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Abstract. This article aims at proving the inclusion (0.3) and the identity 
(0.4). They provide information on quasisymmetric automorphisms of the 
unit circle and their eigenvalues.

0. Introduction. Let T be a Jordan arc or a Jordan curve in the ex­
tended complex plane C and let Hom(r) be the family of all homeomorphic 
self-mappings of T. A homeomorphism £ of a subarc I of the unit cir­
cle T := {z £ C : |z| = 1} onto T is said to be a parametrization of T. 
We call a homeomorphism 7 G Hom(r) to be sense-preserving and write 
7 € Hom+(r) if there exist a G Hom(T) and a parametrization £ : I —> T 
such that 7 o £ = £ o <7 on I and each continuous branch of arg<r(e,t) is an 
increasing function of t G R.
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Assume now that T is a Jordan curve or arc which is locally rectifiable. 
We denote by £°(r) the class of all real-valued functions defined on T 
that are Lebesgue measurable with respect to the arc length measure | • |i- 
We adopt the standard notations £1(T) and Z/°°(r) for the classes of all 
functions in L°(r) that are integrable (with respect to | • |i) and essentially 
bounded on T, respectively. The functional || •Hoc,

H/lloo := ess sup |/(z)| , f G I°(r) ,
*er

is a pseudo-norm on the linear space Z/°°(r). We say that a function f : 
r —» R is locally integrable on T and write f £ iL(r) if / € !'(/) for 
every compact subarc I £ Arc°°(r), where Arc6(r) stands for the set of all 
subarcs I C T such that 0 < |/|i < Ó, 0 < 6 < oo. For every f € £|0C(r) set

//:= w//(2)|d21, /eArc°°(r)’

for the average of f over I and define

IIZII.,5 := sup {j-y- \f(z) - fi\\dz\ : I £ Arc6(r)} , 6 > 0 .

The functional || • ||» := || • ||«,oo is a pseudo-norm on the spaces 

BMO(r) := {/ G LUO : ||/||. < oo}

and
VMO(r) := {/ G BMO(T) : lim ||/||.,6 = 0} ,o—►0+

and for every f £ BMO(T), ||/||» = 0 iff f is a constant function almost ev­
erywhere (a.e.) on T. We recall that a function f £ BMO(T) (/ £ VMO(T)) 
is said to be of bounded (vanishing) mean oscillation on T. For a survey of 
the properties of the spaces BMO(T) and VMO(T) in cases T = R,T we 
refer the reader to [G, Chapter VI]. We introduce the classes HBMO(r) 
and HVMO(r) of all 7 £ Hom+(r) absolutely continuous on T such that 
l°g|7z| € BMO(r) and log |-y'| £ VMO(T), respectively. Here and subse­
quently, f'(z) denotes the derivative of a function f : T —► R at z £ T,
i.e.,

/(z) := limT9U-+Z
/(u) - f(z) 

u — z
provided the limit exists, while f'(z) := 0 otherwise. It is evident that the 
function p, : HBMO(r) x HBMO(r) —♦ R defined by

P.(7i»72) := = ||logH|-logM. , 71,72 € HBMO(r) ,
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is a pseudo-metric on HBMO(r). Since A°°(r) C BMO(T), we may con­
sider the space

HBMO°°(r) := cl„. ({7 G HBMO(r) : log |7'| € A°°(r)}) ,

where cle(A) stands for the closure of A C X in the pseudo-metric p on the 
space X.

Following Beurling and Ahlfors [BA], for M > 1 we define the class 
QS(T; A/) of all 7 G Hom+(r) such that the inequality 

(o.i) |/"ii < w'li

holds for all adjacent closed subarcs I', I" C T satisfying 0 < |/'|i = |/"|i < 
00, where I' and I" are said to be adjacent if the set I' D I" consists of 
one or two points. A homeomorphism 7 € QS(T) := Um>i QS( T; Af) (resp. 
7 6 QS(T;Af)) is said to be a quasisymmetric automorphism (resp. M- 
quasisymmetric automorphism) of T.

For K > 1 let Q(T;A') be the class of all 7 G Hom+(T) such that 7 
has a A'-quasiconformal extension to the unit diskD := {2 G C : |2| < 1} 
and write Q(T) := [J;<>1 Q(T; A'). By the properties of quasiconformal 
mappings (see [LV]), the functional r,

r(7i,72) := inf {log A : 7l o 771 g Q(T; A')} , 71,72 G Q(T) ,

is a pseudo-metric on Q(T) called the Teichmiiller pseudo-metric. As shown 
by Krzyż in [K], Q(T) = QS(T). Moreover, modifying suitably the proof of 
[K, Thm. 2] (see [P3, p. 68]) and applying Lehtinen’s estimate [L, Thm. 1] 
we obtain

(0.2) QS(T;A1) C Q(T;min{M3/2,2M - 1}) C Q(T;M2) .

Let HA(T) be the class of all 7 G Hom+(T) such that 7 has a conformal 
extension to an open annulus containing T. We study the relationship 
between the classes HA(T), HVMO(T) and clT(HA(T)). Our main aim is 
to prove the inclusion

(0.3) HVMO(T) C clT(HA(T)) ;

see Theorem 2.4. Thus we provide the detailed proof of [P3, Thm. 3.4.7], 
which completes the discussion in [P3, Section 3.4]. As an application of 
(0.3), we obtain the identity

(0.4) A; = A7, 7 G HVMO(T) ,
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(see Corollary 2.5), where A* and A7 are the sets of all eigenvalues and 
spectral values of 7, respectively, defined by means of the generalized har­
monic conjugation operator Ay introduced in [Pl]. For the definitions of 
eigenvalues and spectral values of 7 € Q(T) the reader is referred to [P2, 
Definitions 1.1 and 1.2] or [P3, Definitions 3.2.2 and 3.2.1].

The considerations presented in this paper are based on an unpublished 
part of the author’s Ph.D. thesis, whose one of the referees was Professor 
E. Złotkiewicz.

1. The class HBMO°°(R). In this section we study properties of the class 
HBMO°°(R) that turn out to be useful in the later discussion. In partic­
ular we establish the inclusion HBMO°°(R) C QS(R). Our considerations 
require the following John-Nirenberg theorem; cf. [JN], also see [G, p. 230].

Theorem 1.1. There exist constants C, c > 0 such that for every function 
J € BMO(R) and every interval I € Arc°°(R) the inequality

l{i e / : |/(i) - Al > Mil < C|/|, exp (~j)) 

holds for all A > 0.

Lemma 1.2. Suppose that f € BMO(R) and I 6 Arc°°(R). If ||/||» < c/2, 
then

I'll

(1-1) C + 1 - 2Cc-

<(2Cc-1||/||. + l)|/|1<(C+l)|/|1,

where C and c are the constants in Theorem 1.1.

Proof. For A > 0 let Ą := {Z € / : |/(Z) - fi\ > A}. Theorem 1.1 shows 
that

IMi < C|/|i exp , A > 0 .

Hence by the the assumption ||/||* < c/2 we obtain

(1-2)
exp |/(Z) - fr\dt = j (exp \f(t) - fj\ - T)dt + |/|,

r r°°
= /(/ eAdA)dt + |'|i= / eA|Ą|K*A + |/|, 

J1 Jo Jo



Eigenvalues of Quasisymmetric Automorphisms ... 125

<(2Cc-1||/||. + 1)1/1! < (C + l)|/|i .

If g : I —> R is a positive function then the Schwarz inequality shows that

and consequently

L^dt-'ii'U,sWdt') ■

Setting g(i) exp |/(t) - t £ /, we conclude from (1.2) that

Combining this with (1.2) we obtain (1.1). □

Theorem 1.3. Given g £ BMO(R) and h E L°°(R), suppose that a home- 
omorphism y £ Hom+(R) is absolutely continuous on R and satisfies

(1.3) log7'(Z) =/(t) := p(t) + h(t) for a.e. t £ R .

If Hffll, < c/2, then

(1.4) 7eQS(R;(2Cc-1||p||, + l)2e4|l3l|-e2|1/l|l“) ,

where C and c are the constants in Theorem 1.1. In particular, HBMO°°(R) C 
QS(R).

Proof. Since 7 £ Hom+(R) is absolutely continuous on R,

17(7)1! = J \^t)\dt = J, e^dt , I £ Arc°°(R).

Given a pair of adjacent closed intervals I' and /" with 0 < |/'|i = 
|/"|i < 00 let I I1 U I". From (1.3) and Lemma 1.2 it follows that

|7(/")|1= [ e9^eh^dt< I ew^e9(t}dt 
Ji" Ji"

<ell'lll~e^'(2Cc-1||<z||, + l)|/"|x
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and

|7(/')|i = y eMeh{ł}dt> I e-^e^dt 

>e-IIMooe3,.(2Cc-1||5||. + l)-1|/'|1

Since \gi> — gjn \ < 4||ff||» (see [G, p. 223]), the above inequalities imply

< (2Cc-1||ff||. + i)2e^'-a/-e2HMIoo 

<M := (2Cc-11|5||, + l)2e4M.e2ll'‘lloo ,

so that 7 is an AZ-quasisymmetric automorphism, and consequently the 
inclusion (1.4) holds.

By definition, for every 7 G HBMO°°(R) there exist h G Z/°°(R) and 
g G BMO(R) satisfying ||<7||, < c/2and(1.3). Then (1.4) yields the inclusion 
HBMO°°(R) C QS(R). □

Given 7 G Hom(R) assume that 7-1 is absolutely continuous on R. Then 
for every measurable function f : R —> R the composed function f 0 7 is 
measurable on R as well and the mapping

(1.5) L°(R) 9 / ~ / 0 7 G L°(R)

is linear. If 7 G HBMO(R), then by definition, |log7'(t)| < 00 for a.e. 
t G R, and hence 7z(t) > 0 for a.e. t G R. This means that the inverse 
homeomorphism 7-1 is absolutely continuous on R and (1.5) defines a self­
mapping of £°(R). Moreover, the Jones result [J, Thm.] leads us to

Lemma 1.4. If 7 G HBMO°°(R), then the mapping (1.5) is a linear home­
omorphism of the space BMO(R) onto itself, i.e., there exists a positive 
constant cy such that

(1.6) c;1 ll/H. < 11/ 0 7||. < cj/ll. , / G BMO(R) .

Proof. By definition, there exist g G BMO(R) and h G L°°(R) satisfying 
(1.3) and ||flr||* < c/4. Let I C R, 0 < |/|i < 00, be a closed interval and 
let E C I be a measurable set. Given a subset A C R we denote by xa 
the characteristic function of A, i.e., XaW := 1 if t G A and A>(C := 0 if
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t E R \ A. Combining Theorem 1.1 with the Schwarz inequality we obtain
f r / rlslO-3/1 \

y (exp |sr(ż) - gi\ - l)dt - J [J e^dAjdt

= L fi^XE^dt) dx

< < VC|/|!'2|£|!'2 jTexp dX

^i/i;/2iEii/2 -2- iigii,

c-2|M|.
< ^|/|11/2|£|11/2 ,

where C and c are the constants in Theorem 1.1 and

Ą := {/ 6 / : - 5/1 > A}.
Hence,

(1.7) [ exp(5(t))dZ < (y/C + 1)exp(5/)|/|}/2|£|J/2 ,

because |2?|l < |/|i- From Lemma 1.2 it follows that

(1-8) exp(g(t))dt > (C + I)-1 exp(5/)|/|i .

Since 7'(<) = exp(5(t)) exp(fi(t)) for a.e. t £ R, it follows that

exp( — ||/t||oo) exp(5(t)) < 7*(<) < expdl/iHoo) exp(5(t)) for a.e. t € R •

Combining this with (1.7) and (1.8) we obtain

l7(^)|i = [ exp(5(t))exp(h(t))d<
Je

< exp(||/i||oo)(v/C + l)exp(fif;)|/|}/2|£|}/2

and
|7(/)|i = Jexp(5(t))exp(/i(Z))d/ > exp(-||h||oo)(C + I)-1 exp(5/)|/|i . 

Consequently,
< exp(2||A||„)(VC + 1)(C + 1)(^)1/2 •

Thus 7 induces the measure /z7, n-y(E) := |7(£)|i for every Borel set E C R, 
which belongs to the so called Muckenhoupt class A^; cf. [G, p. 264] for the 
definition of A^. Applying [J, Thm.] and the Banach invertible operator 
theorem we obtain the assertion of the lemma. □
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Theorem 1.5. If 7 € HBMO°°(R) and if tj € HBMO(R), then 77 0 7 £ 
HBMO(R) and p o 7-1 € HBMO(R). Moreover, for every sequence 
7„ e HBMO(R), n e N,

(1.9) p»(7„, 7) —> 0 as n —» 00 => p„(7n 0 7_1, idR) —> 0 as n —> 00 ,

where id% stands for the identity operator on X.

Proof. Fix 7 € HBMO°°(R) and 77 € HBMO(R). Evidently, the composi­
tion 7707 belongs to Hom+(1R) and is absolutely continuous on R. Moreover, 
Lemma 1.4 implies

log |(q 0 7)'! = log |q' 0 7| + log |7*| = (log |q'|) 0 7 + log |7'| e BMO(R) ,

which means that

(1.10) 7707 e HBMO(R) .

As we noticed just before Lemma 1.4, the homeomorphism 7-1 belongs to 
Hom+(R) and is absolutely continuous on R. Applying Lemma 1.4 once 
again we see that

log 1(77 °7_1)'| = log jV7-!! = (los to'l - los br'l)0 7"1 e bmo(r) ,
|7 °7 I

and consequently

(1.11) 7707-1 e HBMO(R) .

Assume a sequence 7„ € HBMO(R), n € N, satisfies p»(7n,7) —> 0 as 
n —► 00. Combining (1.10) and (1.11) with (1.6) we obtain

p.(7n°7 1»idR) = ||log |(7„ 0 7 ^'Hl. = log
l7n°7 -ll

|7'°7_1I

= II(log Kl) 0 7"1 - (log |7'l) 0 7-1 II. = II(log |7ńl - log 17*1) 0 7-11 

< c^lllogbńl -logb'lll. = <^P.(7n,7) -* 0 , 71 —> OO ,

which proves (1.9). □
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2. The class HVMO(T). In this section we establish our main results, 
that deal with the class HVMO(T); see Theorems 2.3, 2.4 and Corollary 
2.5. For z = x + iy € C+ := {w € C : Im w > 0} set

*v(®) := -~Im“ = 
7T Z

i y
7T X2 + 7/2

The function C+ 9 z i-+ € R is the familiar Poisson kernel for the
upper half plane C+. For every f 6 BMO(R),

/
+oo

-OO

1/(01
1 + t2

dt < oo

so that the function t t-+ Py(x — t)/(t) belongs to L^R) for all x € R and 
y > 0, and we may define

r+oo
Py*f(x):= / Py(x - t)f(t)dt , pO,ieR.

J — oo

To study the class HVMO(T) we need the following characterization of the 
space VMO(R); cf. [G, p. 250].

Theorem 2.1. For every f € BMO(R) the following conditions are equiv­
alent:

(i) f 6 VMO(R);
(ii) IIPy * f - /||» -» 0, as J/ -> 0+;

(iii) There exists a sequence fn € BMO(R), n € N such that each func­
tion fn is uniformly continuous on R and ||/n — /||* —» 0 as n —>• oo.

Each 7 € Hom+(T) defines a unique 7 E Hom+(R) satisfying 0 < 7(0) < 
2x and

(2.1) 7(e<ł) = «**«> , t € R ,

called the angular parametrization or the lifted mapping of 7. By (2.1), 7 
satisfies

(2-2) 7(t + 27r) = 7(t) + 27T , t E R .
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Lemma 2.2. If 7 G HBMO(T), then 7 G HBMO(R) and 

(2-3) < />•(»?,7) < 3/5.(t?,7) , *7,7 € HBMO(T) .

In particular, y G HBMO°°(R) n HVMO(R) whenever y G HVMO(T).

Proof. For f G BMO(T) let /(Z) := f(eił), t G R. Fix f G BMO(T) and 
assume

(2-4) = 0 .

Given a closed interval I C R assume that 27r < |/|i < 00. Then I = I' U I", 
where I' and I" are adjacent closed intervals such that 0 < |/"| < 2zr and 
11'\ — 2nir for some n G N. It follows that

< J7j^ (^ l/WI* + I l/fl<« + I I/O) - Mdt + I \J,.. - f,\dt\ 

- 7[7IIZII‘ + W'll/Il‘+ |7h (|r|ll?'1 + |/”1,17'" ■ 7'0

+ 2»|/,|

< IIZII. + j^l J, 7(0*1 < IIZII. +2 • py; • ś T’ 5 3|lzl1-

Since »,2ir — ,, it follows that

(2-5) ll/ll. < H/ll. < 3||/||, ,

provided (2.4) holds. If f does not satisfy (2.4), then f = (/ - a) + a 
with a := (27r)-1 /Q2 r/(eu)dZ. Since f — a G BMO(T) and (2.4) holds

with f replaced by f - a, we conclude from (2.5) that ||/||. = \\f - a||» < 
3||/ — a||» = 311/11». Therefore (2.5) holds for every f G BMO(T).

If 7 G HBMO(T), then / := log |-yz| G BMO(T) satisfies (2.5). Therefore 
7 G HBMO(R) by the equality 7' = |'y/|. Given 77,7 G HBMO(T) set
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f := log |t/'| - log |7Z|. Since f E BMO(T) and f = log f/' — logY, we deduce 
(2.3) from (2.5).

Assume now that 7 E HVMO(T). As shown above, 7 E HBMO(R). 
Since for 0 < 6 < 27T,

II l°g7'l|.,« = II log 17*111*,« 0 , as 6 -> 0+ ,

it follows that 7 E HVMO(R). Moreover, by (2.2) the function Py*(log7') is 
27T-periodic and continuous on R, and hence Py * (log 7') E L°°(R) for each 
y > 0. Then Theorem 2.1 shows that 7 E HBMO°°(R), which completes 
the proof. □

We are now in a position to prove our main results.

Theorem 2.3. The inclusion HVMO(T) C QS(T) holds and the pseudo­
metric p» is stronger than the Teichmiiller pseudo-metric r, i.e. for all 
7,7n G HVMO(T), n E N,

(2.6) P»(7n,7)-*0 as n -> 00 => r(7n,7)-»0 as n -+ 00 ,

Proof. Let 7 E HVMO(T). By Lemma 2.2,7 E HBMOCO(R), and Theorem 
1.3 gives 7 E QS(R). Hence 7 E QS(T), which is clear from (2.1) and (0.1). 
Assume that a sequence 7„ E HVMO(T), n E N, satisfies p»(7n,7) —»■ 0 as 
n —> 00. By Lemma 2.2, 7„ E HBM0°°(T), n E N, and

P.(7n,7) < 3p»(7„,7) -> 0 asn->oo.

Theorem 1.5 now shows that

||log(7„ °7_1)'l|. = P.(7n 0 7_1,idR) -* 0 as n 00 .

Hence by Theorem 1.3 there exists a sequence Mn > 1, n E N, such that 
7n 0 7_1 € QS(R;A/n), n E N, and Mn -» 1 as n ->• 00. Moreover, from 
(2.1) we see that for each n E N the identity

7n O 7_1(C = 7n 0 7_1(<) + Skn’T ,

holds with some integer kn. Applying now (0.1) we obtain 7„ 0 7_1 E 
QS(T; A/n), n E N. Then (0.2) implies that

r(7n,7) < l°g Mn 0 as n —► 00 ,

which proves (2.6). □
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Theorem 2.4. *) The classes HA(T), HVMO(T) and QS(T) satisfy

(2.7) HA(T) C clp.(HA(T)) = HVMO(T) C clT(HA(T)) C QS(T).

Proof. By definition, each 7 6 HA(T) has a conformal extension v to 
an annulus fi D T. Hence for every z € T, |7/(2)| = |u/(z)| > 0, and so 
l°g|7z| € VMO(T) as a continuous function. Thus 7 € HVMO(T), and the 
inclusion

(2.8) HA(T) C HVMO(T)

holds. Fix 7 € HVMO(T). For every n £ N, define

Qn(^) := 2 T~i 7 ’ 2 ®^l/n 1
7T nLzl + 1 '

where R£ := {z £ C : | Im 2| < £}, £ > 0. By Lemma 2.2, the function 

R 9 / /(Z) := log |7'(e“)| = log7'(Z) £ R

belongs to BMO(R). Then for all n £ N and z € Ri/n the function 

R 9 t i-f Qn(z - T) log |7'(e‘1)| £ C

is integrable on R and we may define

Qn(z - Z) log |7'(e“)|dZ, z £ Ri/n-
>

Given n 6 N the function Qn * / is analytic on the strip Ri/n and so is the 
function crn : Rj/n —> C,

crn(z) := cn / exp(Q„ * /(w))dw , z 6 R1/n ,
Jo

where the integral is taken along the line segment [0,2] and “In/cn :=
Jo v exp(Qn * /(Z))dZ. Moreover, for all z £ Ri/„,

rOO rOO

Qn*f(z+2n) = / Qn(z+2tr—Z)/(Z)dZ = / Qn(z-T)f(t+2ir)dt = Q„*/(z),

Qn */(•?):= I Qn(z ~ = I

^This theorem implies [P3, Thm. 3.4.7].
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and consequently

(2-9)
z+2ir

w

an(z + 27t) = cn exp(Qn* f(w))dw

Since

(2.10) ct^z) = cnexp(Qn * /(x)) > 0 , igR,

we conclude from (2.9) that there exists en such that 0 < £„ < 1/n and

Re a^(z) > 0 , 2 6Rtn .

Therefore the mapping an is conformal on the strip R£n and by (2.9) so is 
the mapping on the annulus fi£n, where for each n e N,

wn(z) := exp(ttrn(—t log z)) and z £ Q£„ := {z e C : | log |z| | < £„} .

Since u>„(eu) = e'a"W for t € R and n 6 N, we conclude from (2.10) that 
each function an is increasing on R, and so

(2-11) 7n := wn|T G HA(T) , n € N .

Moreover, the identity

(2.12) 17^)1 = <(*) , *€R,

holds for every n € N. By our assumption, log |7'| € VMO(T) and Lemma 
2.2 gives / € VMO(R). Since Qn(x) = P\/n(x) for x G R, we conclude from 
(2.10), (2.12), Lemma 2.2 and Theorem 2.1 that

P.(7n,7) < p.(7n,7) = I|log^n-log7'l|. = IIQn * f ~ f\\» -* 0 , n OO . 

Thus 7 e cl„.(HA(T)) by (2.11), and so

(2.13) HVMO(T) C cl„.(HA(T)).
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Let now 7 € clp,(HA(T)). From (2.13) it follows that there exists a sequence 
7„ € HA(T), n € N, such that p*(7„,7) —> 0 as n —> 00. Then Theorem 2.3 
shows that r(7„,7) —> 0 as n —► oo, and so 7 € clT(HA(T)). Thus

(2.14) HVMO(T) C clT(HA(T)) C QS(T) .

By (2.8) and by Lemma 2.2, 7,7,, € HVMO(R) for n € N and

II log linl - log I5'l II* = p*(7n,7) < 3p,(7n,7) -*0 as n —► 00 .

Moreover, each function log I is uniformly continuous on R being contin­
uous and periodic. Theorem 2.1 now shows that log |-y,| G VMO(R), and so 
7 6 HVMO(T). Therefore

(2.15) cl,.(HA(T)) C HVMO(T) .

Combining the inclusions (2.8) and (2.13)—(2.15) we obtain (2.7), which is 
our claim. □

Corollary 2.5. If 7 € HVMO(T), then A* = A7. In particular, if y 6 
HVMO(T) \ Q(T; 1), then A; / 0.

Proof. The equality A* = A7 follows from the inclusion (2.14) and [P2, 
Thm. 2.1]; also cf. [P3, Corollary 3.4.5]. If 7 € Q(T) \ Q(T; 1), then [P2, 
Thm. 1.4] (also see [P3, Corollary 3.2.7] and [KP, (3.6)]) shows that A7 / 0, 
which completes the proof. □
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