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Abstract. This paper considers the question of what conditions on the 
a-fractional derivative of a function analytic in the open unit disk imply 
the function is bounded. Therein result gives such a condition expressed in 
terms of a geometric quantity about the range of the fractional derivative.

In this paper conditions are obtained about the fractional derivative of 
an analytic function implying that the function is bounded in the open unit 
disk. The range of the fractional derivative is assumed to be contained in 
a simply connected domain, and the conditions are given in terms of that 
domain. The arguments depend on properties of conformal mappings and 
the Ahlfors’ distortion theorem provides the crucial step in the analysis. 
This approach also was used by F. Rpnning and the first author in [3], 
where the boundedness of the analytic function was derived from properties 
of its logarithmic derivative.

Let A = {z G C : |^| < 1}. Suppose that the function f is analytic in A 
and let

OO

(i) /(-*) = 52 °n*n
n=0
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for |z| < 1. Suppose that a > 0 and let k denote the greatest integer in a. 
The operator Da is defined by

(2) P-/W = £ r(" + ° + 1)W"
' n! n=0

for |^| < 1, where T denotes the gamma function. If a is a positive integer 
then k = a and hence

°° / , 1 OO

Daf(z) - 52 ~n; qn+fcZn = 52 - U • • • (m - - l))amzm~k
n=0 m=k

= f(k\z), the fcth derivative of f.

Daf may be viewed as the o-fractional derivative of /. There are a number 
of definitions of fractional derivative and an historical survey of this concept 
is given in [5]. One definition in terms of power series is due to Hadamard 
and is given by

oo ,
(3) = z-«Z^_OnZn.

n=0 v 7

We want Da f to be analytic in A. Besides doing that (2) is a convenient 
definition for obtaining the results in this paper. Other definitions in terms 
of the Taylor coefficients which yield a sequence having essentially the same 
asymptotic expansion as that given by (2) would yield similar results.

We begin by inverting the relation / w Daf given by (2). To do this we 
need the following known formula from the theory of hypergeometric series.

(4) -t)a~ltndt = T(o)n! 
r(n + o + l)

for o > 0 and n = 1,2,3,... . From (2) we obtain

- t)*-1 Da f(tz)dt ■E
n=0

f(n + 0 + 1) 
n! “n+fc tndtzn

OO

= r(o)£a„+fczn.
n=0

Therefore
k-l

f(z) = ^2anzU +

n=0

fc rl
— / (1 - t}a~'Da fftzjdt. 
«) Jo

2
n

(5)
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(6)

For 0 < r < 1, define D(r) = D(r;f,a) by

I Z?(r) = max |£>“/(z)|
|2|<»-

This inequality and (5) yield the following result. 

Lemma 1. If a > 0 and

then f is bounded.

Henceforth it is assumed that the range of Daf is contained in a simply 
connected domain ft and ft C. This is the same as the assumption that 
the range of Daf avoids some unbounded continuum.

Let G denote the unique conformal mapping of A onto ft such that 
G(0) = r(ct + l)afc and G'(0) > 0. Since (7(0) = Da/(0), these conditions 
imply that Da f is subordinate to G in A. For 0 < r < 1, let

(8) M(r) = max|G(z)|.

The subordination implies that

0) £>(r) < Af(r)

for 0 < r < 1 [1, p.191]. Lemma 1 and (9) yield the following result. 

Lemma 2. If a > 0 and

(10)

then f is bounded.

(1 - /)“ 1 Af(t)d/ < oo ,
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Theorem 1. If a > 2 and £)"/(A) C fl where fl is a simply connected 
domain and fl C, then f is bounded.

Proof. The assumptions imply that Da f is subordinate to the function G 
described above. Because G is analytic and univalent in A 

(11) |G(Z)| < |G(0)| + ^hLjlCWI

for |z| < 1 [1, p.33]. Hence |G(.z)| < for some constant A > 0. This
implies

[ (1 -t)a~'M(t)dt < A I (l-t)a~3dt.
Jo Jo

The last integral is finite because a > 2. Thus (10) holds and consequently 
f is bounded.

□
In what follows the question of the boundedness of / is considered in the 

case 0 < a < 2. Conditions on fl will be obtained which imply (10).
Assume that fl is an unbounded Jordan domain and that the origin is 

on dft. By the Caratheodory extension theorem, G extends continuously to 
A and there are unique points zo and on dA such that G(zo) = 0 and 
G(zoo) = oo. We choose the normalization z^ = 1.

The points 0 and oo break up dQ. into two Jordan curves which are 
denoted T- and T+. Let T be a Jordan curve with endpoints 0 and oo all 
of who other points belong to fl. For each R > 0 there is an arc denoted 
7r which is contained in fl (7 {w : |w| = R}, meets T and has one endpoint 
on r- and the other oint on T+. It is assumed that except possibly for 
isolated values of R there is a tangent to dfl at each endpoint of yn and 
these tangents are not tangent to the circle {w : |w| — R}. Let f(7Z) denote 
the length of 7/? and let </>(/?) = l(R)fR. Then <f>(R) is the angular variation 
of 7R-

Theorem 2. Suppose that 0 < a < 2, D01/^) C fl and fl is a simply 
connected domain having the properties described above. If

f°° 1
(12) I —-—■ J fy 1 — ydy < oo

7i y?(j/) exp{Q7T // ^ydx}

then f is bounded.

Proof. There are complex numbers c and d such that |c| = 1 and |d| < 1 
and the Mobius transformation

1 + dz(13)
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satisfies r(l) = 1 and t(zo) = — 1. From

, lr,..,2 (1 - |rf|2)(i - M2) 
1_|rWI -—uTEp—

it follows that
i - K(*)| i - M i - M 
l-H -l + |r(^)|- 2

Hence

<(14)
i - k(*)l i - \z

for |z| < 1, where A is a constant.
For |z| < 1, let w = G(z) and ( = logw. The composition z w ( 

gives a conformal mapping of A onto a domain 4>. The boundary of $ 
consists of two curves denoted A- and A+ which correspond to T- and r+, 
respectively, and every vertical line intersects For each R (0 < R < oo) 
the image of ~fR under the map w i-> ( is a fine segment denoted 0S with 
s = log R and -oo < s < oo. If 0(s) denotes the length of 0S then 0(s) = 
ę?(72). Except possibly for isolated values of s, at each endpoint of 0S there 
are tangents to d\~ and dA+ and these tangents are not vertical. It follows 
that 0 is continuous except possibly for isolated values of s [4, p.93].

For |z| < 1, let a(z') = log[(l + t(z))/(1 - t(z))]. Then z a gives 
a conformal mapping of A onto the strip S = {<r : | Im <r| < 7t/2}. The 
composition of the maps w>-*z, z*-*t and r t-> a yields a
conformal mapping of 4> onto S, which is denoted g. Let a0 be a fixed real 
number and choose £o € 0a,. For |z| < 1 and z sufficiently close to 1 the 
corresponding ( belongs to 0a with a > ao. Let Ro = ea° and R — ea. Then

A. 0(5) JR. Jr, 2ttz 2tt e Ro

Since the last quantity exceeds 2 for |.z| < 1 and z sufficiently close to 1, 
Ahlfors’ distortion theorem is applicable [4, p.97]. Therefore

(15) Re[<7«) - 0«o)] > ds — 47T

Since Res«) = log |(1 + r(^))/(l - r(z))| < log[2/|l - r(z)|], (14) implies 
that Re#(<) < log[l/( 1 - |^|)] + B for some constant B. Hence (15)

1
0(s)

ds < — log 7T
1

i-l*l
+ c(16)
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for some constant C. Inequality (16) is equivalent to

zR

(17) 1 J 1 , 1——-dx < - log ------
X(fi[X) 7T 1 — r

+ C,

and thus (17) holds for |z| < 1 and z sufficiently near 1, where r = |2| and 
R = |G(z)|.

For each r (0 < r < 1) there is a unique number y = y(r) such that 
y > Ro and

(18)
r i , i, i/ -log“----- + C-

JR. cy?(a;) 7r ° 1 — r 

If (18) is solved for 1 — r and dr/dy is computed, we find that

dr irea^c(l-r)«->J/- =
dy </>(y)

exp dx

except possibly for a discrete set of values of r. This equality and the 
assumption (12) imply that

(19) Z (1 — r)a 1t/(r)dr < oo . 
Jo

We have R = |G(z)| < y(r) for z € A sufficiently near 1. Also G is 
bounded in A\{z : |z — 1| < e} for each £ (0 < £ < 1). Thus (19) implies 
fo(l — r)“_1 M(r)dr < oo. Hence Lemma 2 yields the conclusion that f is 
bounded.

□
We note that in the cases a = 1 and a = 2 Theorem 2 gives a condition 

about the range of /' and f" which implies / is bounded.
When the angular variation is nondecreasing, Theorem 2 takes on a 

more simplified form. Specifically, suppose that is nondecreasing on [6, oo) 
for some b > 0. Then for y > b we have

j: x<p(x)
dx > i , y 

<p(y) gb

Hence

M*) J - 1 J

f 1
. a?r JR' M*)
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Since <p is nondecreasing and bounded above (by 27r), lim <p(j/) exists.
y—>oo

Hence from the inequality above we see that

/
oo

< QO

implies (12). This shows that when <p is nondecreasing (20) implies that / 
is bounded.

Theorem 3 below is a converse of Theorem 2 valid for domains ft which are 
symmetric and sufficiently smooth. Specifically, assume that ft is symmetric 
with respect to the real axis and that for each R (0 < R < oo) the set 
ft n {w : |w| = R} is a single arc, which is still denoted 7r. Also suppose 
that the angular variation ip is differentiable and there is a constant N such 
that

(2i) kmi < j

for 0 < 71 < oo.
Theorem 3. Suppose that 0 < a < 2 and ft is a domain having the 
properties stated above. If

(22) / V’(lt) exp{Q7r // dy-°°

then there is an analytic function f such that Da /(A) C ft and f is un
bounded.

Proof. Let G denote the conformal mapping of A onto ft such that 
G(0) = 1 and G'(0) > 0. Let G(z) = bnzn for |z\ < 1 and de
fine f by where & is the greatest integer in a and an =
[(n - fc)!/r(n - k + a + l)]b„_fc for n = k,k + I,... . Then Daf = G and 
from (5) we obtain

(23) /(z) = (1 - t)“ 1G(t2)dt.

We consider the various mappings defined in the proof of Theorem 2 and 
use the same notation. The image of ft under the map to k (is a domain 
$ which is symmetric with respect to the real axis, and every vertical line 
{( : Re( = s} meets 4> in exactly one line segment 6S. The length of 6S
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is 0(s) = Since s = log R, we have = R^fe and hence (21) is the
same as

(24) |0'(s)| < N

for — oo < s < oo. The curves T- and r+ which form d$ now are given by 
v = -0(s)/2 and v = 0{s)/2 where v — Im£.

Since Q is symmetric with respect to the real axis, G(0) is real and <j'(0) 
is real a simple argument about G(i) shows that G(z) is real when z is real. 
Let h : A —> $ denote the map z i-> (. Then h(z) is real when z is real, /i(A)
is convex in the direction of the imaginary axis, lim2_,_i Re/i(z) = —oo 

»eA
and lim2_i Re/i(z) = oo. Therefore h belongs to the class of functions
studied by W. Hengartner and G. Schober in [2]. A consequence of this 
membership, shown in [2], is that for each r (0 < r < 1) the domain 
h({z : |z| < r}) is convex in the direction of the imaginary axis. This 
property of h({z : |^| < r}) and the fact this domain is symmetric with 
respect to the real axis implies that

(25) max Re h(z) = Re /i(r) 
kl<r

for every r (0 < r < 1). Since w = G(z) and £ = h(z) = logw, we have 
|G(z)| = exp[Re/i(2)]. Hence (25) shows that

(26) max |G(z)| = G(r)
!«!<’•

for every r (0 < r < 1).
As in the proof of Theorem 2, let g be the conformal mapping of fl onto 

the strip S. A theorem of S. Warschawski [6] yields the following inequality

(27) Re[ff«) - s«0)]

< Ti- I ^r\dx + 7zl dz + 12?r(l 4-A2)
" Ja, 0(®) 12 Ja, 0(x) V 1

where (, (0, a, and a0 have the meaning as before. This uses (24). The 
condition (24) also implies

L a
0(z)

dx < N2 r~Ja, dx < N2 log 2n
0(ao)
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Hence (27) shows that

(28) Re </«) < tt [a -L-dx +A
J a. ^x)

for some constant A.
Let t be defined by (13). Since r(l) = 1 and t is differentiable at 1 we 

have |1 + r(r)| >1/2 and |1 - r(r)| < B(1 - r) for r sufficiently close to 1 
(0 < r < 1), where B is a positive constant. Hence for £ corresponding to 
such r,

1 + r(r)
Reff«) = log 1 - r(r)

This inequality and (28) imply that

(29)
r i J i, i
/ or^dx - ~log i— + c Ja. 0(x) * 1 - r

for r sufficiently close to 1, where C is some constant. This inequality is 
equivalent to

f —

Jr. x(p(x(30) , 1 , 1,dx > - log -------- h C .
) 7T 1 - r

For each r define y = y(r) by

ry i ii(31) / —7-^dx = - log ------ + C.
xip{x) tt 1 - r

Then j/(r) < R = |G(r)| = G(r). Using the argument given directly after 
(18) we see that (31) and (22) yield

(32) [ (1 - r)“ }y(r)dr = oo . 
Jo

Since G(r) > y(r), (26) and (32) imply that

(33) I (1-r)a~1M(r)dr = oo. 
Jo

An easy consequence of (33) is that

(34) lim f (1 — M(tr)dt = oo .

From (23), (34) and Af(r) = G(r) we obtain lim^j- /(r) = oo. Therefore 
f is not bounded.
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