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Abstract. We discuss some identities related to the Bieberbach-Milin prob­
lem and de Branges’ functions.

!• Introduction. In his solution to the Bieberbach-Milin problem [1], L. 
de Branges introduced certain functions (de Branges’ functions) associated 
with Loewner’s differential equation [8] and Milin’s functionals [9, Chap­
ter 3]. He gave a representation of their derivatives implying that these 
functions are nondecreasing in Loewner’s parameter.

C. FitzGerald and Ch. Pommerenke [3] used the St. Petersburg modifi­
cation of de Branges’ proof (see I.M. Milin’s comments [10]) to show that it 
was sufficient to consider de Branges’ functions of a less complicated form. 
Later L. Weinstein [12] found an integral transformation leading to an al­
ternative representation. In turn, D. Zeilberger [14] generalized Weinstein’s 
transformation. He collaborated with a computer specialist (Shalosh B. 
Ekhad) to produce an identity in terms of formal functions. Here we give a 
short proof of this general result and other identities related to de Branges’ 
functions. A detailed solution to the Bieberbach-Milin problem, involving 
a relatively simple coefficient form of de Branges’ functions, is given in [5].
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2. The Pick function and auxiliary polynomials. Let E = {z : |z| <
1} and let K(z) denote the Koebe function z/(l - z)2, z 6 E. For each 
t > 0, the Pick function w = w(z, t) is defined implicitly by the equation 

(1) etA'(w(z,f))= A'(z), zeE.

It follows that

(2) wt/w = (w - l)/(w + 1).

All known representations of the derivatives of de Branges’ functions 
involve certain polynomials that are nonnegative on the interval [0, 1]. 
L. de Branges defined these polynomials by means of a system of linear 
differential equations and recognized their nonpositivity as a particular case 
of the Askey-Gasper inequalities for hypergeometric series (1976), [1]. We­
instein’s approach is based on a Pick function representation of the same 
polynomials (see Remark below) and the addition theorem for Legendre 
polynomials (1785) [12]. Zeilberger used a formal expansion and a com­
puter for this purpose [14]. An elementary and self-contained proof of the 
polynomial inequalities in question was found by the author and M.E.H. 
Ismail [6]. A simplified version of this proof is given in [5].

The needed polynomials Pm n(z) can be defined by the formal expansion 
(cf. [12], [14], [5])

(3)

[l - (2(1 - i) + x (< + < J)) z + z2]

£pm,n(x)(C + Cm)
_m=0

= E Zn

The nonnegativity property above is as follows :

(4) Pm,n(®)>0, I €[0,1].

An identity discovered by Weinstein implies that (cf. [12], [5])

(5) Pm,n («-) = , „ > 1,

where w(z,t) is defined by (1), t > 0, and n > m > 1. Equation (5) links 
de Branges’ functions and (4).

Here and below the notation {/}„ stands for the coefficient of zn in the 
Taylor (or Laurent) expansion about z = 0 of a function f(z).
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Remark. Two different proofs that de Branges [1] and Weinstein [12] 
used the same polynomials were published by P.Todorov [11] and H.Wilf 
[13]. Another way (in two versions) of showing this fact can be found in 
reviewer’s remarks [4]. Finally, one can consider the left-hand side of (3) as 
the sum of a geometric series to verify that the polynomials from [1] and 
[12] are identical.

3. Four lemmas on identities.

Lemma 1. Let

OO

*+ 52c-
m=l

m

52
i/=i

and

(7) Kn(t) = {$m(z,t)$m(z-1,t)/t(z,t)/[zA(z,t)]}0,

where cm = cm(t),m > 1, are formal functions of t. Then the following 
formal identities hold:

m

l/=l

/(z, t) = zexp

(6) $m(z,t) = 21 +

(8) Vm(t) = 4 Cp - 2mc'mcm - me. I2d » m > 1.

Proof. Using the formal equations

J /t(z,t) 1 f i+i
[z/2(z,t)jk l1 + E?=i vc»zV 1 k

for a given m > 1, we have

Vm(<) =| 2(f + 52 + (2c'm ~ mCm^m

The last equation implies (8). □



38 A. Z. Grinshpan

Lemma 2. Let

(9) /i(z,Z) = ^>2 (m |cm|2 - 4/m) w”1, / > 0, z 6 E,
m=l

where cm = cm(t), m > 1, are formal functions of t and w = w(z,t) is 
defined by (1). Then the following formal equation holds:

(10)
dh 1 — w 
dt 1 + w

OO

2 Re 

m=l
4 - 2rnc'mcm wm

Proof. For each m > 1,

[(rci|cm|2 -4/m) wm] = [2 Re(mc'mc^) 4- (|rncm|2 -4)wt/w]wm.

Now use (2) and the expansion (1 + w)/(l — w) = 1 + 2w + 2w2 4---- to get
(10).

□

Lemmas 1 and 2 imply Lemma 3 which gives Zeilberger’s identity [14].

Lemma 3. Under the conditions of Lemmas 1 and 2, the following formal 
identity holds:

(U)
dh 1 — w 
dt 1 4- w

OO

52 Re(Vm)wm,
m=l

t > o, z e E.

Lemma 4 [5]. Let am, to = 1,2,..., be given and define 

bm — 2 I 1 4- ] Uy j um j m — 1,2,... .
i/=i

Then

4 Re I 1 4" I — ]u.,n 4* 1*
t/=i

4. The representations of the derivatives of de Branges’ functions
Let {/(z,t) : t > 0} be a Loewner chain generated by a continuously in­
creasing family of simply connected domains (for each t > 0, f(z,t) is 1-1
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and analytic in 2, z E E). We assume that /0,<) = 0 and /2(0,£) = > 0,
and that /(2,Z) satisfies the partial differential equation 

(12) ft = 2 6 E, < > 0,

where for each t > 0, V is analytic in 2, 2 € E, with ReP > 0 and 
P(0,t) = 1; and the coefficients of V are measurable functions of t ([8], 
[7]; see also Loewner’s equation and the Loewner-Kufarev equation in [2, 
Chapter 3]).

For each t > 0, we use the Herglotz representation formula

/•2% i© ,
(W) W): ^-WS),

Jo e ~ z

where /zt is a nonnegative unit measure on the Borel subsets of [0, 27t]. In 
the simplest case, when is a point mass for each t,

(14) P(2,f)=^Z,
7 - 2

where 7 = 7(f) is a continuous complex-valued function on [0,00) with
bl = 1.

It is convenient for us to use de Branges’ functions </?„(/), n > 1, in the 
following coefficient form (cf. [5])

(15) ę?n(t) = {A'(2)/i(2,t)}n+i, t > 0,

where h is defined by (9) and cm (in (9)) are the logarithmic coefficients of
the function f(z, t) described above

(!6) cTO(t) = {log[/(2,f)/2]}m, to > 1.

Below we give three representations of the derivatives ¥>(,(/) (n > 1, t > 0) 
>n terms of the polynomials PTOi„, the coefficients cm, and the functions 
defined by (3), (16), and (6) respectively.

a) The simplest representation of tp'n corresponds to V defined by (14). In 
this case, (12) and (16) imply

mcm7 TO > 1.(17)
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Using (15), Lemma 2, (5), (17), and Lemma 4 (with am = mcm'ym, m = 
1,..., n), we get [5] (compare with [3])

(18) ¥<(<) = 2 pm,n (e"‘) |4(/)|2 •
m=l

b) Let V be defined by (13). Then (12) and (16) give
(19)

E
1/=1

vcue t'01- - mcme t0m d/z((0), m > 1.

Now we use (15), Lemma 2, (5), (19), Lemma 4 (for each 0 € [0, 27t]), and
(6). It follows (compare with [1]) that

(20) ^(Z) = £ Pm<n (e_t) f* I Meie, *)|2 M©)-
m=l Jo

Additionally, equations (19), (6), and (20) imply

<(C > Pm,n (e_<) |c'm(Z)|2 .
m=l

c) Equation (15), Lemma 3, (6), (7), and (5) imply Weinstein’s integral 
representation (compare [12] and equation (21) below). We have

n
¥>'„(<) = £ Re(Vm),

m=l

and hence

(21) Mt) = p».» ’ = e<“’

provided that the integral exists for every m = 1,...,n. Using the limiting 
values of the integrals along the circle |z| = r<lasr—>1~, one can 
combine (21) with (12) (cf. Weinstein’s approach in [12]). If V is defined 
by (14), this approach leads to an integral representation of tp'n which is 
equivalent to (18). In the general case (V is defined by (13)), the limiting 
representation is equivalent to (20).

We remind the reader that each of the representations (18), (20), and 
(21) (together with inequality (4)) implies that Milin’s functionals (ę>„(0), 
n > 1) are nonpositive (cf. [9, Chapter 3], [1], ..., and [5]).
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