 (1986), 217-235.
[5] _, Elliptic Systems and Quasiconformal Mappings, J. Wiley \& Sons, New York, 1988.
[6] _, An integral formula for the derivatives of solutions of certain elliptic systems, Ann. Polon. Math. 54 (1991), 45-57.
[7] , Mean value properties of solutions of Cauchy-Riemann systems, Ann. Univ. Mariae Curie-Sklodowska Sect. A 50 (1996), 201-211.
[8] , Reihenentwicklungen für Lösungen Cauchy-Riemannscher Differentialgleichungssysteme, Mitt. Math. Seminar Giessen Heft 228 (1996), 31-38.
[9] Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.

Fachbereich Mathematik und Informatik received February 11, 1998 Martin-Luther-Universität Halle-Wittenberg D-06099 Halle/S

[^0]: 1991 Mathematics Subject Classification. Primary 30G20, 35B05, Secondary 30C62.

