ANNALES

UNIVERSITATIS MARIAE CURIE – SKLODOWSKA LUBLIN – POLONIA

VOL. L II. 1, 6

SECTIO A

DAVID J. HALLENBECK

Multipliers of Cauchy Integrals of Logarithmic Potentials II*

Dedicated to Professor Eligiusz Złotkiewicz on the occasion of his 60th birthday

ABSTRACT. Let $\Gamma = \{z : |z| = 1, z \in \mathbb{C}\}$ and $\Delta = \{z : |z| < 1, z \in \mathbb{C}\}$. For each function $f : \Gamma \to \mathbb{C}$ and for each real numbers t and s define

$$D(f;t,s) = f(e^{i(t-s)}) - 2f(e^{it}) + f(e^{i(t-s)}).$$

We prove that if $f \in H^{\infty}$ and $I(t) = \int_{-\pi}^{\pi} \frac{|D(f(t,s))|}{s^{2}} \left[\log \frac{2\pi}{|s|} \right] ds$ is integrable on $[-\pi, \pi]$, then f is a multiplier of the class of analytic Cauchy integrals of logarithmic potentials on Δ .

1. Introduction. Let $\Delta = \{z : | z < 1, z \in \mathbb{C}\}$ and let $\mathbb{T} = \{z : | z | = 1, z \in \mathbb{C}\}$. Let \mathcal{M} denote the set of complex-valued Borel measures on \mathbb{T} . Let \mathcal{F}_0 denote the family of functions f having the property that there exists a measure μ on \mathcal{M} such that

(1)
$$f(z) = f(0) + \int_{\mathbb{T}} \log\left(\frac{1}{1 - \overline{x}z}\right) d\mu(x)$$

Key words and phrases. Multipliers, Cauchy transform, logarithmic potential.

1998

¹⁹⁹¹ Mathematics Subject Classification. Primary 30E20, Secondary 30D99.

^{*}This work was completed while the author was on a sabbatical leave from the University of Delaware.

for |z| < 1. In (1) and throughout this paper each logarithm means the principal branch. \mathcal{F}_0 is a Banach space with respect to the norm defined by $||f||_{\mathcal{F}_0} = \inf \{||\mu||\} + |f(0)|$ where μ varies over all measures in \mathcal{M} for which (1) holds. A function f is called a multiplier of \mathcal{F}_0 if $fg \in \mathcal{F}_0$ for every g in \mathcal{F}_0 .

Let M_o denote the set of multipliers of \mathcal{F}_0 . In [2] it was proved that if $f' \in H^p$ for some p > 1 then $f \in M_o$ while $f' \in H^1$ is not sufficient for $f \in M_o$. In [3] it was proved that $\int_0^1 \log \frac{1}{1-r} \int_{-\pi}^{\pi} |f''(re^{i\theta})| d\theta dr < +\infty$, for f analytic on Δ , implies $f \in M_o$. Finally in [4] an example was constructed of a function $f \in M_o$ which is not continuous in $\overline{\Delta}$. In this paper we generalize the theorem from [3] mentioned above. For each function $f: \mathbb{T} \to \mathbb{C}$ and for each real numbers t and s define $D(f;t,s) = f(e^{i(t+s)}) - 2f(e^{it}) + f(e^{i(t-s)})$.

The following theorem is the main result of this paper.

Theorem 1. Suppose $f \in H^{\infty}$ and $I(t) = \int_{-\pi}^{\pi} \frac{|D(f;t,s)|}{s^2} \left[\log \frac{2\pi}{|s|} \right] ds$. If $\int_{-\pi}^{\pi} I(t) dt < +\infty$, then $f \in M_o$.

2. Preliminary lemmas.

Lemma 1. Suppose $0 < t \le \pi$ and $x \ge 2$. Then there exists a constant C_1 such that

(2)
$$\log \frac{\pi x}{t} \le C_1 \frac{\log x}{t}.$$

Proof. Note that for $0 < t \le \pi$ and $x \ge 2$ we have

(3)
$$\frac{t\log\frac{\pi x}{t}}{\log x} = \frac{t\log\pi}{\log x} + t - \frac{t\log t}{\log x} \le \frac{\pi\log\pi}{\log 2} + \pi + \frac{|t\log t|}{\log 2}.$$

It is easily verified that $|t \log t| \le \pi \log \pi$ on $0 < t \le \pi$ and so we infer from (3) that (2) holds with $C_1 = (2\pi \log \pi)/(\log 2) + \pi$.

Lemma 2. Let

$$I(\beta, \gamma, t) = \int_0^1 \frac{(1-r)^\beta \log \frac{1}{1-r}}{|1-re^{it}|^{\gamma+1}} dr$$

and suppose $\beta > -1$ and $\gamma \ge \beta + 1$. Then there exists a constant C_2 such that

(4)
$$I(\beta,\gamma,t) = I(\beta,\gamma) \le C_2 \frac{\left[\log 2\pi/|t|\right]}{|t|^{\gamma-\beta}} \quad \text{for} \quad 0 < |t| \le \pi$$

Proof. Since $I(\beta, \gamma, t) = I(\beta, \gamma, -t)$ for $0 < |t| \le \pi$ we may assume that $0 < t \le \pi$. Then $|1 - re^{it}|^2 = 1 - 2r\cos t + r^2 = (1 - r)^2 + 4r\sin^2 \frac{t}{2} \ge (1 - r)^2 + 4r^2t^2/\pi^2$ for $0 \le r < 1$. Hence

(5)
$$I(\beta,\gamma) \le \int_0^1 \frac{(1-r)^\beta \log \frac{1}{1-r}}{\left[(1-r)^2 + \frac{4r^2t^2}{\pi^2}\right]^{(\gamma+1)/2}} dr \equiv J(\beta,\gamma).$$

The change of variables $x = (2t)/\pi \cdot r/(1-r)$ yields $1/(1-r) = 1 + \pi x/2t$ and $dr = (\pi/2t)(1-r)^2 dx$ and so

(6)
$$J(\beta,\gamma) = \frac{\pi}{2t} \int_0^\infty \frac{\left(1 + \frac{\pi x}{2t}\right)^\delta \log\left(1 + \frac{\pi x}{2t}\right)}{(1 + x^2)^{\frac{\gamma+1}{2}}} dx$$

where $\delta = \gamma - \beta - 1 > 0$.

For $\gamma \ge 1$ we have $1 + \gamma \le 2\gamma$ and so $1 + (\pi/2)(x/t) \le 1 + \pi/t \le 2\pi/t$ for $0 \le x \le 2$. Likewise for $x \ge 2$ we have $1 + (\pi/2)(x/t) \le \pi x/t$. Hence

$$\begin{aligned} J(\beta,\gamma) &\leq \frac{\pi}{2t} \int_{0}^{2} \left(\frac{2\pi}{t}\right)^{\delta} \frac{\log \frac{2\pi}{t}}{(1+x^{2})^{\frac{\gamma+1}{2}}} dx \\ &+ \frac{\pi}{2t} \int_{2}^{\infty} \left(\frac{\pi x}{t}\right)^{\delta} \frac{\log \frac{\pi x}{t}}{(1+x^{2})^{\frac{\gamma+1}{2}}} dx \\ &= \frac{\pi (2\pi)^{\delta}}{2t^{\delta+1}} \log \left(\frac{2\pi}{t}\right) \int_{0}^{2} \frac{1}{(1+x^{2})^{\frac{\gamma+1}{2}}} dx \\ &+ \frac{\pi^{\delta+1}}{2t^{\delta}} \int_{2}^{\infty} \frac{x^{\delta} \log \frac{\pi x}{t}}{(1+x^{2})^{\frac{\gamma+1}{2}}} dx. \end{aligned}$$

Using (4) we infer from (7) that

(8)
$$J(\beta,\gamma) \leq \frac{\pi (2\pi)^{\delta}}{2t^{\delta+1}} \log\left(\frac{2\pi}{t}\right) \int_{0}^{2} \frac{1}{(1+x^{2})^{\frac{\gamma+1}{2}}} dx$$
$$+ \frac{\pi^{\delta+1}C_{1}}{2t^{\delta+1}} \int_{2}^{\infty} \frac{x^{\delta} \log x}{(1+x^{2})^{\frac{\gamma+1}{2}}} dx.$$

Now $1 \le 2\log[2\pi/t]$ for $0 < t \le \pi$ and so (8) yields

(9)
$$J(\beta,\gamma) \leq \frac{\pi (2\pi)^{\delta}}{2t^{\delta+1}} \log\left(\frac{2\pi}{t}\right) \int_{0}^{2} \frac{1}{(1+x^{2})^{\frac{\gamma+1}{2}}} dx \\ + \frac{\pi^{\delta+1}}{t^{\delta+1}} C_{1} \log\left(\frac{2\pi}{t}\right) \int_{2}^{\infty} \frac{x^{\delta} \log x}{(1+x^{2})^{\frac{\gamma+1}{2}}} dx$$

Since $\gamma + 1 - \delta = \beta + 2 > 1$ the last integral in (9) is finite. Note also that $\delta + 1 = \gamma - \beta$. Define

$$C_{2} = \frac{\pi (2\pi)^{\delta}}{2} \int_{0}^{2} \frac{1}{(1+x^{2})^{\frac{\gamma+1}{2}}} dx + \pi^{\delta+1} C_{1} \int_{2}^{\infty} \frac{x^{\delta} \log x}{(1+x^{2})^{\frac{\gamma+1}{2}}} dx$$

Now (5) and (9) imply (4) for $0 < t \le \pi$ which gives (4) for $0 < |t| \le \pi$.

Lemma 3. If $f \in H^{\infty}$ then there exists a constant C_3 such that

(10)
$$\int_{-\pi}^{\pi} \left(\int_{0}^{1} \log \frac{1}{1-r} |f'(re^{it})| dr \right) dt$$
$$\leq C_{3} \int_{-\pi}^{\pi} \left(\int_{-\pi}^{\pi} \frac{|\log \frac{2\pi}{|s|}|}{|s|^{2}} |D(f;t,s)| ds \right) dt.$$

Proof. It was shown in [5] that if $f \in H^{\infty}$ then

(11)
$$|f'(re^{it})| \leq \frac{1}{\pi} \int_0^{\pi} \left\{ \frac{(1-r)^2 + s^2}{|1-re^{is}|^4} \right\} |D(f;t,s)| ds.$$

We infer from (11) that

(12)
$$\int_{0}^{1} \log \frac{1}{1-r} |f'(re^{it})| dr$$
$$\leq \frac{1}{\pi} \int_{0}^{\pi} \left[\int_{0}^{1} \frac{(1-r)^{2} \log \frac{1}{1-r}}{|1-re^{is}|^{4}} dr \right] |D(f;t,s)| ds$$
$$+ \frac{1}{\pi} \int_{0}^{\pi} s^{2} \left[\int_{0}^{1} \frac{\log \frac{1}{1-r}}{|1-re^{is}|^{4}} dr \right] |D(f;t,s)| ds.$$

Note that (4) and (12) yield constants A_2 and A_3 such that

(13)
$$\int_{-\pi}^{\pi} \left(\int_{0}^{1} \log \frac{1}{1-r} |f'(re^{it})| dr \right) dt$$
$$\leq \frac{1}{\pi} \int_{-\pi}^{\pi} \left[\int_{0}^{\pi} \left(\int_{0}^{1} \frac{(1-r)^{2} \log \frac{1}{1-r}}{|1-re^{is}|^{4}} dr \right) |D(f;t,s)| ds \right] dt$$

$$\begin{aligned} &+ \frac{1}{\pi} \int_{-\pi}^{\pi} \left[\int_{0}^{\pi} s^{2} \left(\int_{0}^{1} \frac{\log \frac{1}{1-r}}{|1-re^{is}|^{4}} dr \right) |D(f;t,s)| ds \right] dt \\ &\leq \frac{1}{\pi} \int_{-\pi}^{\pi} \left[\int_{0}^{\pi} A_{2} \frac{\log \frac{2\pi}{|s|}}{|s|} |D(f;t,s)| ds \right] dt \\ &+ \frac{1}{\pi} \int_{-\pi}^{\pi} \left[\int_{0}^{\pi} A_{3} s^{2} \frac{\log \frac{2\pi}{|s|}}{|s|^{3}} |D(f;t,s)| ds \right] dt. \end{aligned}$$

Since $1/s \leq \pi/s^2$ for $0 < s \leq \pi$ and $\frac{\log 2\pi/|s|}{|s|^2}|D(f;t,s)|$ is an even function of s, (13) implies (10) with $C_3 = (A_2 + A_3)/\pi$.

Lemma 4. Let $f \in H^{\infty}$ and set $z = re^{it}$. Then there exists a constant C_4 such that

(14)
$$\int_{-\pi}^{\pi} \left(\int_{0}^{1} \log \frac{1}{1-r} |f_{tt}(re^{it})| dr \right) dt$$
$$\leq C_{4} \int_{-\pi}^{\pi} \left[\int_{-\pi}^{\pi} \frac{\log \frac{2\pi}{|s|}}{|s|^{2}} |D(f;t,s)| ds \right] dt.$$

Proof. Let P(r,s) denote the Poisson kernel. We have [1, p.77] $f_{tt}(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_{ss}(r,s) D(f;t,s) ds$. Hence

(15)
$$|f_{tt}(z)| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |P_{ss}(r,s)| |D(f;t,s)| ds$$

where $P_{ss}(r,s) = (1-r^2) \left[\frac{8r^2 \sin^2 s}{(1-2r\cos s+r^2)^3} - \frac{2r\cos s}{(1-2r\cos s+r^2)^2} \right].$ Since $|P_{ss}(r,s)| \le \frac{16s^2(1-r)}{|1-re^{is}|^6} + \frac{4(1-r)}{|1-re^{is}|^4}$, we have

(16)
$$\int_{0}^{1} \log \frac{1}{1-r} |P_{ss}(r,s)| dr \leq 16s^{2} \int_{0}^{1} \frac{(1-r)\log \frac{1}{1-r}}{|1-re^{is}|^{6}} dr + 4 \int_{0}^{1} \frac{(1-r)\log \frac{1}{1-r}}{|1-re^{is}|^{4}} dr.$$

Now (16) and two applications of (4) give constants, say A_4 and A_5 , such that

$$(17) \quad \int_0^1 \log \frac{1}{1-r} |P_{ss}(r,s)| dr \le 16s^2 A_4 \frac{\log \frac{2\pi}{|s|}}{|s|^4} + 4A_5 \frac{\log \frac{2\pi}{|s|}}{|s|^2} \le A_6 \frac{\log \frac{2\pi}{|s|}}{|s|^2}$$

where $A_6 = 16A_4 + 4A_5$. It follows from (15) and (17) that

(18)

$$\int_{0}^{1} \log \frac{1}{1-r} |f_{tt}(re^{it})| dr$$

$$\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\int_{0}^{1} \log \frac{1}{1-r} |P_{ss}(r,s)| dr \right) |D(f;t,s)| ds$$

$$\leq \frac{A_{6}}{2\pi} \int_{-\pi}^{\pi} \frac{\log \frac{2\pi}{|s|}}{|s|^{2}} |D(f;t,s)| ds.$$
If we let $C_{4} = A_{6}/2\pi$ then (18) implies (14).

Proof of Theorem 1. Suppose $f \in H^{\infty}$ and $z = re^{it}$, then we have $f''(z) = \frac{1}{z^2} \{ i f_t(z) - f_{tt}(z) \}$. Fix r_0 in (0,1). Then if $r_0 \le r < 1$, since $|f_t(z)| \leq |f'(z)|$ we have

(19)
$$|f''(z)| \le \frac{1}{r_0^2} \{ |f_t(z)| + |f_{tt}(z)| \} \le \frac{1}{r_0^2} \{ |f'(z)| + |f_{tt}(z)| \}.$$

It follows from (10), (14) and (19) that

$$\begin{split} &\int_{-\pi}^{\pi} \left(\int_{r_0}^{1} \log \frac{1}{1-r} |f''(re^{it})| dr \right) dt \\ &\leq \frac{1}{r_0^2} \int_{-\pi}^{\pi} \left(\int_{r_0}^{1} \log \frac{1}{1-r} |f'(re^{it})| dr \right) dt \\ &+ \frac{1}{r_0^2} \int_{-\pi}^{\pi} \left(\int_{r_0}^{1} \log \frac{1}{1-r} |f_{tt}(re^{it})| dr \right) dt \\ &\leq \frac{C_3}{r_0^2} \int_{-\pi}^{\pi} \left(\int_{-\pi}^{\pi} \frac{\log \frac{2\pi}{|s|}}{|s|^2} |D(f;t,s)| ds \right) dt \\ &+ \frac{C_4}{r_0^2} \int_{-\pi}^{\pi} \left(\int_{-\pi}^{\pi} \frac{\log \frac{2\pi}{|s|}}{|s|^2} |D(f;t,s)| ds \right) dt \\ &= \frac{C_3 + C_4}{r_0^2} \int_{-\pi}^{\pi} \left(\int_{-\pi}^{\pi} \frac{\log \frac{2\pi}{|s|}}{|s|^2} |D(f;t,s)| ds \right) dt. \end{split}$$

Recalling that $I(t) = \int_{-\pi}^{\pi} \frac{|D(f;t,s)|}{s^2} \left[\log \frac{2\pi}{|s|} \right] ds$ we see that (20) and our assumption that I(t) is integrable implies that

(21)
$$\int_{-\pi}^{\pi} \left(\int_{0}^{1} \log \frac{1}{1-r} |f''(re^{it})| dr \right) dt < +\infty.$$

It follows from Theorem 1 in [3] that $f \in M_0$.

(20)

REFERENCES

- [1] Duren, P. L., Theory of H^p Spaces, Academic Press, New York, 1970.
- [2] Hallenbeck, D. J. and K. Samotij, On Cauchy integrals of logarithmic potentials and their multipliers, J. Math. Anal. Appl. 174 (1993), 614-634.
- [3] ____, Multipliers of Cauchy integrals of logarithmic potentials, Mathemateka 42 (1995), 397-405.
- [4] _____, The growth of derivatives of multipliers of Cauchy transforms of logarithmic potentials, Journal of the Technical University of Plovdiv 22 (1996), 21-27.
- [5] Luo, D. and T. MacGregor, Multipliers of fractional Cauchy transforms and smoothness condition, Canad. J. Math. (to appear).

Department of Mathematical Sciences received September 9, 1997 University of Delaware Newark, Delaware 19716