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Abstract. In 1989 two of us (P.D. and J.Ł.) introduced a Dirichlet integral- 
type biholomorphic-invariant pseudodistance connected with bordered holo- 
morphic chains whose regular part was treated as a Riemann surface [4]. 
The condition for a complex manifold that the pseudodistance on it was a 
distance defined a class of hyperbolic-like manifolds which had an impor
tant property of extendability of holomorphic mappings, analogous to the 
hyperbolic manifolds, Stein spaces, and complex spaces with a Stein cover
ing. Further results in this direction were published in 1996 by G. Boryczka 
and L.M. Tovar [1]. The present research introduces a modified approach 
exploring, in addition, the intermediate one- and two-dimensional measures 
due to D.Eisenman (now Pelles) [5].

1. Introduction. The importance of the subject is motivated by a number 
of results by A. Andreotti, W. Stoll, and K. Kobayashi, referred to in [4]. 
The authors believe that this introduction to a new approach will open 
new possibilities in continuing those lines, in particular in the aspect of 
interrelations between the complex dynamics and hyperbolic geometry.
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2. An analogue of the hyperbolic pseudodistance related to inter
mediate measures. Let X be a complex manifold of complex dimension 
n. Consider a compact connected C1-cycle 7 [3] of (real) dimension one on 
X. Suppose that T is an irreducible complex analytic subvariety of complex 
dimension one of V = X \ spt7, with support spt T relatively compact on 
X. Let T represent an elementary bordered holomorphic chain [4].

A bordered holomorphic chain passing through distinct points Zo, 
z € X is defined as a finite sum 52je/Fj elementary chains r, such 
that each elementary chain Tj passing through distinct points Zj_i, Zj of 
Id, j = l,...,p, is such that zo is the first given point, while zp is the last 
one: zp — z. Let 7j denote the border of Tj.

For each elementary chain T' passing through the points Zj-i, zj with T' 
contained in a fixed elementary chain E,-, we have a holomorphic mapping

: 52 rj C X \ spt7j 
j

such that, for a discrete set Ej C Tj, the set Reg Tj = \ Ej, called the
regular part of Fj, is the image of a connected Riemann surface S under a 
biholomorphic mapping fj = <t>j\S. Let 7'- be the border of T'.

Assume that X is (k, m)-hyperbolic for k = 1 or 2, and a fixed m > n, 
in the sense of Eisenman-Kobayashi [5-7]. Set a = 1 — n/m. For a fixed 
elementary chain Tj, let

(1) Mr,[«] du A dcu }•

where p = pi and p — P2 are the intermediate one- and two-dimensional 
measures [6], u belongs to an admissible family F[ld] = adm(X,ZY) of pluri- 
harmonic functions, defined in the usual way [4] for a given locally finite 
open covering U of X, and the infimum in (1) is taken over all compact 
connected C1-cycles of dimension one within Tj.

We have

Lemma 1. The expression (1) is well defined.

Thus with any bordered holomorphic chain passing through the points zo, 
z of X, such that pi(lj,f~x)m is uniformly bounded in T, we may associate 
the expression p^zo, ^)[u] := SjgjMr (zj-i,zi)[u]- Using this expression 
we set

Px(zo,z)[u,ld] := inf{pr(z0, z)[u] : U passing through z0,z}.
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Finally, we define an almost hyperbolic pseudodistance-.

(2) Px(2o, z)[U] •■= sup{/ix(zo, z)[u,ld] : u 6 F[W]}.

We have to prove its finiteness and that it is indeed a pseudodistance.

Lemma 2. Let z0, z^ and z% be points on a (A;, m)-hyperbolic n-dimensional 
complex manifold X for k = 1 and 2, and a fixed m > n. Set a = I — n/m. 
Then, for any locally finite open covering Id of X, we have

Px(z(h z2)[ld] < Px(2o,2i)[W] + Px(zl, Z2)[bf]-

Proof. Let To, Ti, and r2 be bordered holomorphic chains passing through 
zo,Zi; Zi,Z2; zo,Z2, respectively. Then Tj + r2 is also a bordered holomor
phic chain passing through zo,22 and everywhere in F[Z/] we have

Mr,+r2(2ro,^2)M < P?,(^o,2i) + P?2(2o,-J2).

Hence, for any u and Id,

Px (2o, *2) = inf Mr (*o, 22) < rinf p?, +r2 (*0, )r il+i2
< inf [pr1(^o,2i) + Pr2(^i,22)]Tl ,V2
< inf pf (2o, ^i) + inf Pr2 (21,22) = Px (20,2i) + Px (^i, ^2),

Ll I 2

where the infima are taken with respect to bordered holomorphic chains 
passing through the points indicated in the brackets. Consequently,

Px(*o,22)[W] =suppS-(z0,z2)[u,W] 
u

<sup{px(z0, zi)[u,ld] + Px(2i,22)[u,W]} 
u

< SUpPx(20,2l)[lt,W] + SUpPx(2l,22)[u,ZY]
It u

=Px(«0,22)[W] + Px(2l,22)[W],

where the suprema are taken with respect to u ranging over F[Z/].

Lemma 3. Let Zo,z be points on a (k,rn)-hyperbolic n-dimensional com
plex manifold X for k = I and 2, and a fixed m > n. Set a = I - n/m. 
Then, for any locally finite open covering Id of X, we have

Px(2o,2)[W] < +00.
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Proof. Since /Py(zo, z)[u, U] is defined as the infimum of all the expressions 
^p(zo,2)[n] with respect to bordered holomorphic chains T passing through 
zo, z, without any loss of generality we may suppose that T is an elementary 
chain passing through zoi-Zi- Moreover, since the closure cl%sptr is com
pact, we may suppose that it is contained in a connected Riemann surface 
S C Uj, Uj being a member of H, and that S is biholomorphically equivalent 
to the unit disc. Since, as it is well known [2],

sup du A dcu qrl}0 u e

is bounded, this proves the lemma.

Remark 1. Under the hypotheses of Lemma 1, pj(zo, z)[H] > 0 and 
Px(z, 2o)[ZV] = Px(zo, If 2 = zo, then the length of can be as
small as we desire, so Px(zo, = 0.

From Lemma 2, by Remark 1, we infer

Proposition 1. Let X be a, (k,m,y hyperbolic n-dimensio- nal complex 
manifold for k = 1,2 and a fixed m > n. Set a — 1 — n/m. Then, for any 
locally finite open covering U of X, the corresponding expression Px given 
by (2) is a continuous pseudodistance.

By Proposition 1, we trivially get (for the proof, cf. [1]):

Proposition 2. Let (X,M) and (Y,V) be two (k, m)-hyperbolic n-dimensio- 
nal complex manifolds with k,m,a as in Proposition 1, locally finite open 
coverings U and V, and admissible families F[U] and F[V] of pluriharmonic 
functions. Let f : X —* Y be a biholomorphic mapping such that f[l/] = V. 
Then

Px(zo,z)[U] = py(/(z0),/(z))M forz0,ze X.

Propositions 1-2 motivate the following definition. Let X be a (A:, m)- 
hyperbolic n-dimensional complex manifold for k = 1,2 and a fixed m> n, 
and let a = i — n/m. If, for a locally finite open covering U of X, pj( , )[ZV] 
is a distance, i.e. px(zo, z)[l/] > 0 for Zq / z, then X is called an (a,ZY)- 
almost hyperbolic manifold. An (a,ZV)-almost hyperbolic manifold X is said 
to be complete if it is complete with respect to px ( , )[£/]• Almost hyperbolic 
manifolds are — in general — not hyperbolic-like in the sense of [4] and vice 
versa. Hyperbolic manifolds in the sense of [6] are simultaneously (a,Z7)- 
almost hyperbolic and (a,ZV)-hyperbolic-like.
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3. The expression p^z^z) as an almost hyperbolic pseudodis
tance. We start with proving

Proposition 3. Let X,U and (Y, V) be two (k, rn)-hyperbolic n-dimensio- 
nal complex manifolds with k,m,at as in Proposition 1, locally finite open 
coverings U and V, and admissible families F[U] and F[V] of pluriharmonic 
functions. Let f : X —> Y be a proper holomorphic mapping such that 
/_1[V] CZY. Then

(3) p%(z0,z)[U] > Py(f(zo),f(z))[U] forz0,zeX.

Proof. Given u 6 we have uo/ E F[U\. For each elementary chain Ij 
either is one point or, since the image of any elementary chain passing 
through points zo, z of X, is a bordered holomorphic chain passing through 
the points /(^o),/(-*) ofY = /[X] [1] (Lemma 1),/[Ij] is a one-dimensional 
complex variety and the restriction f | l y : Tj —* /[Ij] is a finite ramified 
covering. By the definition of py and the above observation, taking into 
account the suprema over V E F[V] and U E T[W], we arrive at (3), as 
desired.

Besides, arguing as in the proof of Proposition 4 in [4], we get

Proposition 4. Let (X,ZV) and(Y, V) be two (k, m)-hyperbolic m-dimensio 
nal manifolds as in Proposition 3 such that is a finite-sheeted covering man
ifolds of X with covering projection ir : X -+ Y, every u EU is well covered 
by ir, and V = ir~1 [ZV], Let zo,z E X and So,S EY so that 7r(s0) = z0 and 
7r(s) = z. Then

Px(zo,z)[U] = min{py(s0,s)[V] : s E Y, 7r(s0) = z0 and 7r(s) = z).

Since a (h, m)-hyperbolic n-dimensional complex manifold (X,ZV) with a 
locally finite open covering U induces a locally finite open covering U' on 
any submanifold X' of X, we also have:

Proposition 5. An n-dimensional complex submanifold (X,U) of a com
plete hyperbolic n-dimensional complex manifold X is (a,U')-almost hy
perbolic provided that W = li fl X'. If, in addition, X' is closed, it is also 
complete.

Corollary. The submanifold X' = {z E X : f(z) = 0} of an (a,U)-almost 
hyperbolic manifold X, where f is a holomorphic function on X, is 
almost hyperbolic.
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Proof. It is sufficient to observe that the embedding of X' into X is proper 
holomorphic since X' is a closed submanifold of X, and to apply Proposition 
1 of [1] in its modified version corresponding to (fc, m)-hyperbolic manifolds.

The next step is to prove the following analogue of Theorem 4.10 in [6]:

Proposition 6. Let X be an (o,7/)-a/most hyperbolic manifold and f a 
holomorphic function on X. Then the open submanifold X' = {z £ X : 
/(z) 0} of X is (cn,U'}-almost hyperbolic manifold.

Proof. It is easy to observe that X1 is an open complex submanifold of 
X and thus, it is holomorphically embedded by a holomorphic inclusion 
mapping : X' —> X. Next, by Proposition 3, we arrive at the statement.
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