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Abstract. Let T = {z : |z| = 1, z £ C} and A = {z : |z| < 1, z £ C) . For 
each function f : T —♦ C and for each real numbers t and s define

D(P, t, z) = - 2/(e“) + /(«’<*—>).

We prove that if f £ H°° and /(t) = ffT [log ds is integrable
on [—7r, ?r], then f is a multiplier of the class of analytic Cauchy integrals of 
logarithmic potentials on A.

!• Introduction. Let A = {z : \z < 1, z £ C} and let T = {z : |z| = 1, 
z € C). Let Ad denote the set of complex-valued Borel measures on T. Let 

denote the family of functions f having the property that there exists a
measure /z on Ad such that
(!) /(z) = /(O) + log Q d/z(«)
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for |z| < 1. In (1) and throughout this paper each logarithm means the 
principal branch. Jo is a Banach space with respect to the norm defined by 
||/||>r0 = inf {||p||} + |/(0)| where // varies over all measures in M for which 
(1) holds. A function / is called a multiplier of Jo if fg E Jo for every g 
in Jo.

Let Mo denote the set of multipliers of Jo- In [2] it was proved that if 
f 6 Hp for some p > 1 then / € Mo while f 6 IIx is not sufficient for 
/ E Mo. In [3] it was proved that log JJ* \ f"(retS)\d0dr < +oo, for / 
analytic on A, implies / E Mo. Finally in [4] an example was constructed of 
a function / € Mo which is not continuous in A. In this paper we generalize 
the theorem from [3] mentioned above. For each function f : T —► C and for 
each real numbers t and s define D(f; t,s) = /(ed<+s))-2/(eu) + /(e^t-,l).

The following theorem is the main result of this paper.

Theorem 1. Suppose f E H°° and I(t) = f**. [log jjj] ds. If
f** I(t)dt < +oo, then f E Mo.

2. Preliminary lemmas.

Lemma 1. Suppose 0 < t < ir and x > 2. Then there exists a constant C\ 
such that

(2)
, TTX „ log#bg-yiC.-f-

Proof. Note that for 0 < t < 7r and x > 2 we have

(3)
Zlog^jr t log 7T tlogt TTlogTT |tlogt|+ t - ------  S —----- — + 7T +log X log X log x log 2 log 2

It is easily verified that |t log t| < 7rlog7r on 0 < t < 7r and so we infer from 
(3) that (2) holds with C\ = (27rlog7r)/(log2) + tt.

Lemma 2. Let

/(/?, = / 

Jo

1 (1 ~ r/logfi? 
|1 - re‘t|7+1

dr

and suppose (3 > — 1 and 7 > /3 + 1. Then there exists a constant Ci such 
that

(4) = for 0 < |(| < r.
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Proof. Since Z(/?,7,Z) = I((3,i,— Z) for 0 < |Z| < tt we may assume that 
0 < t < 7T. Then |1 - rełt|2 = 1 - 2rcosZ + r2 = (1 — r)2 + 4rsin2 | > 
(1 — r)2 + 4r2Z2/7r2 for 0 < r < 1. Hence

(5) WM)< I
Jo

1 > (l-r/logTZ7
[(1 _ r)2 + 4r»Pj('Y+1)/2

dr = J((3,i).

The change of variables x = (2t")/Tr • r/(l — r) yields 1/(1 — r) = 1 + irx/2t 
and dr = (7r/2<)(l — r)2dx and so

(6) ""-Łf

where 0 = 7 — (3 — l>0.
For 7 > 1 we have 1 + 7 < 27 and so 1 + (7r/2)(x/Z) < 1 + n/t < 2k/t for 
0 < x < 2. Likewise for x > 2 we have 1 + (7r/2)(x/Z) < Kx/t. Hence

(7)

</(/3,7) < 2t
log2*

7T [°° (KX\

+ 2t J2 vT)
7t(27T)5

t ) (1 + z2)1*’ 

4 log2/

dx

2ts+' log

TT^1 r°° 
+ 2Z4 J2

Using (4) we infer from (7) that

(8)

(1 + x2) 
2(?)/.

^logV

(1 + i2)

AM) < ^Srr-log

+

2Z<5+1

TT4*1!?!
2Z5+1 /:

dx

1

(1 + X2)

„ T + 1 2t~
dx.

dx

(l + x2)—
x6 log X

L+i7 + 1(1 + X2)V

Now 1 < 21og[27r/Z] for 0 < t < 7r and so (8) yields

dx.

-dx

TT5*1 
Z«+l '

•■(?)/'

74-1(1 + X2)V 

° Xs log x

dx

(1 + x2)
dx.

0)
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Since 7 + I — <$ = /3 + 2>l the last integral in (9) is finite. 
Note also that 6 + 1 = 7 — (3. Define

C2
7r(27r)0 r2 1 rc/ ----------—+ 7ti5+1C'i /

Jo (I 4- x2} 2 Ji
xs log X 

y+1 dx.
2 Jo (l + x2)^ ' " 1J2 (l + X2)2^

Now (5) and (9) imply (4) for 0 < t < 7r which gives (4) for 0 < |Z| <

Lemma 3. If f £ H00 then there exists a constant C3 such that

(10)

Proof. It was shown in [5] that if f 6 H°° then 

(1 - r)2 +a2 1(11) l/W‘)l<^’{-

We infer from (11) that

|1 — re'is 14 |D(/;f,s)|ds.

(12)

/ log^-|/'(re«)|dr 
Jo 1 - r

<1 " [ [' (1.7
7T

+ ir* Jo

0 |1 — re*s |4

J/1
dr

\D(f;t,s)\ds

\D(f;t,s)\ds.|1 — re*s|4

Note that (4) and (12) yield constants A2 and X3 such that

(13)
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1
+ - 

7T

42—j-j^|P(/;/,s)|dó

A3s

2?r

dt

^°gAD(f-t,S)\dS dt.

Since 1/s < ir/s2 for 0 < s < tt and 1^^^1|D(/; t, s)| is an even 
function of s, (13) implies (10) with C3 = (A2 + A^)/^.

Lemma 4. Let f £ H°° and set z = rext. Then there exists a constant C4 
such that

(14)

Proof. Let P(r, s) denote the Poisson kernel. We have [1, p.77]
ftt(z) = 27 flirpss{r,s)D(f-,t,s)ds. Hence

(!5) !/«(*)! < |P«(r,s)||£>(/;t,s)|ds

where PJS(r,s) = (1 - r2 8r2 sin2 a__
(1 —2r cos s+r2)3

2rcoss
(1—2r cos s+r2)2 J ‘

Since |P„(r,s)| < fr(e\,ft + |ffre.r?|4, we have

r L(16)
log------ \Ps,(r,s)\dr < 16s'

1 — r
1 (1 - r)logT^

|1 - re is 16 dr

+ 4
(l-r)logT^ 

|1 —re*s|4

Now (16) and two applications of (4) give constants, say X4 and A5, such 
that

(V) // .og + < a6!^
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where A$ = I6A4 + 44s. It follows from (15) and (17) that

/ logy-^—|/«(re’‘)|dr 
Jo i — r

(18) "2?/ log Y^l^(r,5)|^ |£>(/;i,s)|ds

If we let C4 = Ae/2ir then (18) implies (14).

Proof of Theorem 1. Suppose f € H°° and z = re,{, then we have 
/"(•?) = £ {t/t(^) - M*)}- Fix r0 in (0,1). Then if r0 < r < 1, since 
l/t(£)l < |/'(*)| we have

(w) irwi < 4 +I/..MU < 4 {i/'wi+•
"0 ”0

It follows from (10), (14) and (19) that
/_’,(£ losT^l/"(re“)|,ir)‘“

s4£(I'logT£|z'(rei‘)l£‘w

■os is(20)

+

- -,2
Co

'0 J-ir

+ 2i
I 9

'0

M2

M2

|D(/;t,s)|dsJ dt 

\D(f',t,s)\ds I dt

Recalling that I(t) =

Co + C4 ” lo8^ 
H2

\D(f-,t, s)|ds I dt.

log ds we see that (20) and our
assumption that /(/) is integrable implies that

(21) LU log —|/"(re’t)|dr^ dt < +00.

It follows from Theorem 1 in [3] that f € Mo-
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