UNIVERSITATIS MARIAE CURIE - SKLODOWSKA LUBLIN - POLONIA

VICTOR V. STARKOV

Integral means of derivatives of locally univalent Bloch functions

```
Abstract. In this paper we give examples of locally univalent Bloch functions \(f_{k},(k=0,1,2, \ldots)\), such that for \(p \geq 1 / 2\) the integral means \(I_{p}\left(r, f_{k}\right)\) behave like \((1-r)^{1 / 2-p}(-\log (1-r))^{k}\) for \(r \rightarrow 1^{-}\).
```

For a function $\varphi(z)$ analytic in the unit disk $\Delta=\{z:|z|<1\}$ and $p>0$, define its p-integral mean by the formula

$$
I_{p}(r, \varphi)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\varphi\left(r e^{i \theta}\right)\right|^{p} d \theta, \quad r \in(0,1)
$$

There are many papers dealing with the integral means in various classes of functions. In particular asymptotic behaviour of integral means for $r \rightarrow 1-$ was investigated. For example, in the class S of functions $g(z)=z+\ldots$ analytic and univalent in Δ sharp estimate $I_{p}\left(r, g^{\prime}\right)=O\left(\frac{1}{(1-r)^{3 p-1}}\right)$ for $p \geq 2 / 5$ ([F-MG]) was obtained. Since the derivative of functions in the class S satisfies sharp inequality $\left|g^{\prime}(z)\right| \leq(1+|z|)(1-|z|)^{-3}, z \in \Delta$, the order of growth of the integral means of functions decreases by 1 as compared with the order of growth of the derivative of functions in S. A function f analytic in Δ belongs to the Bloch class \mathcal{B}, if it has a finite Bloch norm

$$
\|f\|_{\mathcal{B}}=|f(0)|+\sup _{z \in \Delta}\left[\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|\right]
$$

Hence the exact estimates

$$
\left|f^{\prime}(z)\right|=O\left((1-|z|)^{-1}\right), \quad|f(z)|=O(-\log (1-|z|)), \quad z \in \Delta
$$

follow. Also for Bloch functions the reduction of growth after integration on circles can be observed, (see [C-MG], $[\mathrm{M}]$). In fact, for $f \in \mathcal{B}$ and $p>0$ we have $I_{p}(r, f)=O\left(\left(\log \frac{1}{1-|z|}\right)^{p / 2}\right)$, as $r \rightarrow 1$. But for derivatives of Bloch functions have no similar property. In particular from Theorem 4 of [G] it follows, that there exists a function $f \in \mathcal{B}$ for which

$$
I_{p}\left(r, f^{\prime}\right) \geq c^{p}(1-r)^{-p}, \quad 0 \leq r<1, \quad p>0
$$

where $c=c(f)$ is a constant.
Now, let us denote by \mathcal{B}^{\prime} the subclass of locally univalent functions in \mathcal{B}. Investigation of $I_{p}\left(r, f^{\prime}\right), f \in \mathcal{B}^{\prime}$, is motivated by the behaviour of Taylor coefficients of functions from \mathcal{B}^{\prime} ([P1], p.690).

In this paper we construct for every $k=0,1,2, \ldots$ and every $p>1$ examples of functions $F_{k} \in \mathcal{B}^{\prime}$, such that

$$
I_{p}\left(r, F_{k}^{\prime}\right) \geq \frac{c(k, p)}{(1-r)^{p-1 / 2}} \log ^{k} \frac{1}{1-r}, \quad 1>r \geq \rho_{k}(p)>0
$$

where $c(k, p)$ is a constant independent of r. We will use the following two lemmas. Suppose $\mathcal{B}_{M}=\left\{f \in \mathcal{B}:\|f(z)-f(0)\|_{\mathcal{B}} \leq M\right\}$.

Lemma 1. If $f \in \mathcal{B}_{M}$ and $\omega(z)$ is analytic in Δ with $|\omega(z)|<1$ for $z \in \Delta$, then $F=f \circ \omega$ belongs to \mathcal{B}_{M}.

Proof. By the Schwarz Lemma ([Gol], p. 319-320) we have

$$
\left|\omega^{\prime}(z)\right| \leq \frac{1-|\omega(z)|^{2}}{1-|z|^{2}} \text { for } z \in \Delta
$$

Thus $\left|F^{\prime}(z)\right|\left(1-|z|^{2}\right) \leq\left|f^{\prime}(\omega(z))\right|\left(1-|\omega(z)|^{2}\right)$, i.e. $\quad\|F(z)-F(0)\|_{\mathcal{B}} \leq$ $\|f(z)-f(0)\|_{\mathcal{B}}$ and consequently $F \in \mathcal{B}_{M}$.

Lemma 2. Let $\Gamma=\left\{\Gamma(\theta)=r(\theta) e^{i \theta}: \theta \in[-\pi, \pi]\right\}$ be a closed, piecewise smooth curve contained in Δ, symmetric with respect to the real axis. Moreover, assume that $r(\theta)>0$ increases on $[0, \pi]$ from r_{0} to $r^{0}>r_{0}$. If f is analytic in Δ with $|f(z)|\left(1-|z|^{2}\right) \leq 1$ in Δ, then for $\lambda>1$

$$
\begin{align*}
\int_{\Gamma}|f(z)|^{\lambda}|d z| & \geq \frac{1}{\sqrt{2}}\left[\int_{|z|=\tau_{0}}|f(z)|^{\lambda}|d z|\right. \tag{1}\\
& \left.-\frac{16}{\lambda-1}\left(\left(1-r^{0}\right)^{1-\lambda}-\left(1-r_{0}\right)^{1-\lambda}\right)\right]
\end{align*}
$$

and for $\lambda=1$

$$
\int_{\Gamma}|f(z)||d z| \geq \frac{1}{\sqrt{2}} \int_{|z|=r_{0}}|f(z)||d z|-4 \sqrt{2} r_{0} \log \frac{1-r_{0}}{1-r^{0}} .
$$

If $f(z) \neq 0$ in Δ, then for $\lambda \in(0,1)$

$$
\int_{\Gamma}|f(z)|^{\lambda}|d z| \geq \frac{1}{\sqrt{2}} \int_{|z|=r_{0}}|f(z)|^{\lambda}|d z|
$$

$$
\left.-\frac{4 \sqrt{2}(1+\lambda)}{\lambda(1-\lambda)}\left[\left(1-r_{0}\right)^{1-\lambda}-\left(1-r^{0}\right)^{1-\lambda}\right)-(1-\lambda)\left(r^{0}-r_{0}\right)\right]
$$

Proof. We may suppose that $r(\theta)$ increases on $[0, \pi]$. If $\theta \in[-\pi, 0]$, consider $\int_{-\Gamma}|f(-z)|^{\lambda}|d z|$, where the curve $-\Gamma$ has the parametrization $-\Gamma(\theta)$. Let us divide the interval $[-\pi, \pi]$ into $2 n$ equal intervals $0<\theta_{0}<$ $\theta_{1}<\ldots<\theta_{n}=\pi, 0=\theta_{0}>\theta_{-1}>\ldots>\theta_{-n}=-\pi$. Put $r_{j}=$ $r\left(\theta_{j}\right), j=-n, \ldots, n ; r_{j}$ is increasing with respect to $|j|$. Now let us consider the piecewise smooth curve $\Gamma^{(n)}$, which is the union of circular arcs $\left\{z=r_{j} e^{i \theta}: \theta \in\left[\theta_{j-1}, \theta_{j}\right]\right\}, j=-n+1,-n+2, \ldots, n$ and segments of radii $\left\{z=r e^{i \theta_{j-1}}: r \in\left[r_{j-1}, r_{j}\right]\right\}, j=-n+1,-n+2, \ldots, n$. Put $\Delta \theta_{j}=\theta_{j}-\theta_{j-1}, \Delta r_{j}=\left|r_{j}-r_{j-1}\right|, z_{j}=r_{j} e^{i \theta_{j}}, j=-n+1,-n+2, \ldots, n$,

$$
\begin{aligned}
& \Gamma_{j}=\left\{z \in \Gamma: z=r(\theta) e^{i \theta}, \theta \in\left[\theta_{j-1}, \theta_{j}\right]\right\}, \\
& \Gamma_{j}^{(n)}=\left\{r e^{i \theta} \in \Gamma^{(n)}: \theta \in\left[\theta_{j-1}, \theta_{j}\right]\right\} .
\end{aligned}
$$

The length of the above curves $\Gamma, \Gamma^{(n)}, \Gamma_{j}, \Gamma_{j}^{(n)}$ will be denoted by the same symbols, respectively. The uniform continuity of $|f(z)|^{\lambda}$ in the disk $K=$ $\left\{z:|z| \leq r^{0}\right\}$ implies for every $\varepsilon>0$ the existence of $\eta=\eta(\varepsilon)>0$, such that

$$
\begin{equation*}
\left|\left|f\left(z^{\prime}\right)\right|^{\lambda}-\left|f\left(z^{\prime \prime}\right)\right|^{\lambda}\right|<\varepsilon \tag{2}
\end{equation*}
$$

for every $z^{\prime}, z^{\prime \prime} \in K,\left|z^{\prime}-z^{\prime \prime}\right|<\eta$. Since $\sqrt{2}|d \Gamma(\theta)| \geq|d r(\theta)|+r(\theta) d \theta$ with $\theta \in[-\pi, \pi]$, we have for every fixed $\delta>0$ and sufficiently large n

$$
\begin{equation*}
(\delta+\sqrt{2}) \Gamma_{j} \geq \Delta r_{j}+r_{j} \Delta \theta_{j}=\Gamma_{j}^{(n)}, \quad j=-n+1, \ldots, n \tag{3}
\end{equation*}
$$

Then diameters of the curves Γ_{j} and $\Gamma_{j}^{(n)}$ will be less than η. Therefore by (2) and (3) we obtain

$$
\begin{aligned}
(\delta+ & \sqrt{2}) \int_{\Gamma}|f(z)|^{\lambda}|d z|-\int_{\Gamma^{(n)}}|f(z)|^{\lambda}|d z| \\
& =\sum_{j=1-n}^{n}\left[(\delta+\sqrt{2}) \int_{\Gamma_{j}}|f(z)|^{\lambda}|d z|-\int_{\Gamma_{j}^{(n)}}|f(z)|^{\lambda}|d z|\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=1-n}^{n}\left[(\delta+\sqrt{2}) \int_{\Gamma_{j}}\left(|f(z)|^{\lambda}-\left|f\left(z_{j}\right)\right|^{\lambda}\right)|d z|-\int_{\Gamma_{j}^{(n)}}\left(|f(z)|^{\lambda}\right.\right. \\
& \left.\left.-\left|f\left(z_{j}\right)\right|^{\lambda}\right)|d z|+(\delta+\sqrt{2})\left|f\left(z_{j}\right)\right|^{\lambda} \Gamma_{j}-\left|f\left(z_{j}\right)\right|^{\lambda} \Gamma_{j}^{(n)}\right] \\
& \geq-\varepsilon\left[(\sqrt{2}+\delta) \Gamma+\Gamma^{(n)}\right] .
\end{aligned}
$$

The number ε can be chosen so that the last expression will be greater than $-\delta(\sqrt{2}-1) \int_{\Gamma}|f(z)|^{\lambda}|d z|$. Thus

$$
\begin{equation*}
\sqrt{2}(\delta+1) \int_{\Gamma}|f(z)|^{\lambda}|d z| \geq \int_{\Gamma^{(n)}}|f(z)|^{\lambda}|d z| . \tag{4}
\end{equation*}
$$

For the parameter $t \in[0,1]$ let us consider a family of curves

$$
\Gamma(n, t)=\left\{t z: z \in \Gamma^{(n)}\right\}, \quad \Gamma(n, 1)=\Gamma^{(n)}, \quad \Gamma(n, 0)=0 .
$$

Then

$$
\begin{aligned}
& \int_{\Gamma(n, t)}|f(z)|^{\lambda}|d z|=t \sum_{j=1-n}^{n}\left(\int_{\theta_{j-1}}^{\theta_{j}}\left|f\left(t r_{j} e^{i \theta}\right)\right|^{\lambda} r_{j} d \theta\right. \\
& \left.\quad+\frac{1}{t} \int_{t r_{j-1}}^{t r_{j}}\left|f\left(r e^{i \theta_{j-1}}\right)\right|^{\lambda}|d r|\right) \\
& \geq t r_{0} \sum_{j=1-n}^{n}\left(\int_{\theta_{j-1}}^{\theta_{j}}\left|f\left(t r_{j} e^{i \theta}\right)\right|^{\lambda} r_{j} d \theta+\frac{1}{t r_{0}} \int_{t r_{j-1}}^{t r_{j}}\left|f\left(r e^{i \theta_{j-1}}\right)\right|^{\lambda}|d r|\right)
\end{aligned}
$$

$$
\begin{align*}
& =t r_{0} \times \sum_{j=1-n}^{n}\left(\int_{\theta_{j-1}}^{\theta_{j}}\left|f\left(t r_{j} e^{i \theta}\right)\right|^{\lambda} d \theta\right. \tag{5}\\
& \left.-\int_{0}^{t} \frac{\lambda}{\tau}\left[\int_{\tau r_{j-1}}^{\tau r_{j}}\left|f\left(r e^{i \theta_{j-1}}\right)\right|^{\lambda-1} \frac{\partial|f|}{\partial \theta}\left(r e^{i \theta_{j-1}}\right) \frac{|d r|}{r}\right] d \tau\right) \\
& +t r_{0} \sum_{j=1-n}^{n} \int_{0}^{t} \frac{\lambda}{\tau}\left[\int_{\tau r_{j-1}}^{\tau r_{j}}\left|f\left(r e^{i \theta_{j-1}}\right)\right|^{\lambda-1} \frac{\partial|f|}{\partial \theta}\left(r e^{i \theta_{j-1}}\right) \frac{|d r|}{r}\right] d \tau \\
& \quad+\sum_{j=1-n}^{n} \int_{t r_{j-1}}^{t r_{j}}\left|f\left(r e^{i \theta_{j-1}}\right)\right|^{\lambda}|d r| .
\end{align*}
$$

The first of the last three sums should be denoted by $I(t)$ and the components of the second and third sums for $t=1$ by B_{j} and A_{j}, respectively.

Then

$$
\begin{align*}
I(t) & =\int_{0}^{t} \frac{\lambda}{\tau} \sum_{J=1-n}^{n}\left[\int_{\theta_{j-1}}^{\theta_{j}}\left|f\left(\tau r_{j} e^{i \theta}\right)\right|^{\lambda-1} \frac{\partial|f|}{\partial r}\left(\tau r_{j} e^{i \theta}\right) \tau r_{j} d \theta\right. \tag{6}\\
& \left.-\int_{\tau r_{j-1}}^{\tau r_{j}}\left|f\left(r e^{i \theta_{j-1}}\right)\right|^{\lambda-1} \frac{\partial|f|}{\partial \theta}\left(r e^{i \theta_{j-1}}\right) \frac{|d r|}{r}\right] d \tau
\end{align*}
$$

If $f \equiv 0$ then the lemma holds. Suppose f is not identically zero. The function f may have a finite set of zeros on the disk K. One can assume that for fixed n there exists a finite family of curves $\Gamma(n, t)$, containing those zeros. Otherwise instead of f one can consider $f\left(z e^{i \gamma}\right)$ with small $\gamma \in \mathbb{R}$. Next let us consider such $t \in[0,1]$ that the curves $\Gamma(n, t)$ do not contain zeros of f. For $z=r e^{i \theta} \in \Gamma(n, t)$ let $\Phi(z)=\arg f(z)$. By the Cauchy-Riemann equations we have

$$
r \frac{\partial|f|}{\partial r}=|f| \frac{\partial \Phi}{\partial \theta}, \quad r|f| \frac{\partial \Phi}{\partial r}=-\frac{\partial|f|}{\partial \theta}
$$

Thus by (6) we obtain

$$
\begin{aligned}
I^{\prime}(t) & =\frac{\lambda}{t} \sum_{J=1-n}^{n}\left[\int_{\hat{\theta}_{j-1}}^{\theta_{j}}\left|f\left(\operatorname{tr}_{j} e^{i \theta}\right)\right|^{\lambda} d \Phi\left(\operatorname{tr}_{j} e^{i \theta}\right)\right. \\
& \left.+\int_{\tau r_{j-1}}^{\tau \tau}\left|f\left(r e^{i \theta_{j-1}}\right)\right|^{\lambda} d \Phi\left(r e^{i \theta_{j-1}}\right)\right]=\frac{\lambda}{t} \int_{a}^{b}|f(\gamma(\xi))|^{\lambda} d \Phi(\gamma(\xi))
\end{aligned}
$$

where $\gamma(\xi), \xi \in[a, b]$, is a piecewise parametrization of the curve $\Gamma(n, t)$ which gives the positive orientation on $\Gamma(n, t)$. Let

$$
L=L(\xi)=x(\xi)+i y(\xi)=|f(\gamma(\xi))|^{\lambda / 2} e^{i \Phi(\gamma(\xi))}
$$

Then

$$
x(\xi) d y(\xi)-y(\xi) d x(\xi)=|f(\gamma(\xi))|^{\lambda} d \Phi(\gamma(\xi))
$$

and the Green formula implies

$$
I^{\prime}(t)=\frac{\lambda}{t} \int_{L} x d y-y d x=\frac{2 \lambda}{t} S(n, t)
$$

where $S(n, t)$ is the area of the image (generally many sheeted) of the compact set with the boundary $\Gamma(n, t)$ under the function

$$
\begin{cases}|f(z)|^{\lambda / 2} e^{i \Phi(z)}, & f(z) \neq 0 \tag{7}\\ 0, & f(z)=0\end{cases}
$$

Now, let

$$
r_{0} t \mathcal{I}(t)=r_{0} t \int_{-\pi}^{\pi}\left|f\left(r_{0} t e^{i \theta}\right)\right|^{\lambda} d \theta=\int_{|z|=r_{0} t}|f(z)|^{\lambda}|d z|
$$

Then we get

$$
\begin{aligned}
\mathcal{I}^{\prime}(t) & =\lambda \int_{-\pi}^{\pi}\left|f\left(r_{0} t e^{i \theta}\right)\right|^{\lambda-1} \frac{\partial|f|}{\partial r}\left(r_{0} t e^{i \theta}\right) r_{0} d \theta \\
& =\frac{\lambda}{t} \int_{-\pi}^{\pi}\left|f\left(r_{0} t e^{i \theta}\right)\right|^{\lambda} d \Phi\left(r_{0} t e^{i \theta}\right)=\frac{2 \lambda}{t} S\left(r_{0} t\right)
\end{aligned}
$$

where $S\left(r_{0} t\right)$ is the area of the image of the disk $\left\{z:|z| \leq r_{0} t\right\}$ under the function (7). Thus the inequality $I^{\prime}(t) \geq \mathcal{I}^{\prime}(t)$ holds for all $t \in[0,1]$, possibly except for a finite set of t. Therefore by continuity of $I(t)$ and $\mathcal{I}(t)$ in $[0,1]$ we obtain $I(1)-I(0) \geq \mathcal{I}(1)-\mathcal{I}(0)$. But $\mathcal{I}(0)=I(0)=2 \pi|f(0)|^{\lambda}$, because for sufficiently small r the quantity $\left|f\left(r e^{i \theta}\right)\right|^{\lambda}\left|\frac{\partial \Phi}{\partial \tau}\left(r e^{i \theta}\right)\right|$ is bounded by a constant C. Thus by the Cauchy-Riemann equations

$$
\begin{aligned}
& \left.\left.\left|\int_{0}^{t} \frac{1}{\tau} \int_{\tau r_{j-1}}^{\tau r_{j}}\right| f\left(r e^{i \theta_{j-1}}\right)\right|^{\lambda-1} \frac{\partial|f|}{\partial \theta}\left(r e^{i \theta_{j-1}}\right) \frac{d r}{r} d \tau \right\rvert\, \\
= & \left.\left.\left|\int_{0}^{t} \frac{1}{\tau} \int_{\tau r_{j-1}}^{\tau r_{j}}\right| f\left(r e^{i \theta_{j-1}}\right)\right|^{\lambda} \frac{\partial \Phi}{\partial r}\left(r e^{i \theta_{j-1}}\right) d r d \tau \right\rvert\, \leq C \int_{0}^{t}\left(r_{j}-r_{j-1}\right) d \tau \rightarrow 0
\end{aligned}
$$

as $t \rightarrow 0$. Consequently $I(1) \geq \mathcal{I}(1)$. Then

$$
\begin{align*}
\int_{\Gamma^{(n)}}|f(z)|^{\lambda}|d z| & \geq r_{0} I(1)+\sum_{j=1-n}^{n}\left(A_{j}+B_{j}\right) \tag{8}\\
& \geq r_{0} I(1)+\sum_{j=1-n}^{n} B_{j}=\int_{|z|=r_{0}}|f(z)|^{\lambda}|d z|+\sum_{j=1-n}^{n} B_{j}
\end{align*}
$$

Now, observe that

$$
\left|\frac{\partial|f|}{\partial \theta}\right|=\left|\frac{\partial \exp (\operatorname{Re} \log f)}{\partial \theta}\right| \leq\left|z f^{\prime}(z)\right| \leq \frac{4|z|}{\left(1-|z|^{2}\right)^{2}}
$$

(cf. [W]). Thus, in order to obtain an estimate of $\left|B_{j}\right|$ we deal with

$$
B=r_{0} \int_{0}^{1} \frac{\lambda}{\tau} \int_{\tau \rho_{1}}^{\tau \rho_{2}}\left|f\left(r e^{i \theta_{j-1}}\right)\right|^{\lambda-1}\left|f^{\prime}\left(r e^{i \theta_{j-1}}\right)\right| d r d \tau, \quad 0<\rho_{1}<\rho_{2}<1
$$

From our assumptions we obtain

$$
\begin{aligned}
|B| & \leq r_{0} \int_{0}^{1} \frac{\lambda}{\tau} \int_{\tau \rho_{1}}^{\tau \rho_{2}} \frac{4}{(1-r)^{\lambda+1}} d r d \tau \\
& =4 r_{0} \int_{0}^{1} \frac{1}{t}\left[\frac{1}{\left(1-t \rho_{2}\right)^{\lambda}}-\frac{1}{\left(1-t \rho_{1}\right)^{\lambda}}\right] d t
\end{aligned}
$$

Now, let $\varphi(t)$ be the function appearing in the last integral. We have

$$
\begin{aligned}
\varphi(t) & =\lambda\left(\rho_{2}-\rho_{1}\right)+\frac{\lambda(\lambda+1)}{2}\left(\rho_{2}^{2}-\rho_{1}^{2}\right) t \\
& +\frac{\lambda(\lambda+1)(\lambda+2)}{3!}\left(\rho_{2}^{3}-\rho_{1}^{3}\right) t^{2}+\ldots
\end{aligned}
$$

Since the radius of convergence is greater than 1 , we obtain

$$
\int_{0}^{1} \varphi(t) d t=\lambda\left(\rho_{2}-\rho_{1}\right)+\ldots+\frac{\lambda(\lambda+1) \ldots(\lambda+k-1)}{k!} \frac{\rho_{2}^{k}-\rho_{1}^{k}}{k}+\ldots
$$

However,

$$
\frac{\rho_{2}^{k}-\rho_{1}^{k}}{k}=\frac{\rho_{2}^{k}-\rho_{1}^{k}}{k+1} \frac{k+1}{k} \leq \frac{2}{k+1} \frac{\rho_{2}^{k+1}-\rho_{1}^{k+1}}{\rho_{2}}
$$

and hence for $\lambda>1$ we get

$$
\begin{gathered}
\int_{0}^{1} \varphi(t) d t \leq \frac{2}{\rho_{2}(\lambda-1)} \\
\times\left[\frac{(\lambda-1) \lambda}{2!}\left(\rho_{2}^{2}-\rho_{1}^{2}\right)+\ldots+\frac{(\lambda-1) \lambda \ldots(\lambda+k-1)}{(k+1)!}\left(\rho_{2}^{k+1}-\rho_{1}^{k+1}\right)+\ldots\right] \\
=\frac{2}{\rho_{2}(\lambda-1)}\left[\left(\left(1-\rho_{2}\right)^{1-\lambda}-1-(\lambda-1) \rho_{2}\right)-\left(\left(1-\rho_{1}\right)^{1-\lambda}-1-(\lambda-1) \rho_{1}\right)\right] \\
\leq \frac{2}{\rho_{2}(\lambda-1)}\left(\left(1-\rho_{2}\right)^{1-\lambda}-\left(1-\rho_{1}\right)^{1-\lambda}\right)
\end{gathered}
$$

so that $|B| \leq 4 r_{0} \int_{0}^{1} \varphi(t) d t \leq \frac{8 r_{0}}{\rho_{2}(\lambda-1)}\left(\left(1-\rho_{2}\right)^{1-\lambda}-\left(1-\rho_{1}\right)^{1-\lambda}\right)$. Thus

$$
\begin{gathered}
\left|\sum_{j=1-n}^{n} B_{j}\right| \leq \sum_{j=1-n}^{n}\left|B_{j}\right| \leq \frac{16}{\lambda-1} \sum_{j=1}^{n}\left(\left(1-r_{j}\right)^{1-\lambda}-\left(1-r_{j-1}\right)^{1-\lambda}\right) \\
=\frac{16}{\lambda-1}\left(\left(1-r^{0}\right)^{1-\lambda}-\left(1-r_{0}\right)^{1-\lambda}\right)
\end{gathered}
$$

and by (8) we have

$$
\int_{\Gamma^{(n)}}|f(z)|^{\lambda}|d z| \geq \int_{|z|=\tau_{0}}|f(z)|^{\lambda}|d z|-\frac{16}{\lambda-1}\left(\left(1-r^{0}\right)^{1-\lambda}-\left(1-r_{0}\right)^{1-\lambda}\right)
$$

Then from (4) we obtain

$$
\begin{aligned}
\int_{\Gamma}|f(z)|^{\lambda}|d z| & \geq \frac{1}{\sqrt{2}(\delta+1)} \\
& \times\left[\int_{|z|=r_{0}}|f(z)|^{\lambda}|d z|-\frac{16}{\lambda-1}\left(\left(1-r^{0}\right)^{1-\lambda}-\left(1-r_{0}\right)^{1-\lambda}\right)\right]
\end{aligned}
$$

Since δ is any positive number, we get our Lemma for $\lambda>1$. If $\lambda=1$ then

$$
\int_{0}^{1} \varphi(t) d t=\log \frac{1-\rho_{1}}{1-\rho_{2}}, \quad B \leq 4 r_{0} \log \frac{1-\rho_{1}}{1-\rho_{2}} .
$$

Thus

$$
\left|\sum_{j=1-n}^{n} B_{j}\right| \leq 8 r_{0} \log \frac{1-r_{0}}{1-r^{0}}
$$

and

$$
\int_{\Gamma}|f(z)||d z| \geq \frac{1}{\sqrt{2}} \int_{|z|=r_{0}}|f(z)||d z|-4 \sqrt{2} r_{0} \log \frac{1-r_{0}}{1-r^{0}}
$$

Now, let $\lambda \in(0,1)$ and $f(z) \neq 0$ in Δ. Then the function $f_{\lambda}(z)=$ $f^{\lambda}(z)$ is analytic in Δ and $\left|f_{\lambda}(z)\right|\left(1-|z|^{2}\right)^{\lambda} \leq 1$. For such functions $f_{\lambda}(z)$ K. J. Wirths ([W]) showed that

$$
\left|f_{\lambda}^{\prime}(z)\right|\left(1-|z|^{2}\right)^{\lambda+1} \leq 2(\lambda+1)
$$

Therefore

$$
\begin{aligned}
B & \left.=r_{0} \int_{0}^{1} \frac{1}{\tau} \int_{\tau \rho_{1}}^{\tau \rho_{2}} \right\rvert\, f_{\lambda}^{\prime}\left(r e^{i \theta_{j-1}} \mid d r d \tau\right. \\
& \leq 2 r_{0}(\lambda+1) \int_{0}^{1} \frac{1}{\tau} \int_{\tau \rho_{1}}^{\tau \rho_{2}} \frac{d r d \tau}{(1-r)^{\lambda+1}} \\
& =\frac{2 r_{0}(\lambda+1)}{\lambda} \int_{0}^{1} \frac{1}{t}\left[\left(1-t \rho_{2}\right)^{-\lambda}-\left(1-t \rho_{1}\right)^{-\lambda}\right] d t
\end{aligned}
$$

As in the case $\lambda>1$ we estimate the last integral by

$$
\frac{2}{\rho_{2}(1-\lambda)}\left(\left(1-\rho_{1}\right)^{1-\lambda}-\left(1-\rho_{2}\right)^{1-\lambda}+(1-\lambda)\left(\rho_{1}-\rho_{2}\right)\right)
$$

i.e.

$$
B \leq \frac{4 r_{0}(1+\lambda)}{\rho_{2} \lambda(1-\lambda)}\left(\left(1-\rho_{1}\right)^{1-\lambda}-\left(1-\rho_{2}\right)^{1-\lambda}+(1-\lambda)\left(\rho_{1}-\rho_{2}\right)\right) .
$$

Thus

$$
\left|\sum_{j=1-n}^{n} B_{j}\right| \leq \frac{8(1+\lambda)}{\lambda(1-\lambda)}\left(\left(1-r_{0}\right)^{1-\lambda}-\left(1-r^{0}\right)^{1-\lambda}-(1-\lambda)\left(r^{0}-r_{0}\right)\right) .
$$

Then by (4) and (8) we obtain

$$
\begin{aligned}
\int_{\Gamma}|f(z)|^{\lambda}|d z| & \geq \frac{1}{\sqrt{2}(\delta+1)}\left[\int_{|z|=r_{0}}|f(z)|^{\lambda}|d z|-\frac{8(1+\lambda)}{\lambda(1-\lambda)}\left(\left(1-r_{0}\right)^{1-\lambda}\right.\right. \\
& \left.\left.-\left(1-r^{0}\right)^{1-\lambda}-(1-\lambda)\left(r^{0}-r_{0}\right)\right)\right] .
\end{aligned}
$$

Since δ is an arbitrary positive number, we get our Lemma for $\lambda \in(0,1)$.
Remark. Lemma 2 holds also for monotonic $r(\theta)$ in $\left[\theta_{0}, \theta^{0}\right]$ and $\left[\theta^{0}, \theta_{0}+2 \pi\right]$. It can be generalized for a piecewise monotonic and continuous function $r(\theta)$. In the case $\lambda>1$ the coefficient $16 /(\lambda-1)$ from Lemma must be replaced by $8 k /(\lambda-1)$. Similarly we can consider the case $\lambda \in(0,1]$.

Let us now consider $f(z)=\log (1-z) \in \mathcal{B}_{2}$ and $\omega(z)=\exp \left(-\pi \frac{1+z}{1-z}\right)$. Since $|\omega|<1$ in Δ, one can define functions

$$
\begin{equation*}
F_{0}=f \circ \omega, F_{k}=F_{k-1} \circ \omega, \quad k \in \mathbf{N} \tag{9}
\end{equation*}
$$

analytic in Δ.
Theorem. The functions F_{k} defined by (9) belong to $\mathcal{B}_{2} \cap \mathcal{B}^{\prime}$. Moreover, the inequality

$$
I_{p}\left(r, F_{k}^{\prime}\right) \geq \frac{c(k, p)}{\left(1-r^{2}\right)^{p-1 / 2}} \log ^{k} \frac{1}{1-r^{2}} \text { for } 0 \leq \rho_{k}(p)<1,
$$

holds for every $k=0,1,2, \ldots$ and every $p>1 / 2$ with the constants $c(k, p)$ defined as follows.
If $p>1$ then

$$
c(0, p)=\frac{c e^{-\pi p}}{2 \pi 10^{p-1}}\left(\frac{2}{5}\right)^{p-1 / 2}
$$

where $0<c=c(p)=\inf _{\tau \in[0,1)}\left[(1-r)^{1-p} \int_{0}^{2 \pi}\left|1-r e^{i t}\right|^{-p} d t\right]$, and

$$
c(k, p)=\frac{c(0, p)}{k!\left(2^{(k+3) / 2} \sqrt{\pi} 10^{p}\right)^{k}}, \quad \rho_{0}(p)=1 / \sqrt{2}
$$

If $p \in(1 / 2,1]$ then

$$
c(0, p)=\frac{c(p) e^{-\pi}}{3(2 \pi)^{2-p}(2 p-1)}
$$

with $c(p)=\inf _{r \in[0,1)} \int_{0}^{2 \pi} \frac{d t}{\left|1-r e^{r t}\right|^{p}}>0$ and

$$
c(k, p)=\frac{c(0, p)}{(10 \sqrt{\pi})^{k} k!}
$$

For $p=1 / 2$ we have

$$
I_{1 / 2}\left(r, F_{k}^{i}\right) \geq \frac{c(0,1 / 2)}{(10 \sqrt{\pi})^{k}(k+1)!} \log ^{k+1} \frac{1}{1-r^{2}}
$$

where $c(0,1 / 2)$ is given by the same formula as in the case $p \in(1 / 2,1]$.
Proof. From the definition of F_{k} it follows that $F_{k} \in \mathcal{B}^{\prime}$. By Lemma 1 we get $F_{k} \in \mathcal{B}_{2}$ for every k, since $\log (1-z) \in \mathcal{B}_{2}$.

For positive integers N consider the sequence $r_{N}=\frac{N}{\sqrt{N^{2}+1}} \xrightarrow[N \rightarrow \infty]{ }$ 1. Put $\delta_{N}=\arccos r_{N}$. Then

$$
\operatorname{Re} \frac{1+r_{N} e^{i \delta_{N}}}{1-r_{N} e^{i \delta_{N}}}=\frac{1-r_{N}^{2}}{1-2 r_{N} \cos \delta_{N}+r_{N}^{2}}=1
$$

$$
\operatorname{Im} \frac{1+r_{N} e^{i \delta_{N}}}{1-r_{N} e^{i \delta_{N}}}=\frac{2 r_{N} \sin \delta_{N}}{1-2 r_{N} \cos \delta_{N}+r_{N}^{2}}=\frac{2 r_{N} \sqrt{1-r_{N}^{2}}}{1-r_{N}^{2}}=\frac{2 r_{N}}{\sqrt{1-r_{N}^{2}}}=2 N
$$

Now let $\delta_{m} \in[0, \pi]$ be a solution of the equation

$$
\operatorname{Im} \frac{1+r_{N} e^{i \delta_{m}}}{1-r_{N} e^{i \bar{\delta}_{m}}}=\frac{2 r_{N} \sin \delta_{m}}{1-2 r_{N} \cos \delta_{m}+r_{N}^{2}}=2 m
$$

where $m \in[0, N]$ is an integer. Setting $\gamma=\cos \delta_{m}$ we obtain a quadratic equation $\gamma^{2}\left(4 r_{N}^{2} m^{2}+r_{N}^{2}\right)-4 m^{2} r_{N}\left(1+r_{N}^{2}\right) \gamma+m^{2}\left(1+r_{N}^{2}\right)^{2}-r_{N}^{2}=0$. Hence

$$
\gamma=\cos \delta_{m}=\frac{2 m^{2}}{1+4 m^{2}} \frac{1+2 N^{2}}{N \sqrt{1+N^{2}}}-\frac{1}{1+4 m^{2}} \sqrt{1-\frac{m^{2}}{N^{2}\left(N^{2}+1\right)}}
$$

Let us introduce the expression

$$
\begin{aligned}
x_{m} & =\operatorname{Re} \frac{1+r_{N} e^{i \delta_{m}}}{1-r_{N} e^{i \delta_{m}}}=\frac{1-r_{N}^{2}}{1-2 r_{N} \cos \delta_{m}+r_{N}^{2}} \\
& =\frac{4 m^{2}+1}{2 N^{2}+1+\sqrt{\left(2 N^{2}+1\right)^{2}-4 m^{2}-1}}
\end{aligned}
$$

First consider the case $p>1$ and use the induction with respect to $k=$ $0,1,2, \ldots$.
a) For $k=0$ we have

$$
\begin{aligned}
& I_{p}\left(r_{N}, F_{0}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|F_{0}^{\prime}\left(r_{N} e^{i t}\right)\right|^{p} d t=\frac{1}{\pi} \int_{0}^{\pi}\left|F_{0}^{\prime}\left(r_{N} e^{i t}\right)\right|^{p} d t \\
& \geq \frac{1}{\pi} \sum_{m=N}^{1} \int_{\delta_{m}}^{\delta_{m-1}}\left|f^{\prime}\left[\omega\left(r_{N} e^{i t}\right)\right]\right|^{p}\left|\omega\left(r_{n} e^{i t}\right)\right|^{p}\left|\frac{2 \pi}{\left(1-r_{N} e^{i t}\right)^{2}}\right|^{p} d t .
\end{aligned}
$$

Note that for $t \in\left[\delta_{m}, \delta_{m-1}\right]$ we have $\left|1-r_{N} e^{i t}\right| \leq\left|1-r_{N} e^{i \delta_{m-1}}\right|$ and

$$
R(t)=\left|\omega\left(r_{N} e^{i t}\right)\right| \geq R_{m}=e^{-\pi x_{m}}
$$

Moreover,

$$
\begin{aligned}
\left|1-\omega\left(r_{N} e^{i t}\right)\right| & =\left|1-R(t) e^{i \theta(t)}\right| \leq\left|1-R_{m} e^{i \theta(t)}\right|+\left(R(t)-R_{m}\right) \\
& \leq\left|1-R_{m} e^{i \theta}\right|+\left(1-R_{m}\right) \leq 2\left|1-R_{m} e^{i \theta}\right|
\end{aligned}
$$

The interval $\left[\delta_{m}, \delta_{m-1}\right.$] is mapped by $\omega\left(r_{N} e^{i t}\right)$ onto one branch of the spiral $\omega=R(t) e^{i \theta(t)}=\rho(\theta) e^{i \theta}, \theta \in[-2 \pi m,-2 \pi(m-1)]$ and $\rho(\theta)$ increases from R_{m} to R_{m-1}. The element of length $|d \omega|=\left|d\left(\rho(\theta) e^{i \theta}\right)\right|$ of the spiral is not less than the element of length $\left|d\left(R_{m} e^{i \theta}\right)\right|$ of the circle $\left\{|\omega|=R_{m}\right\}$. In this way we get

$$
r_{N} I_{p}\left(r_{N}, F_{0}\right) \geq \frac{1}{\pi} \sum_{m=N}^{1} \frac{(2 \pi)^{p-1} R_{m}^{p-1}}{\left|1-r_{N} e^{i \delta_{m-1}}\right|^{2(p-1)} 2^{p}} \int_{|\omega|=R_{m}} \frac{|d \omega|}{|1-\omega|^{p}}
$$

Since for $p>1$ (cf.e.g. [MOS], p. 157)

$$
u(r)=(1-r)^{p-1} \int_{0}^{2 \pi} \frac{d t}{\left|1-r e^{i t}\right|^{p}} \underset{r \rightarrow 1}{\longrightarrow} \sqrt{\pi} \Gamma\left(\frac{p-1}{2}\right) \Gamma\left(\frac{p}{2}\right)
$$

this means that the function $u(r)$ is positive and continuous on $[0,1]$ with $u(1)=\sqrt{\pi} \Gamma\left(\frac{p-1}{2}\right) \Gamma\left(\frac{p}{2}\right)$.

Therefore $u(r) \geq c>0$ for $r \in[0,1]$ and consequently

$$
r_{N} I_{p}\left(r_{N}, F_{0}\right) \geq \frac{c \pi^{p-2}}{2} \sum_{m=N}^{1} \frac{R_{m}^{p}}{\left|1-r_{N} e^{i \delta_{m-2}}\right|^{2(p-1)}\left(1-R_{m}\right)^{p-1}} .
$$

For any integer $m \in[0, N]$

$$
\begin{aligned}
& \frac{x_{m-1}}{x_{m}}=\frac{4(m-1)^{2}+1}{4 m^{2}+1} \frac{2 N^{2}+1+\sqrt{\left(2 N^{2}+1\right)^{2}-\left(4 m^{2}+1\right)}}{2 N^{2}+1+\sqrt{\left(2 N^{2}+1\right)^{2}-4(m-1)^{2}-1}} \\
& =\left(1-\frac{8 m-4}{4 m^{2}+1}\right) \frac{1+\sqrt{1-\frac{4 m^{2}+1}{\left(2 N^{2}+1\right)^{2}}}}{1+\sqrt{1-\frac{4(m-1)^{2}+1}{\left(2 N^{2}+1\right)^{2}}}} \geq\left(1-\frac{8 m-4}{4 m^{2}+1}\right) \frac{1}{2}>\frac{1}{10} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\frac{1}{\left|1-r_{N} e^{i \delta_{m-1}}\right|^{2}}=\frac{x_{m-1}}{1-r_{N}^{2}} \geq \frac{x_{m}}{1-r_{N}^{2}} \frac{1}{10} \tag{10}
\end{equation*}
$$

and

$$
r_{N} I_{p}\left(r_{N}, F_{0}\right) \geq \frac{c \pi^{p-2}}{210^{p-1}} \frac{1}{\left(1-r_{N}^{2}\right)^{p-1}} \sum_{m=1}^{N} \frac{R_{m}^{p} x_{m}^{p-1}}{\left(1-R_{m}\right)^{p-1}} .
$$

Because $x_{m} \in[0,1]$, we have $R_{m} \geq e^{-\pi}, 1-e^{-\pi x_{m}} \leq \pi x_{m}$. Thus

$$
r_{N} I_{p}\left(r_{N}, F_{0}\right) \geq \frac{c \pi^{p-2} e^{-\pi p}}{210^{p-1} \pi^{p-1}} \frac{N}{\left(1-r_{N}^{2}\right)^{p-1}}=\frac{c e^{-\pi p}}{2 \pi 10^{p-1}} \frac{r_{N}}{\left(1-r_{N}^{2}\right)^{p-1 / 2}} .
$$

The integral means $I_{p}(r, \varphi)$ are increasing with respect to $r \in[0,1)$ for every function φ analytic in Δ (cf.e.g. [H], Theorem 3.1). Therefore $I_{p}\left(r, F_{0}\right) \geq$ $I_{p}\left(r_{N}, F_{0}\right)$ for $r \in\left[r_{N}, r_{N+1}\right]$. Thus for $r \in\left[r_{N}, r_{N+1}\right]$

$$
\begin{align*}
I_{p}\left(r, F_{0}\right) & \geq \frac{c e^{-\pi p}}{2 \pi 10^{p-1}} \frac{1}{\left(1-r^{2}\right)^{p-1 / 2}}\left(\frac{1-r_{N+1}^{2}}{1-r_{N}^{2}}\right)^{p-1 / 2} \tag{11}\\
& \geq \frac{c e^{-\pi p}}{2 \pi 10^{p-1}}\left(\frac{2}{5}\right)^{p-1 / 2} \frac{1}{\left(1-r^{2}\right)^{p-1 / 2}}
\end{align*}
$$

for $N \geq 1$. Since N is arbitrary, the inequality (11) holds for $r \in[1 / \sqrt{2}, 1)$.
b) Now, suppose that the theorem holds for any fixed positive integer $k \geq 0$, i.e.

$$
\begin{equation*}
I_{p}\left(r, F_{k}^{\prime}\right) \geq \frac{c_{k}}{\left(1-r^{2}\right)^{p-1 / 2}} \log ^{k} \frac{1}{1-r^{2}} \text { for } 1>r \geq \rho_{k} \in(0,1) \tag{12}
\end{equation*}
$$

We show that it holds for $k+1$. For $m=1, \ldots, N$ write

$$
\begin{aligned}
& L_{m}=\left\{\omega\left(r_{N} e^{i t}\right): t \in\left[\delta_{m}, \delta_{m-1}\right]\right\}, \\
& L_{-m}=\left\{\omega\left(r_{N} e^{i t}\right): t \in\left[-\delta_{m},-\delta_{m-1}\right]\right\},
\end{aligned}
$$

where L_{m} is a spiral-like curve which winds once around the point $z=0$. For $t \in\left[\delta_{m}, \delta_{m-1}\right]$ the quantity $\left|\omega\left(r_{N} e^{i t}\right)\right|$ increases with respect to t. L_{-m} is a curve symmetric to L_{m} with respect to the real axis. Therefore for every $m=1, \ldots, N$ the curve $L_{m} \cup L_{-m}$ may be represented as a union of two piecewise smooth closed curves $\Gamma_{m} \cup \Gamma_{m}^{\prime}$, where Γ_{m} consists of the upper part of L_{m} and the lower part of L_{-m}, and $\Gamma_{m}^{\prime}=L_{m} \cup L_{-m} \backslash \Gamma_{m}$. Both curves Γ_{m} and Γ_{m}^{\prime} fulfil the assumptions of Lemma 2 with $r_{0} \geq R_{m}$ and $r^{0} \leq R_{m-1}$. Thus by (10) and (1) we obtain

$$
\begin{gathered}
r_{n} I_{p}\left(r_{N}, F_{k+1}^{\prime}\right) \geq \frac{r_{N}}{2 \pi} \sum_{m=N}^{1-N} \int_{\delta_{m}}^{\delta_{m-1}}\left|F_{k+1}^{\prime}\left(r_{N} e^{i t}\right)\right|^{p} d t \\
=\frac{1}{2 \pi} \sum_{m=N}^{1-N} \int_{\delta_{m}}^{\delta_{m-1}}\left|F_{k}^{\prime}\left[\omega\left(r_{N} e^{i t}\right)\right]\right|^{p}\left|\omega^{\prime}\left(r_{N} e^{i t}\right)\right|^{p-1}\left|d \omega\left(r_{N} e^{i t}\right)\right| \\
\geq \frac{1}{2 \pi} \sum_{m=1}^{N} \frac{\left(2 \pi R_{m}\right)^{p-1}}{\left|1-r_{N} e^{i_{m-1}}\right|^{2(p-1)}} \int_{L_{m} \cup L_{-m}}\left|F_{k}^{\prime}(\omega)\right|^{p}|d \omega| \\
\geq \frac{(2 \pi)^{p-2}}{10^{p-1}\left(1-r_{N}^{2}\right)^{p-1}} \sum_{m=1}^{N}\left(x_{m} R_{m}\right)^{p-1} \int_{\Gamma_{m} \cup \Gamma_{m}^{\prime}}\left|F_{k}^{\prime}(\omega)\right|^{p}|d \omega| \\
\geq \frac{(2 \pi)^{p-2} \sqrt{2}}{10^{p-1}\left(1-r_{N}^{2}\right)^{p-1}} \\
\quad \times \sum_{m=1}^{N}\left(x_{m} R_{m}\right)^{p-1}\left[2 \pi R_{m} I_{p}\left(R_{m}, F_{k}^{\prime}\right)\right. \\
\left.\quad-\frac{2^{p+4}}{p-1}\left(\left(1-R_{m-1}\right)^{1-p}-\left(1-R_{m}\right)^{1-p}\right)\right],
\end{gathered}
$$

since by Lemma 1 the functions F_{k} belong to \mathcal{B}_{2}, i.e. $\left|F_{k}^{\prime}(z)\right|\left(1-|z|^{2}\right) \leq 2$ for $z \in \Delta$.

Because $\frac{x_{m-1}}{x_{m}}>\frac{1}{10}$ for integers $m \in[0, N]$, we have

$$
\begin{aligned}
x_{m} & <10 x_{m-1} \Longrightarrow \pi\left(x_{m}-x_{m-1}\right)<9 \pi x_{m-1}<9\left(e^{\pi x_{m-1}}-1\right) \\
& \Longrightarrow R_{m-1} \pi\left(x_{m}-x_{m-1}\right)<9\left(1-R_{m-1}\right) \\
& \Longleftrightarrow \frac{1-R_{m-1}\left(1-\pi\left(x_{m}-x_{m-1}\right)\right)}{1-R_{m-1}}<10 \\
& \Longrightarrow \frac{1-R_{m-1} e^{-\pi\left(x_{m}-x_{m-1}\right)}}{1-R_{m}-1}<10 \Longleftrightarrow \frac{1-R_{m}}{1-R_{m-1}}<10 .
\end{aligned}
$$

Therefore (see (12)) for $R_{m} \in\left(\rho_{k}, 1\right)$

$$
\begin{equation*}
2 \pi R_{m} I_{p}\left(R_{m}, F_{k}^{\prime}\right)-\frac{2^{p+4}}{p-1}\left(\left(1-R_{m-1}\right)^{1-p}-\left(1-R_{m}\right)^{1-p}\right) \tag{13}
\end{equation*}
$$

$$
>\frac{2 \pi c_{k} R_{m}}{\left(1-R_{m}^{2}\right)^{p-1 / 2}} \log ^{k} \frac{1}{1-R_{m}^{2}}-\frac{2^{p+4}}{p-1}\left(\left(1-R_{m-1}\right)^{1-p}-\left(1-R_{m}\right)^{1-p}\right)
$$

$$
=\left(1-R_{m}^{2}\right)^{1-p}\left[\frac{2 \pi c_{k} R_{m}}{\sqrt{1-R_{m}^{2}}} \log ^{k} \frac{1}{1-R_{m}^{2}}-\frac{2^{p+4}}{p-1}\left(\left(\frac{1-R_{m}}{1-R_{m-1}}\right)^{p-1}-1\right)\right]
$$

$$
>\left(1-R_{m}^{2}\right)^{1-p}\left[\frac{2 \pi c_{k} R_{m}}{\sqrt{1-R_{m}^{2}}} \log ^{k} \frac{1}{1-R_{m}^{2}}-\frac{2^{p+4}}{p-1} 10^{p-1}\right]
$$

$$
>\frac{\pi c_{k} R_{m} \log ^{k} \frac{1}{1-R_{m}^{2}}}{\left(1-R_{m}^{2}\right)^{p-1 / 2}}
$$

for R_{m} sufficiently close to 1 , i.e. for $R_{m}>1-\varepsilon_{k} \geq \rho_{k}, \varepsilon_{k} \in(0,1)$.

$$
\begin{aligned}
R_{m} & >1-\varepsilon_{k} \Leftrightarrow x_{m}<\frac{1}{\pi} \log \frac{1}{1-\varepsilon_{k}}=2 \eta_{k}^{2}\left(0<\eta_{k}<1\right) \\
& \Longleftrightarrow \frac{4 m^{2}+1}{2 N^{2}+1+\sqrt{\left(2 N^{2}+1\right)^{2}-4 m^{2}-1}} \leq 2 \eta_{k}^{2} \\
& \Leftrightarrow 4 m^{2}+1 \leq\left(2 N^{2}+1\right) 4 \eta_{k}^{2}-4 \eta_{k}^{4} .
\end{aligned}
$$

The last condition holds for $m \leq N \eta_{k}$, with $N>1 /\left(2 \eta_{k}\right)$. Now, suppose that N is sufficiently large ($N \geq 2 / \eta_{k}^{2}$). Then the inequality (13) holds for $1 \leq m \leq N \eta_{k}$ and for $N \geq 2 / \eta_{k}^{2}$

$$
r_{N} I_{p}\left(r_{N}, F_{k+1}^{\prime}\right) \geq \frac{\pi^{p-1} c_{k}}{\sqrt{2} 5^{p-1}\left(1-r_{N}^{2}\right)^{p-1}} \sum_{m=1}^{N \eta_{k}} \frac{x_{m}^{p-1} R_{m}^{p}}{\left(1-R_{m}^{2}\right)^{p-1 / 2}} \log ^{k} \frac{1}{1-R_{m}^{2}}
$$

As stated above, $1-R_{m}^{2} \leq 2 \pi x_{m}$ for every m. Moreover, $R_{m}>1-\varepsilon_{k}$ for $m \in\left[1, N \eta_{k}\right]$. Consequently

$$
r_{N} I_{p}\left(r_{N}, F_{k+1}^{\prime}\right) \geq \frac{c_{k}\left(1-\varepsilon_{k}\right)^{p}}{2 \sqrt{\pi} 10^{p-1}\left(1-r_{N}^{2}\right)^{p-1}} \sum_{m=1}^{N \eta_{k}} \frac{1}{\sqrt{x_{m}}} \log ^{k} \frac{1}{2 \pi x_{m}}
$$

Since x_{m} increases with respect to m, each term in the last sum decreases with respect to m (we can assume that η_{k} is sufficiently small and then $4 \pi x_{m}<1$). Therefore

$$
r_{N} I_{p}\left(r_{N}, F_{k+1}^{\prime}\right) \geq \frac{c_{k}\left(1-\varepsilon_{k}\right)^{p}}{2 \sqrt{\pi} 10^{p-1}\left(1-r_{N}^{2}\right)^{p-1}} \int_{1}^{N \eta_{k}} \frac{1}{\sqrt{x_{m}}} \log ^{k} \frac{1}{2 \pi x_{m}} d m
$$

The change of variables in the integral

$$
\begin{align*}
x_{m} & =\frac{\left(2 N^{2}+1\right) u}{1+\sqrt{1-u}} \\
u & =\frac{4 m^{2}+1}{\left(2 N^{2}+1\right)^{2}} \in\left[\frac{5}{\left(2 N^{2}+1\right)^{2}}, \frac{4\left(N \eta_{k}\right)^{2}+1}{\left(2 N^{2}+1\right)^{2}}\right]=[A, B] \tag{14}
\end{align*}
$$

yields $2 m=\sqrt{\left(2 N^{2}+1\right)^{2} u-1} \leq\left(2 N^{2}+1\right) \sqrt{u}$, and $d m=\frac{\left(2 N^{2}+1\right)^{2}}{8 m} d u \geq$ $\frac{2 N^{2}+1}{4 \sqrt{u}} d u$.

Consequently

$$
\begin{aligned}
\int_{1}^{N \eta_{k}} & \frac{1}{\sqrt{x_{m}}} \log ^{k} \frac{1}{2 \pi x_{m}} d m \\
& \geq \int_{A}^{B} \frac{\sqrt{1+\sqrt{1-u}}}{\sqrt{\left(2 N^{2}+1\right) u}} \frac{2 N^{2}+1}{4 \sqrt{u}} \log ^{k} \frac{1+\sqrt{1-u}}{2 \pi\left(2 N^{2}+1\right) u} d u \\
& \geq \frac{\sqrt{2 N^{2}+1}}{4} \int_{A}^{B} \log ^{k} \frac{1}{2 \pi\left(2 N^{2}+1\right) u} \frac{d u}{u} \\
& =\left.\frac{\sqrt{2 N^{2}+1}}{4(k+1)} \log ^{k+1} \frac{1}{2 \pi\left(2 N^{2}+1\right) u}\right|_{u=B} ^{u=A} \\
& =\frac{\sqrt{2 N^{2}+1}}{4(k+1)}\left[\log ^{k+1} \frac{2 N^{2}+1}{10 \pi}-\log ^{k+1} \frac{2 N^{2}+1}{2 \pi\left(4 N^{2} \eta_{k}^{2}+1\right)}\right] \\
& \geq \frac{\sqrt{2 N^{2}+1}}{4(k+1)} \log ^{k+1} \frac{4 N^{2} \eta_{k}^{2}+1}{5}
\end{aligned}
$$

since $a^{k}-b^{k} \geq(a-b)^{k}$ for $0<b<a$ and any positive integers k. Because N is sufficiently large $\left(N \eta_{k}^{2} \geq 2\right)$, we obtain

$$
\begin{aligned}
\int_{1}^{N \eta_{k}} \frac{1}{\sqrt{x_{m}}} \log ^{k} \frac{1}{2 \pi x_{m}} d m & \geq \frac{\sqrt{N^{2}+1}}{4(k+1)} \log ^{k+1} \sqrt{N^{2}+1} \\
& =\frac{\log ^{k+1} \frac{1}{1-r_{N}^{2}}}{4(k+1) 2^{k+1} \sqrt{1-r_{N}^{2}}}
\end{aligned}
$$

In this way for sufficiently large N we have

$$
r_{N} I_{p}\left(r_{N}, F_{k+1}^{\prime}\right) \geq \frac{c_{k}\left(1-\varepsilon_{k}\right)^{p}}{8 \sqrt{\pi} 10^{p-1}(k+1) 2^{k+1}} \frac{1}{\left(1-r_{N}^{2}\right)^{p-1 / 2}} \log ^{k+1} \frac{1}{1-r_{N}^{2}}
$$

Now, if $r \in\left[r_{N}, r_{N+1}\right], N \eta_{k}^{2} \geq 2$, then

$$
\begin{align*}
r I_{p}\left(r, F_{k+1}^{\prime}\right) & \geq r_{N} I_{p}\left(r_{N}, F_{k+1}^{\prime}\right) \\
& \geq \frac{c_{k}\left(1-\varepsilon_{k}\right)^{p} c^{\prime}}{8 \sqrt{\pi} 10^{p-1}(k+1) 2^{k+1}} \frac{\log ^{k+1} \frac{1}{1-r^{2}}}{\left(1-r^{2}\right)^{p-1 / 2}} . \tag{15}
\end{align*}
$$

where

$$
c^{\prime}=c^{\prime}\left(\eta_{k}\right)=\min _{N \geq 2 / \eta_{k}^{2}}\left(\frac{1-r_{N+1}^{2}}{1-r_{N}^{2}}\right)^{p-1 / 2}\left(\frac{\log \left(1-r_{N}^{2}\right)}{\log \left(1-r_{N+1}^{2}\right)}\right)^{k+1} \underset{\eta_{k} \rightarrow 0}{\longrightarrow} 1
$$

In the above considerations we can take ε_{k} and η_{k} sufficiently close to 0 . Therefore we can assume that $c^{\prime}\left(\eta_{k}\right)\left(1-\varepsilon_{k}\right)^{p}>8 / 10$. Then

$$
I_{p}\left(r, F_{k+1}^{\prime}\right) \geq \frac{c_{k}}{2 \sqrt{\pi} 10^{p}(k+1) 2^{k+1}} \frac{1}{\left(1-r^{2}\right)^{p-1 / 2}} \log ^{k+1} \frac{1}{1-r^{2}}
$$

for r sufficiently close to 1 , i.e. for $r \geq \rho_{k+1} \geq 1 / 2$.
Now consider the case $1 / 2 \leq p<1$. As above, we also use the induction with respect to $k=0,1, \ldots$. For $N \geq 1$

$$
I_{p}\left(r_{N}, F_{0}^{\prime}\right) \geq \frac{1}{\pi} \sum_{m=1}^{N} \int_{\delta_{m}}^{\delta_{m-1}}\left|F_{0}^{\prime}\left(r_{N} e^{i t}\right)\right|^{p} d t
$$

The following inequalities

$$
\left|\omega\left(r_{N} e^{i t}\right)\right| \leq R_{m-1}, \quad\left|1-r_{N} e^{i t}\right|^{-2} \leq\left|1-r_{N} e^{i \delta_{m}}\right|^{-2}=\frac{x_{m}}{1-r_{N}^{2}}
$$

hold for $t \in\left[\delta_{m}, \delta_{m-1}\right]$. In a similar way as for $p>1$ we obtain

$$
r_{N} I_{p}\left(r_{N}, F_{0}^{\prime}\right) \geq \frac{\left(1-r_{N}^{2}\right)^{1-p}}{2 \pi^{2-p}} \sum_{m=1}^{N} \frac{1}{\left(x_{m} R_{r n-1}\right)^{1-p}} \int_{|\omega|=R_{m}} \frac{|d \omega|}{|1-\omega|^{p}} .
$$

For $0 \leq p \leq 1$

$$
u(r)=\int_{0}^{2 \pi} \frac{d t}{\left|1-r e^{i t}\right|^{p}} \geq \int_{\pi / 2}^{3 \pi / 2} \frac{d t}{\left|1-r e^{i t}\right|^{p}}>\frac{\pi}{(1+r)^{P}} \underset{r \rightarrow 1}{\longrightarrow} \frac{\pi}{2^{p}}
$$

Therefore $c=c(p)=\inf _{r \in[0,1)} u(r)>0$. Consequently

$$
\begin{aligned}
r_{N} I_{p}\left(r_{N}, F_{0}^{\prime}\right) & \geq \frac{c e^{-\pi}}{2 \pi^{2-p}}\left(1-r_{N}^{2}\right)^{1-p} \sum_{m=1}^{N} x_{m}^{p-1} \\
& \geq \frac{c e^{-\pi}}{2 \pi^{2-p}}\left(1-r_{N}^{2}\right)^{1-p} \int_{1}^{N} \frac{d m}{x_{m}^{1-p}}
\end{aligned}
$$

Using change of variables (14) in the integral with $u \in\left[\frac{5}{\left(2 N^{2}+1\right)^{2}}, \frac{4 N^{2}+1}{\left(2 N^{2}+1\right)^{2}}\right]=$ $[A, B]$ for $1 / 2<p \leq 1$ we get

$$
\int_{1}^{N} \frac{d m}{x_{m}^{1-p}} \geq \frac{\left(2 N^{2}+1\right)^{p}}{4} \int_{A}^{B} u^{p-3 / 2} d u \geq \frac{\left(2 N^{2}+1\right)^{P}}{2(2 p-1)} B^{p-1 / 2}
$$

$$
\begin{aligned}
& =\frac{\left(2 N^{2}+1\right)^{p}}{2(2 p-1)} \frac{2^{p-1 / 2}+o(1)}{\left(2 N^{2}+1\right)^{p-1 / 2}}=\frac{\sqrt{2 N^{2}+1}(1+o(1))}{2^{3 / 2-p}(2 p-1)} \\
& =\frac{1+o(1)}{2^{1-p}(2 p-1)}\left(1-r_{N}^{2}\right)^{-1 / 2}, \quad \text { where } o(1) \underset{N \rightarrow \infty}{\longrightarrow} 0
\end{aligned}
$$

In the case $p=1 / 2$, we obtain for sufficiently great N

$$
\begin{aligned}
\int_{1}^{N} \frac{d m}{x_{m}^{1 / 2}} \geq \frac{\sqrt{2 N^{2}+1}}{4} \log \frac{4 N^{2}+1}{5} & >\frac{\sqrt{N^{2}+1}}{2 \sqrt{2}} \log \sqrt{N^{2}+1} \\
& =\frac{\log \frac{1}{1-r_{N}^{2}}}{2 \sqrt{2}\left(1-r_{N}^{2}\right)^{1 / 2}}
\end{aligned}
$$

Moreover, for $N>N_{0}$ we have

$$
\begin{array}{lr}
r_{N} I_{p}\left(r_{N}, F_{0}^{\prime}\right) \geq \frac{c e^{-\pi}}{2(2 \pi)^{2-p}(2 p-1)} \frac{1}{\left(1-r_{N}^{2}\right)^{p-1 / 2}}, & 1 \geq p>1 / 2 \\
r_{N} I_{p}\left(r_{N}, F_{0}^{\prime}\right) \geq \frac{c e^{-\pi}}{2(2 \pi)^{3 / 2}} \log \frac{1}{1-r_{N}^{2}}, & p=1 / 2
\end{array}
$$

Now let N be sufficiently great and $r \in\left[r_{N}, r_{N+1}\right]$. Then for $p \in(1 / 2,1]$ we have a result similar to (15)

$$
\begin{equation*}
I_{p}\left(r, F_{0}^{\prime}\right) \geq I_{P}\left(r_{N}, F_{0}^{\prime}\right) \geq \frac{c e^{-\pi}}{3(2 \pi)^{2-p}(2 p-1)} \frac{1}{\left(1-r^{2}\right)^{p-1 / 2}} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
I_{1 / 2}\left(r, F_{0}^{\prime}\right) \geq \frac{c e^{-\pi}}{3(2 \pi)^{3 / 2}} \log \frac{1}{1-r^{2}} . \tag{17}
\end{equation*}
$$

Therefore the inequalities (16) and (17) hold for $1>r>\rho_{0}(p)$.
Now suppose that for some integer $k \geq 0$ the theorem is true, i.e.

$$
\begin{equation*}
I_{p}\left(r, F_{k}^{\prime}\right) \geq \frac{c_{k}(\rho)}{\left(1-r^{2}\right)^{p-1 / 2}}\left(\log \frac{1}{1-r^{2}}\right)^{k}, \quad 1 \geq p>\frac{1}{2} \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
I_{1 / 2}\left(r, F_{k}^{\prime}\right) \geq c_{k}(1 / 2)\left(\log \frac{1}{1-r^{2}}\right)^{k+1} \tag{19}
\end{equation*}
$$

hold for $1>r>\rho_{k}(p)$. We show the theorem to be true for $k+1$.

As above

$$
\begin{aligned}
& I_{p}\left(r_{N}, F_{k+1}^{\prime}\right) \geq \frac{1}{2 \pi} \sum_{k=N}^{1-N} \int_{\delta_{m}}^{\delta_{m-1}}\left|F_{k}^{\prime}\left[\omega\left(r_{n} e^{i t}\right)\right]\right|^{p} \frac{\left|d \omega\left(r_{N} e^{i t}\right)\right|}{\left|\omega^{\prime}\left(r_{N} e^{i t}\right)\right|^{1-p}} \\
& \quad \geq \frac{\left(1-r_{N}^{2}\right)^{1-p}}{(2 \pi)^{2-p}} \sum_{k=1}^{N}\left(R_{m-1} x_{m}\right)^{p-1} \int_{\Gamma_{m} \cup \Gamma_{m}^{\prime}}\left|F_{k}^{\prime}(\omega)\right|^{p}|d \omega|
\end{aligned}
$$

Since $F_{k} \in \mathcal{B}^{\prime}$, one can use Lemma 2 for the integrals over Γ_{m} and Γ_{m}^{\prime}. By (1') with $r_{0} \geq R_{m}, r^{0} \leq R_{m-1}$ and $1 / 2 \leq p<1$ we get

$$
\begin{aligned}
r_{N} I_{p}\left(r_{N}, F_{k+1}^{\prime}\right) & \geq \frac{\left(1-r_{N}^{2}\right)^{1-p}}{(2 \pi)^{2-p}} \sqrt{2} \sum_{m=1}^{N}\left(R_{m-1} x_{m}\right)^{p-1}\left[\int_{|\omega|=R_{m}}\left|F_{k}^{\prime}(\omega)\right|^{p}|d \omega|\right. \\
& \left.-\frac{8(1+p)}{p(1-p)}\left(\left(1-R_{m}\right)^{1-p}-\left(1-R_{m-1}\right)^{1-p}\right)\right]
\end{aligned}
$$

With $p=1$ we have the following inequality

$$
r_{N} I_{1}\left(r_{N}, F_{k+1}^{\prime}\right) \geq \frac{\sqrt{2}}{2 \pi} \sum_{m=1}^{N}\left[\int_{|\omega|=R_{m}}\left|F_{k}^{\prime}(\omega)\right||d \omega|-8 R_{m} \log \frac{1-R_{m}}{1-R_{m-1}}\right]
$$

From (18) and (19) it follows that for $1 / 2<p<1$

$$
\begin{aligned}
& \frac{1}{2} \int_{|\omega|=R_{m}}\left|F_{k}^{\prime}(\omega)\right|^{p}|d \omega|-\frac{8(1+p)}{p(1-p)} \geq 0 \\
& \frac{1}{2} \int_{|\omega|=R_{m}}\left|F_{k}^{\prime}(\omega)\right||d \omega|-8 \log 10 \geq 0
\end{aligned}
$$

where $R_{m}>\rho_{k}(p)$ and R_{m} is sufficiently close to 1 , i.e. $R_{m}>1-\varepsilon_{k}, \varepsilon_{k}=$ $\varepsilon_{k}(p) \in(0,1)$. This is equivalent to $1 \leq m \leq N \eta_{k}, \eta_{k}=\eta_{k}(p) \in(0,1)$ where N is sufficiently great and $\left(N \eta_{k}^{2} \geq 2\right)$. We have shown that

$$
\frac{1-R_{m}}{1-R_{m-1}}<10
$$

as $m \in[0, N]$. Thus for $N \geq 2 / \eta_{k}^{2}$ and $m \in\left[1, N \eta_{k}\right]$ we have the following inequality

$$
\begin{equation*}
r_{N} \geq \frac{\left(1-r_{N}^{2}\right)^{1-p}}{(2 \pi)^{2-p}} \sqrt{2} \sum_{m=1}^{N \eta_{k}}\left(R_{m-1} x_{m}\right)^{p-1} \pi I_{p}\left(R_{m}, F_{k}^{\prime}\right) \tag{20}
\end{equation*}
$$

This implies for $1 / 2<p \leq 1$ and $1-R_{m}^{2} \leq 2 \pi x_{m}$

$$
r_{N} I_{p}\left(r_{N}, F_{k+1}^{\prime}\right) \geq \frac{c_{k}(p)\left(1-r_{N}^{2}\right)^{1-p}}{(2 \pi)^{1-p} \sqrt{2}} \sum_{m=1}^{N \eta_{k}} \frac{\left(R_{m-1} x_{m}\right)^{p-1}}{\left(1-R_{m}^{2}\right)^{p-1 / 2}}\left(\log \frac{1}{1-R_{m}^{2}}\right)^{k}
$$

$$
\begin{align*}
& \geq \frac{c_{k}(p)\left(1-r_{N}^{2}\right)^{1-p}}{(2 \pi)^{1-p} \sqrt{2}(2 \pi)^{p-1 / 2}} \sum_{m=1}^{N \eta_{k}} \frac{x_{m}^{p-1}}{x_{m}^{p-1 / 2}}\left(\log \frac{1}{2 \pi x_{m}}\right)^{k} \tag{21}\\
& \geq \frac{c_{k}(p)\left(1-r_{N}^{2}\right)^{1-p}}{2 \sqrt{\pi}} \sum_{m=1}^{N \eta_{k}} \frac{1}{\sqrt{x}_{m}}\left(\log \frac{1}{2 \pi x_{m}}\right)^{k}
\end{align*}
$$

The last sum in (21) has the same form as in b) in the first part of the proof. Therefore for $N \geq 2 / \eta_{k}^{2}$

$$
r_{N} I_{p}\left(r_{N}, F_{k+1}^{\prime}\right) \geq \frac{c_{k}(p)}{8 \sqrt{\pi}(k+1)\left(1-r_{N}^{2}\right)^{p-1 / 2}} \log ^{k+1} \frac{1}{1-r_{N}^{2}}
$$

Now, if $r \in\left[r_{N}, r_{N+1}\right], N \eta_{k}^{2} \geq 2$, then, similarly as above (see (15)) we obtain

$$
\begin{equation*}
I_{p}\left(r, F_{k+1}^{\prime}\right) \geq \frac{c_{k}(p)}{10 \sqrt{\pi}(k+1)\left(1-r^{2}\right)^{p-1 / 2}} \log ^{k+1} \frac{1}{1-r^{2}} \tag{22}
\end{equation*}
$$

for N sufficiently great. This means that (22) holds with r sufficiently close to 1 , i.e. $0<\rho_{k+1}(p)<r<1$. In this way the proof is complete for $1 / 2<p \leq 1$.

For $p=1 / 2$ we obtain from (20)

$$
\begin{gathered}
r_{N} I_{1 / 2}\left(r_{N}, F_{k+1}^{\prime}\right) \geq \frac{c_{k}(1 / 2)}{2 \sqrt{\pi}} \sqrt{1-r_{N}^{2}} \sum_{m=1}^{N \eta_{k}} \frac{1}{\sqrt{x_{m} R_{m-1}}} \log ^{k+1} \frac{1}{1-R_{m}^{2}} \\
\geq \frac{c_{k}(1 / 2)}{2 \sqrt{\pi}} \sqrt{1-r_{N}^{2}} \sum_{m=1}^{N \eta_{k}} \frac{1}{\sqrt{x_{m}}} \log ^{k+1} \frac{1}{2 \pi x_{m}}
\end{gathered}
$$

We have obtained the sum of the same form as in (21). Thus for $N \geq 2 / \eta_{k}^{2}$

$$
r_{N} I_{1 / 2}\left(r_{N}, F_{k+1}^{\prime}\right) \geq \frac{c_{k}(1 / 2)}{8 \sqrt{\pi}(k+2)} \log ^{k+2} \frac{1}{1-r_{N}^{2}}
$$

This implies (in a similar way as before) the following inequality

$$
I_{1 / 2}\left(r, F_{k+1}^{\prime}\right) \geq \frac{c_{k}(1 / 2)}{10 \sqrt{\pi}(k+2)} \log ^{k+2} \frac{1}{1-r^{2}}
$$

for r sufficiently close to 1 which shows the theorem in the case $p=1 / 2$. The proof of the theorem is complete.

The idea of constructing the function F_{k} appears in $[\mathrm{S}]$, where the author considered the linearly invariant families \mathcal{U}_{α} of locally univalent functions $h(z)=z+\ldots$ of the order α (cf. [P2]).

For $h \in \mathcal{U}_{\alpha}$ sharp inequality

$$
\left|h^{\prime}(z)\right| \leq \frac{(1+|z|)^{\alpha-1}}{(1-|z|)^{\alpha+1}}, \quad z \in \Delta
$$

was shown in [P2]. Hence

$$
\begin{equation*}
h \in \mathcal{U}_{\alpha} \Longrightarrow h^{\prime}=\left(f^{\prime}\right)^{\alpha+1}, \quad f \in \mathcal{B}^{\prime} \tag{23}
\end{equation*}
$$

and for functions $f \in \mathcal{B}^{\prime}$, defined by (23) $I_{\alpha+1}\left(r, f^{\prime}\right)=I_{1}\left(r, h^{\prime}\right)$. For $h \in \mathcal{U}_{\alpha}$ the inequality

$$
I_{1}\left(r, h^{\prime}\right) \leq c(1-r)^{-1 / 2-\sqrt{\alpha^{2}-3 / 4}-\varepsilon},
$$

where $c=$ const and $\varepsilon>0$ sufficiently small, was given in [P3] (p. 182, Problem 5). Since $\alpha+1 / 2>\sqrt{\alpha^{2}-3 / 4}+1 / 2=\alpha+1 / 2+O(1 / \alpha)$, we have $\alpha \rightarrow \infty$ and after integration of $\left|f^{\prime}\right|^{\alpha+1}$ the order of the growth of $I_{\alpha+1}\left(r, f^{\prime}\right)$ is reduced, as compared with the growth

$$
\max _{h \in \mathcal{U}_{a},|z|=r}\left|h^{\prime}(z)\right|=\max _{f,|z|=r}\left|f^{\prime}(z)\right|^{\alpha+1}
$$

by more than $1 / 2$.
Thus we obtain the following
Problem. Does there exist a function $f \in \mathcal{B}^{\prime}$ for which $I_{p}\left(r, f^{\prime}\right)$ has an order of growth greater than that given in Theorem? For $p>0$

$$
\inf \left\{\beta>0: I_{p}\left(r, f^{\prime}\right)=O\left((1-r)^{-\beta}\right) \quad \forall f \in \mathcal{B}^{\prime}\right\}=\beta(p)
$$

The author is greatly indebted to Professors J. M. Anderson and D. Girela for discussions on the results and for information on some related papers.

References

[C-MG] Clunie, J. G., T. H. MacGregor, Radial growth of the derivative of univalent functions, Comment. Math. Helv. 59 (1984), 362-375.
[F-MG] Feng, J., T. H. MacGregor, Estimates of integral means of the derivatives of univalent functions, J. Anal. Math. 20 (1976), 203-231.
[G] Girela, D., On Bloch functions and gap series, Publ. Mat. 35 (1991), 403-427.
[Gol] Goluzin, G. M., Geometric theory of functions of a complex variable, Trans. Math. Monographs, vol. 26, Amer. Math. Soc., Providence, R.1, 1969.
[H] W.K. Hayman, Multivalent functions, Cambridge University Press, 1958.
[M] Makarov, N. G., On the distortion of boundary sets under conformal mappings, Proc. London Math. Soc. 3(81) (1985), 369-384.
[MOS] Magnus, W., F. Oberhettinger, R. P. Soni, Formulas and theorems for the special functions of mathematical physics, 3rd edn. Springer, Berlin, 1966.
[P1] Pommerenke, Ch., On Bloch functions, J. London Math. Soc. 2(2) (1970), 241-267.
[P2] , Linear-invariante Familien analytischer Funktionen, I, Math. Ann. 155 (1964), 108-154.
[P3] , Boundary behaviour of conformal maps, Springer-Verlag, 1992.
[S] Starkov, V. V., Directions of intensive growth of locally univalent functions, Sofia, Complex Anal. and Appl.'87 (1989), 517-522.
[W] Wirths, K. J., Über holomorphe Funktionen, die einer Wachstumsbeschränkung unterliegen, Archiv der Mathematik 6(30) (1978), 606-612.

Department of Mathematics
received November 9, 1998
University of Petrozavodsk
185640 Petrozavodsk, Russia
e-mail:starkov@mainpgu.karelia.ru

