## ANNALES

## UNIVERSITATIS MARIAECURIE-SKLODOWSKA LUBLIN - POLONIA

VOL. LII. 1, 6
SECTIO A
1998

## DAVID J. HALLENBECK

## Multipliers of Cauchy Integrals of Logarithmic Potentials II*

Dedicated to Professor Eligiusz Zlotkiewicz on the occasion of his 60th birthday

Abstract. Let $\Gamma=\{z:|z|=1, z \in \mathbb{C}\}$ and $\Delta=\{z:|z|<1, z \in \mathbb{C}\}$. For each function $f: \Gamma \rightarrow \mathbb{C}$ and for each real numbers $t$ and $s$ define

$$
D(f ; t, s)=f\left(e^{i(t-s)}\right)-2 f\left(e^{i t}\right)+f\left(e^{i(t-s)}\right) .
$$

We prove that if $f \in H^{\infty}$ and $I(t)=\int_{-\pi}^{\pi} \frac{|D(f ; t, 0)|}{s^{2}}\left[\log \frac{2 \pi}{|\cdot|}\right] d s$ is integrable on $[-\pi, \pi]$, then $f$ is a multiplier of the class of analytic Cauchy integrals of logarithmic potentials on $\Delta$.

1. Introduction. Let $\Delta=\{z: \mid z<1, z \in \mathbb{C}\}$ and let $\mathbb{T}=\{z:|z|=1$, $z \in \mathbb{C}\}$. Let $\mathcal{M}$ denote the set of complex-valued Borel measures on $\mathbb{T}$. Let $\mathcal{F}_{0}$ denote the family of functions $f$ having the property that there exists a measure $\mu$ on $\mathcal{M}$ such that

$$
\begin{equation*}
f(z)=f(0)+\int_{T} \log \left(\frac{1}{1-\bar{x} z}\right) d \mu(x) \tag{1}
\end{equation*}
$$

1991 Mathematics Subject Classification. Primary 30E20, Secondary 30D99.
Key words and phrases. Multipliers, Cauchy transform, logarithmic potential.

- This work was completed while the author was on a sabbatical leave from the University of Delaware.
for $|z|<1$. In (1) and throughout this paper each logarithm means the principal branch. $\mathcal{F}_{0}$ is a Banach space with respect to the norm defined by $\|f\|_{\mathcal{F}_{0}}=\inf \{\|\mu\|\}+|f(0)|$ where $\mu$ varies over all measures in $\mathcal{M}$ for which (1) holds. A function $f$ is called a multiplier of $\mathcal{F}_{0}$ if $f g \in \mathcal{F}_{0}$ for every $g$ in $\mathcal{F}_{0}$.

Let $M_{o}$ denote the set of multipliers of $\mathcal{F}_{0}$. In [2] it was proved that if $f^{\prime} \in H^{p}$ for some $p>1$ then $f \in M_{o}$ while $f^{\prime} \in H^{1}$ is not sufficient for $f \in M_{o}$. In [3] it was proved that $\int_{0}^{1} \log \frac{1}{1-r} \int_{-\pi}^{\pi}\left|f^{\prime \prime}\left(r e^{i \theta}\right)\right| d \theta d r<+\infty$, for $f$ analytic on $\Delta$, implies $f \in M_{0}$. Finally in [4] an example was constructed of a function $f \in M_{o}$ which is not continuous in $\bar{\Delta}$. In this paper we generalize the theorem from [3] mentioned above. For each function $f: \mathbb{T} \rightarrow \mathbb{C}$ and for each real numbers $t$ and $s$ define $D(f ; t, s)=f\left(e^{i(t+s)}\right)-2 f\left(e^{i t}\right)+f\left(e^{i(t-s)}\right)$.

The following theorem is the main result of this paper.
Theorem 1. Suppose $f \in H^{\infty}$ and $I(t)=\int_{-\pi}^{\pi} \frac{|D(f ; t, s)|}{s^{2}}\left[\log \frac{2 \pi}{|s|}\right] d s$. If $\int_{-\pi}^{\pi} I(t) d t<+\infty$, then $f \in M_{0}$.

## 2. Preliminary lemmas.

Lemma 1. Suppose $0<t \leq \pi$ and $x \geq 2$. Then there exists a constant $C_{1}$ such that

$$
\begin{equation*}
\log \frac{\pi x}{t} \leq C_{1} \frac{\log x}{t} \tag{2}
\end{equation*}
$$

Proof. Note that for $0<t \leq \pi$ and $x \geq 2$ we have

$$
\begin{equation*}
\frac{t \log \frac{\pi x}{t}}{\log x}=\frac{t \log \pi}{\log x}+t-\frac{t \log t}{\log x} \leq \frac{\pi \log \pi}{\log 2}+\pi+\frac{|t \log t|}{\log 2} \tag{3}
\end{equation*}
$$

It is easily verified that $|t \log t| \leq \pi \log \pi$ on $0<t \leq \pi$ and so we infer from (3) that (2) holds with $C_{1}=(2 \pi \log \pi) /(\log 2)+\pi$.

Lemma 2. Let

$$
I(\beta, \gamma, t)=\int_{0}^{1} \frac{(1-r)^{\beta} \log \frac{1}{1-r}}{\left|1-r e^{i t}\right|^{\gamma+1}} d r
$$

and suppose $\beta>-1$ and $\gamma \geq \beta+1$. Then there exists a constant $C_{2}$ such that

$$
\begin{equation*}
I(\beta, \gamma, t)=I(\beta, \gamma) \leq C_{2} \frac{[\log 2 \pi /|t|]}{|t|^{\gamma-\beta}} \text { for } 0<|t| \leq \pi \tag{4}
\end{equation*}
$$

Proof. Since $I(\beta, \gamma, t)=I(\beta, \gamma,-t)$ for $0<|t| \leq \pi$ we may assume that $0<t \leq \pi$. Then $\left|1-r e^{i t}\right|^{2}=1-2 r \cos t+r^{2}=(1-r)^{2}+4 r \sin ^{2} \frac{t}{2} \geq$ $(1-r)^{2}+4 r^{2} t^{2} / \pi^{2}$ for $0 \leq r<1$. Hence

$$
\begin{equation*}
I(\beta, \gamma) \leq \int_{0}^{1} \frac{(1-r)^{\beta} \log \frac{1}{1-r}}{\left[(1-r)^{2}+\frac{4 r^{2} t^{2}}{\pi^{2}}\right]^{(\gamma+1) / 2}} d r \equiv J(\beta, \gamma) \tag{5}
\end{equation*}
$$

The change of variables $x=(2 t) / \pi \cdot r /(1-r)$ yields $1 /(1-r)=1+\pi x / 2 t$ and $d r=(\pi / 2 t)(1-r)^{2} d x$ and so

$$
\begin{equation*}
J(\beta, \gamma)=\frac{\pi}{2 t} \int_{0}^{\infty} \frac{\left(1+\frac{\pi x}{2 t}\right)^{\delta} \log \left(1+\frac{\pi x}{2 t}\right)}{\left(1+x^{2}\right)^{\frac{\gamma+1}{2}}} d x \tag{6}
\end{equation*}
$$

where $\delta=\gamma-\beta-1>0$.
For $\gamma \geq 1$ we have $1+\gamma \leq 2 \gamma$ and so $1+(\pi / 2)(x / t) \leq 1+\pi / t \leq 2 \pi / t$ for $0 \leq x \leq 2$. Likewise for $x \geq 2$ we have $1+(\pi / 2)(x / t) \leq \pi x / t$. Hence

$$
\begin{align*}
J(\beta, \gamma) & \leq \frac{\pi}{2 t} \int_{0}^{2}\left(\frac{2 \pi}{t}\right)^{\delta} \frac{\log \frac{2 \pi}{t}}{\left(1+x^{2}\right)^{\frac{\gamma+1}{2}}} d x \\
& +\frac{\pi}{2 t} \int_{2}^{\infty}\left(\frac{\pi x}{t}\right)^{\delta} \frac{\log \frac{\pi \pi}{t}}{\left(1+x^{2}\right)^{\frac{\gamma+1}{2}}} d x  \tag{7}\\
& =\frac{\pi(2 \pi)^{\delta}}{2 t^{\delta+1}} \log \left(\frac{2 \pi}{t}\right) \int_{0}^{2} \frac{1}{\left(1+x^{2}\right)^{\frac{\gamma+1}{2}}} d x \\
& +\frac{\pi^{\delta+1}}{2 t^{\delta}} \int_{2}^{\infty} \frac{x^{\delta} \log \frac{\pi x}{t}}{\left(1+x^{2}\right)^{\frac{\gamma+1}{2}}} d x
\end{align*}
$$

Using (4) we infer from (7) that

$$
\begin{align*}
J(\beta, \gamma) & \leq \frac{\pi(2 \pi)^{\delta}}{2 t^{\delta+1}} \log \left(\frac{2 \pi}{t}\right) \int_{0}^{2} \frac{1}{\left(1+x^{2}\right)^{\frac{\gamma+1}{2}}} d x  \tag{8}\\
& +\frac{\pi^{\delta+1} C_{1}}{2 t^{\delta+1}} \int_{2}^{\infty} \frac{x^{\delta} \log x}{\left(1+x^{2}\right)^{\frac{\gamma+1}{2}}} d x
\end{align*}
$$

Now $1 \leq 2 \log [2 \pi / t]$ for $0<t \leq \pi$ and so (8) yields

$$
\begin{align*}
J(\beta, \gamma) & \leq \frac{\pi(2 \pi)^{\delta}}{2 t^{\delta+1}} \log \left(\frac{2 \pi}{t}\right) \int_{0}^{2} \frac{1}{\left(1+x^{2}\right)^{\frac{\gamma+1}{2}}} d x  \tag{9}\\
& +\frac{\pi^{\delta+1}}{t^{\delta+1}} C_{1} \log \left(\frac{2 \pi}{t}\right) \int_{2}^{\infty} \frac{x^{\delta} \log x}{\left(1+x^{2}\right)^{\frac{\gamma+1}{2}}} d x
\end{align*}
$$

Since $\gamma+1-\delta=\beta+2>1$ the last integral in (9) is finite.
Note also that $\delta+1=\gamma-\beta$. Define

$$
C_{2}=\frac{\pi(2 \pi)^{\delta}}{2} \int_{0}^{2} \frac{1}{\left(1+x^{2}\right)^{\frac{\gamma+1}{2}}} d x+\pi^{\delta+1} C_{1} \int_{2}^{\infty} \frac{x^{\delta} \log x}{\left(1+x^{2}\right)^{\frac{\gamma+1}{2}}} d x .
$$

Now (5) and (9) imply (4) for $0<t \leq \pi$ which gives (4) for $0<|t| \leq \pi$.

Lemma 3. If $f \in H^{\infty}$ then there exists a constant $C_{3}$ such that

$$
\begin{align*}
& \int_{-\pi}^{\pi}\left(\int_{0}^{1} \log \frac{1}{1-r}\left|f^{\prime}\left(r e^{i t}\right)\right| d r\right) d t \\
& \quad \leq C_{3} \int_{-\pi}^{\pi}\left(\int_{-\pi}^{\pi} \frac{\left|\log \frac{2 \pi}{|s|}\right|}{|s|^{2}}|D(f ; t, s)| d s\right) d t . \tag{10}
\end{align*}
$$

Proof. It was shown in [5] that if $f \in H^{\infty}$ then

$$
\begin{equation*}
\left|f^{\prime}\left(r e^{i t}\right)\right| \leq \frac{1}{\pi} \int_{0}^{\pi}\left\{\frac{(1-r)^{2}+s^{2}}{\mid 1-r e^{\left.i s\right|^{4}}}\right\}|D(f ; t, s)| d s \tag{11}
\end{equation*}
$$

We infer from (11) that

$$
\begin{align*}
& \int_{0}^{1} \log \frac{1}{1-r}\left|f^{\prime}\left(r e^{i t}\right)\right| d r \\
& \quad \leq \frac{1}{\pi} \int_{0}^{\pi}\left[\int_{0}^{1} \frac{(1-r)^{2} \log \frac{1}{1-r}}{\left|1-r e^{i s}\right|^{4}} d r\right]|D(f ; t, s)| d s  \tag{12}\\
& \quad+\frac{1}{\pi} \int_{0}^{\pi} s^{2}\left[\int_{0}^{1} \frac{\log \frac{1}{1-r}}{\left|1-r e^{i s}\right|^{4}} d r\right]|D(f ; t, s)| d s .
\end{align*}
$$

Note that (4) and (12) yield constants $A_{2}$ and $A_{3}$ such that

$$
\int_{-\pi}^{\pi}\left(\int_{0}^{1} \log \frac{1}{1-r}\left|f^{\prime}\left(r e^{i t}\right)\right| d r\right) d t
$$

$$
\begin{equation*}
\leq \frac{1}{\pi} \int_{-\pi}^{\pi}\left[\int_{0}^{\pi}\left(\int_{0}^{1} \frac{(1-r)^{2} \log \frac{1}{1-r}}{\left|1-r e^{i s}\right|^{4}} d r\right)|D(f ; t, s)| d s\right] d t \tag{13}
\end{equation*}
$$

$$
\begin{aligned}
& +\frac{1}{\pi} \int_{-\pi}^{\pi}\left[\int_{0}^{\pi} s^{2}\left(\int_{0}^{1} \frac{\log \frac{1}{1-r}}{\mid 1-r e^{\left.i s\right|^{4}}} d r\right)|D(f ; t, s)| d s\right] d t \\
& \leq \frac{1}{\pi} \int_{-\pi}^{\pi}\left[\int_{0}^{\pi} A_{2} \frac{\log \frac{2 \pi}{|s|}}{|s|}|D(f ; t, s)| d s\right] d t \\
& +\frac{1}{\pi} \int_{-\pi}^{\pi}\left[\int_{0}^{\pi} A_{3} s^{2} \frac{\log \frac{2 \pi}{|s|}}{|s|^{3}}|D(f ; t, s)| d s\right] d t
\end{aligned}
$$

Since $1 / s \leq \pi / s^{2}$ for $0<s \leq \pi$ and $\frac{\log 2 \pi /|s|}{|s|^{2}}|D(f ; t, s)|$ is an even function of $s,(13)$ implies (10) with $C_{3}=\left(A_{2}+A_{3}\right) / \pi$.

Lemma 4. Let $f \in H^{\infty}$ and set $z=r e^{i t}$. Then there exists a constant $C_{4}$ such that

$$
\begin{align*}
& \int_{-\pi}^{\pi}\left(\int_{0}^{1} \log \frac{1}{1-r}\left|f_{t t}\left(r e^{i t}\right)\right| d r\right) d t \\
& \quad \leq C_{4} \int_{-\pi}^{\pi}\left[\int_{-\pi}^{\pi} \frac{\log \frac{2 \pi}{|s|}}{|s|^{2}}|D(f ; t, s)| d s\right] d t \tag{14}
\end{align*}
$$

Proof. Let $P(r, s)$ denote the Poisson kernel. We have [1, p.77] $f_{t t}(z)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} P_{s s}(r, s) D(f ; t, s) d s$. Hence

$$
\begin{equation*}
\left|f_{t t}(z)\right| \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|P_{s s}(r, s) \| D(f ; t, s)\right| d s \tag{15}
\end{equation*}
$$

where $P_{s s}(r, s)=\left(1-r^{2}\right)\left[\frac{8 r^{2} \sin ^{2} s}{\left(1-2 r \cos s+r^{2}\right)^{3}}-\frac{2 r \cos s}{\left(1-2 r \cos s+r^{2}\right)^{2}}\right]$.
Since $\left|P_{s s}(r, s)\right| \leq \frac{16 s^{2}(1-r)}{\left|1-r e^{i j}\right|^{6}}+\frac{4(1-r)}{\left|1-r e^{1 \cdot}\right|^{1}}$, we have

$$
\begin{align*}
\int_{0}^{1} \log \frac{1}{1-r}\left|P_{s s}(r, s)\right| d r & \leq 16 s^{2} \int_{0}^{1} \frac{(1-r) \log \frac{1}{1-r}}{\mid 1-r e^{\left.i s\right|^{6}}} d r  \tag{16}\\
& +4 \int_{0}^{1} \frac{(1-r) \log \frac{1}{1-r}}{\left|1-r e^{i s}\right|^{4}} d r
\end{align*}
$$

Now (16) and two applications of (4) give constants, say $A_{4}$ and $A_{5}$, such that
(17) $\int_{0}^{1} \log \frac{1}{1-r}\left|P_{s s}(r, s)\right| d r \leq 16 s^{2} A_{4} \frac{\log \frac{2 \pi}{|s|}}{|s|^{4}}+4 A_{5} \frac{\log \frac{2 \pi}{|s|}}{|s|^{2}} \leq A_{6} \frac{\log \frac{2 \pi}{|s|}}{|s|^{2}}$
where $A_{6}=16 A_{4}+4 A_{5}$. It follows from (15) and (17) that

$$
\begin{align*}
& \int_{0}^{1} \log \frac{1}{1-r}\left|f_{t t}\left(r e^{i t}\right)\right| d r \\
& \quad \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\int_{0}^{1} \log \frac{1}{1-r}\left|P_{s s}(r, s)\right| d r\right)|D(f ; t, s)| d s  \tag{18}\\
& \quad \leq \frac{A_{6}}{2 \pi} \int_{-\pi}^{\pi} \frac{\log \frac{2 \pi}{|s|}}{|s|^{2}}|D(f ; t, s)| d s
\end{align*}
$$

If we let $C_{4}=A_{6} / 2 \pi$ then (18) implies (14).

Proof of Theorem 1. Suppose $f \in H^{\infty}$ and $z=r e^{i t}$, then we have $f^{\prime \prime}(z)=\frac{1}{z^{2}}\left\{i f_{t}(z)-f_{t t}(z)\right\}$. Fix $r_{0}$ in $(0,1)$. Then if $r_{0} \leq r<1$, since $\left|f_{t}(z)\right| \leq\left|f^{\prime}(z)\right|$ we have

$$
\begin{equation*}
\left|f^{\prime \prime}(z)\right| \leq \frac{1}{r_{0}^{2}}\left\{\left|f_{t}(z)\right|+\left|f_{t t}(z)\right|\right\} \leq \frac{1}{r_{0}^{2}}\left\{\left|f^{\prime}(z)\right|+\left|f_{t t}(z)\right|\right\} \tag{19}
\end{equation*}
$$

It follows from (10), (14) and (19) that

$$
\begin{align*}
\int_{-\pi}^{\pi} & \left(\int_{r_{0}}^{1} \log \frac{1}{1-r}\left|f^{\prime \prime}\left(r e^{i \ell}\right)\right| d r\right) d t \\
& \leq \frac{1}{r_{0}^{2}} \int_{-\pi}^{\pi}\left(\int_{r_{0}}^{1} \log \frac{1}{1-r}\left|f^{\prime}\left(r e^{i t}\right)\right| d r\right) d t \\
& +\frac{1}{r_{0}^{2}} \int_{-\pi}^{\pi}\left(\int_{r_{0}}^{1} \log \frac{1}{1-r}\left|f_{t t}\left(r e^{i t}\right)\right| d r\right) d t \\
& \leq \frac{C_{3}}{r_{0}^{2}} \int_{-\pi}^{\pi}\left(\int_{-\pi}^{\pi} \frac{\log \frac{2 \pi}{|s|}}{|s|^{2}}|D(f ; t, s)| d s\right) d t  \tag{20}\\
& +\frac{C_{4}}{r_{0}^{2}} \int_{-\pi}^{\pi}\left(\int_{-\pi}^{\pi} \frac{\log \frac{2 \pi}{|s|}}{|s|^{2} \mid}|D(f ; t, s)| d s\right) d t \\
& =\frac{C_{3}+C_{4}}{r_{0}^{2}} \int_{-\pi}^{\pi}\left(\int_{-\pi}^{\pi} \frac{\log \frac{2 \pi}{|s|}}{|s|^{2}}|D(f ; t, s)| d s\right) d t
\end{align*}
$$

Recalling that $I(t)=\int_{-\pi}^{\pi} \frac{|D(f ; t, s)|}{s^{2}}\left[\log \frac{2 \pi}{|s|}\right] d s$ we see that (20) and our assumption that $I(t)$ is integrable implies that

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left(\int_{0}^{1} \log \frac{1}{1-r}\left|f^{\prime \prime}\left(r e^{i t}\right)\right| d r\right) d t<+\infty \tag{21}
\end{equation*}
$$

It follows from Theorem 1 in [3] that $f \in M_{0}$.

## References

[1] Duren, P. L., Theory of $H^{p}$ Spaces, Academic Press, New York, 1970.
[2] Hallenbeck, D. J. and K. Samotij, On Cauchy integrals of logarithmic potentials and their multipliers, J. Math. Anal. Appl. 174 (1993), 614-634.
[3] _, Multipliers of Cauchy integrals of logarithmic potentials, Mathemateka 42 (1995), 397-405.
[4] , The growth of derivatives of multipliers of Cauchy transforms of logarithmic potentials, Journal of the Technical University of Plovdiv 22 (1996), 21-27.
[5] Luo, D. and T. MacGregor, Multipliers of fractional Cauchy transforms and smoothness condition, Canad. J. Math. (to appear).

Department of Mathematical Sciences received September 9, 1997 University of Delaware Newark, Delaware 19716

