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Integral means of derivatives 
of locally univalent Bloch functions

Abstract. In this paper we give examples of locally univalent Bloch func­
tions fk, (k = 0, 1, 2,... ), such that for p > 1/2 the integral means 7p(r, fk) 
behave like (1 - r)1/2-f(- log(l - r))* for r —► 1“.

For a function y>(z) analytic in the unit disk A = {z : |z| < 1} and p > 0, 
define its p - integral mean by the formula

Ip^r,^= ^r/o ^(re'^dd, re (0,1).

There are many papers dealing with the integral means in various classes of 
functions. In particular asymptotic behaviour of integral means for r -> 1- 
was investigated. For example, in the class S of functions g(z) = z + •.. 
analytic and univalent in A sharp estimate Ip^^g') = O{ ) for
p > 2/5 ([F-MG]) was obtained. Since the derivative of functions in the class 
5 satisfies sharp inequality |<7/(2:)l 0 + l2l)(l — l2l) 3, z € A, the order
of growth of the integral means of functions decreases by 1 as compared 
with the order of growth of the derivative of functions in S. A function f 
analytic in A belongs to the Bloch class B, if it has a finite Bloch norm

II/Hb = l/(0)| +suP[(l - |«|2)|/'(^)|].
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Hence the exact estimates

|/'(z)| = 0((l - I*!)-1), |/(3)| = O(-log(l-k|)), z € A,

follow. Also for Bloch functions the reduction of growth after integration 
on circles can be observed, (see [C-MG], [M]). In fact, for f 6 B and p > 0 
we have Ip(r,fl = O((log Tq7j)p/2), as r —* 1. But for derivatives of Bloch 
functions have no similar property. In particular from Theorem 4 of [G] it 
follows, that there exists a function / G Z? for which

fp(r,/') > cp(l - r)-p, 0 < r < 1, p > 0; 

where c = c(/) is a constant.
Now, let us denote by B' the subclass of locally univalent functions in B. 

Investigation of Ip(r,f), f G B', is motivated by the behaviour of Taylor 
coefficients of functions from B' ([Pl], p.690).

In this paper we construct for every k = 0,1,2,... and every p > 1 
examples of functions Fk 6 B', such that

/P(r, F'k) > (1 ^pPj1/2 log" 1 > T > °’

where c(&,p) is a constant independent of r. We will use the following two 
lemmas. Suppose Bm = {f E B : ||/(z) - /(0)||g < M}.

Lemma 1. If f £ Bm and cu(z) is analytic in A with |(v(.a)| < 1 for z G A, 

then F = fou belongs to Bm-

Proof. By the Schwarz Lemma ([Gol], p. 319-320) we have

, ,, .. 1 — |u;(z)l2 „|w 0)1 < ^-^12 for z e A.

Thus |F(z)|(l - |z|2) < |/'(~0))|(l - |M»|2), i.e. \\F(z) - F(0)||g < 
||/0) - /(0)||g and consequently F G Bm- □

Lemma 2. Let T = {T(0) = r(F)e's : 0 G [—zr, zr]} he a closed, piece- 
wise smooth curve contained in A, symmetric with respect to the real axis. 
Moreover, assume that r(0) > 0 increases on [0,7r] from r0 to r° > ro- If f 
is analytic in A with |/(,z)|(l - |z|2) < 1 in A, then for X > 1

(1)

1
a/2

16
X- 1

I \f^)\X\dz\
.7|z|=r0

((1 - ,»)■-» - (1 - ro)1-*)

/r i/wh^i >
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and for A = 1

f l/MIM > 4; Z l/WIW-Prolog J—g.
Jr v2 7|2|=r0 1 - r°

If f(z) 0 in A, then for A € (0,1)

Z i/wrw > 4= Z i/wpi-M
Jr y/2 7|z|=r0

(1')

“ AO-I)0 1(1 “ ro),~A " - r°)l’A) " - A)(r° " r"’l •

Proof. We may suppose that r(0) increases on [0,7?]. If 3 G [—7r, 0], 
consider J_r |/(—2)| A|dz|, where the curve -T has the parametrization 
—r(0). Let us divide the interval [—7r,7r] into 2n equal intervals 0 < Oo < 
Ox < . . . < 0n = 7T, 0 = #0 > 0-1 > ... > 0-n = —TT. Put Tj = 
r(0j), j = —n,... , n; r, is increasing with respect to |j|. Now let us con­
sider the piecewise smooth curve 1^"), which is the union of circular arcs 
{z = rje'6 : 3 G [0j_i,0j]}, j = — n + 1,— n + 2,... , n and segments 
of radii {z = re'6’-' : r G [ry_i, rj]}, j = —n + 1, — n + 2,... , n. Put 
A0j = Atj = |ry -Fj-il, Zj = rjei8i, j = -n + 1,-n + 2,... , n,

rj == {z € r : Z = r(0)eifl, 3 G 

r<n) = {reie e r(n) .3 g [0j-i,0j]}.

The length of the above curves T, r^n\ Tj , will be denoted by the same 
symbols, respectively. The uniform continuity of |/(z)|A in the disk A' = 
{z |^| < r°) implies for every £ > 0 the existence of 77 = 77(e) > 0, such 
that

(2) imiM/(*")iAi<*

for every z',z" G A', - z"\ < tj. Since v/2|dr(0)| > |dr(0)| + r(3)d3 with
3 G [-7T, 7r], we have for every fixed 6 > 0 and sufficiently large n

(3) (0 + x/2)rj > + = r5n), j = -n + 1,... ,n.

Then diameters of the curves Tj and will be less than 77. Therefore by 
(2) and (3) we obtain
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= £ k«+^2)/ (izwr - i/fe)ix)i^i - /d/wr

j'=l-nL Jr> Jri

- I/(^)IA)I^I + (* + v^)IZ(^)lAr; - 

> -e[(\/2 + a)r + r(n>].

The number e can be chosen so that the last expression will be greater than 
-<(V2-l)/r|/(z)p|<fz|.Thus

(4) V2(6 + 1) / |/(!)|>| > I |/W|A|,fe|.
Jr 7r(n>

For the parameter t E [0,1] let us consider a family of curves

r(n,/) = {tz:zer(n)}, r(n,i) = r(n), r(n,o) = o.

The first of the last three sums should be denoted by /(<) and the compo­
nents of the second and third sums for t = 1 by Bj and Aj, respectively.
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Then

(6)
a*)= / 7 ZL \l \f(Triei6)\x 1^(Trieie)Trjde

-rrj-i

If f = 0 then the lemma holds. Suppose f is not identically zero. The 
function f may have a finite set of zeros on the disk A'. One can assume 
that for fixed n there exists a finite family of curves T(n, Z), containing 
those zeros. Otherwise instead of f one can consider f^ze'^) with small 
7 £ R. Next let us consider such t E [0,1] that the curves T(n,f) do not 
contain zeros of f. For z = re'6 E T(n,/) let 4>(z) = arg/(z). By the 
Cauchy-Riemann equations we have

r <1
dr

r|/|™ = -5!Z!Mldr ds

Thus by (6) we obtain

/'(<)=) Ż ff’

+ r’ |/(re^-9|We<9’-1)l = 7 [ 1/(701^(70, 
Jrrj-i J 1 Ja

where 7(f), £ € [a, 6], is a piecewise parametrization of the curve T(n,/) 
which gives the positive orientation on T(n,<). Let

L = £(C = x(£) + ij/(£) = l/(7(£))|A/V*bU)).

Then
*(f)<M£) - = |/(7(e))lA^(7(0)

and the Green formula implies

A f 2A/'(f) = - xdy - ydx = —S(n,/), 
t Jl 1

where S(n,f) is the area of the image (generally many sheeted) of the com­
pact set with the boundary T(n,t) under the function

|/(z)|A/Je**(z),

0,
/(2) / 0, 
/(*) = 0.(7)
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Now, let

rQt1{t) = rot

Then we get

2'(Z) = A p |/(roze‘«)^-i^i(rote*«)ro(/0

A 9A= -J |/(r0/e*fi)|Arf$(r0/e’9) = yS(rot),

where S(rot) is the area of the image of the disk {z : |z| < rot} under 
the function (7). Thus the inequality /'(Z) > 2'(Z) holds for all t € [0,1], 
possibly except for a finite set of t. Therefore by continuity of /(<) and 2(Z) 
in [0,1] we obtain 1(1) - /(0) > 1(1) - 1(0). But 2(0) = /(0) = 27t|/(0)|a, 
because for sufficiently small r the quantity |/(re,9)|A | ^-(rel9)| is bounded 
by a constant C. Thus by the Cauchy-Riemann equations

/ 7 r
Jo ~ Jrrj-i

I f* i rTr> d<b r*= \ - |/(re*6lj~1 )|A—(re‘e,-1)drdr < C / (rj — rj-i}dr —> 0,
j VO T dr Jo

as t —+ 0. Consequently 1(1} > 1(1). Then 
(8)

I \f(z}\x\dz\>r0I(l} + £ (Aj + Bj} 

j=l—n

>r02(l)+ £ = / \f(z}\x\dz\ + £ Bj.
j'=l—n 121 — ro J=1 — n

Now, observe that

d\f\ <9exp(Re log/)
de de

4|^|
(1-N2)2< \zf'(z)\ <

(cf. [W]). Thus, in order to obtain an estimate of we deal with 

r1 \ rTPi
B = r0 - \f(re'e’-1}\x~l\f(ret9’-1}\drdr, 0 < p\ < p2 < 1.

Jo T JtPi
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From our assumptions we obtain

/•l \ rTp2\B\<r0 t - I 

JO T JTITP! (1 - r)A+1
drd.T

dt.
tp2y (i- tpi)x_

Now, let y>(<) be the function appearing in the last integral. We have

<p(C = A(p2 ~ Pi) + + \p2 - pl)t

A(A + 1)(A + 2) 3 32

+---------jj---------(P2 “Pi)* + • • • •

Since the radius of convergence is greater than 1, we obtain

A(A + 1)... (A + fc - 1) ;>2 ~ Pi/ <p(lJ)dt = \(p2 — Pi) + • • • + 
Jo

+ ... .
fc!

However,
P2 - Pl _ P2 ~ Pl + 1 < 2 P2 + 1 ~ Pl+1

fc fc+1 fc-fc + l p2

and hence for A > 1 we get

Jo p2(A - 1)

(A - 1)A .. .(A + fc - l)z„fc+i k+i>
2!

2

(fc + 1)!
-(P2+ -Pifc+1) + ---

p2(A - 1)
[((1 - p2)1'A-l - (A - l)p2) - ((1 - Pi)1""- 1- (A - l)pi)]

1 — A>((l-pa)1-"-^-^)1-"),<
p2(A - 1)

so that |B| < 4r0 /J <p(t)dt < p2(8{li)((l “ P2)1-" “ (1 “ Pl)1-")- Thus

E Bi
j=l—n j=l-n i=i

16
A - 1

1-A>((1 _ r0)l-A _ (1 _ ^l-A)
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and by (8) we have

I l/M|A|<fe|> I I/WI'W - #r((l - r’)'-1 - (1 - ro)1-").
JrM J|z| = ro A 1

Then from (4) we obtain

X f I l/MfM -#?((!- ’-0)1-1 - (1 - ’■o)1-") 

|/W=r0 A “ 1

Since 6 is any positive number, we get our Lemma for A > 1. If A = 1 then

[ ip(t)dt = log |——, B < 4r0 log |.
Jo 1 ~ P2 1 ~ P2

Thus
| £ <8r0log|—

j=l—n
and

I l/(2)IH > -7= / |/(z)||dz|-4V2r0log|—
Jr vz 7|js|=r0 1 _ r

Now, let A 6 (0,1) and f(z) / 0 in A. Then the function /a(z) = 
/A(z) is analytic in A and |/a(z)|(1 — l2|2)A < 1- For such functions fx(z') 
K. J. Wirths ([W]) showed that

IKWI(i-M2)i+1 <2(A + i).

Therefore
pi 1 rTpl

B = t0 - \f'x(<rel9i-1\drdT 
JO JTPi
/v , Z1 1 fTp2 drdr <2r^+l)Ja

= MA+1) i[(1 _ _ (1 _ ,pi)-A]di.

As in the case A > 1 we estimate the last integral by

w(12_ A)((l - Pi)'-A - (1 - P2)'~X + (1 - A)(Pl - «)),
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i.e.

B < 7(l7)((1 - Pi)1’1 ~ (1 - Pi)1’1 + (1 - *)(Pi - Pi))-

Thus

E B>j=l-n

8(1 + A)( 
AU^A) ((1 - r0)1-A - (1 - r0)1-* - (1 - A)(r° - r0))-

Then by (4) and (8) we obtain

1
72(ó + i) L7,

I W2+i<bi - iTr-nW - r»)1
J|2|=r0 A(l-A)A(l-A)

-(l-r°)O\l-A (l-A)(r°-r0))

<

/r l/Ml1l<fe| >

Since 6 is an arbitrary positive number, we get our Lemma for A 6 (0,1). □

Remark. Lemma 2 holds also for monotonic r(0) in [0O,0°] and [0°, #0 + 2%]. 
It can be generalized for a piecewise monotonic and continuous function 
r(0). In the case A > 1 the coefficient 16/(A — 1) from Lemma must be 
replaced by 8k/(X - 1). Similarly we can consider the case A € (0,1].

Let us now consider /(z) = log(l - z) £ Z?2 and u>(z) = exp (-7r.
Since |w| < 1 in A, one can define functions

(9) Fo = / o w, Fk = Fk-i ow, k £ N,

analytic in A.

Theorem. The functions Fk defined by (9) belong to $2 H S'. Moreover, 
the inequality

1
IP^F'k)>

c(k,p)
(1 _ p2)p —1/2 1 — r2

holds for every A: = 0,1,2,... and every p > 1/2 with the constants c(k,p) 
defined as follows.
If p > 1 then

, , ce-irp Z2\p_1/2
c(0’p) = 2710^ (5) ’
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where 0 < c = c(p) = infrg[Oii)[(l — r)1 p |1 — relt| pdt], and

c(k’P) = jfc!(2(fc+3V2vZ?lOP)k ’ p0^ = 1/^’

If p G (1/2,1] then
c(p)e *

3(2tt)2-p(2p- 1)c(0,p)

with c(p) = infre[0,i) > 0 and

c(fc,p) c(0,p)
(10i/7r)fcfc!

For p = 1/2 we have

I tr C(Q’ 1._ fc+1 1
A/2( ,^)> (10^^(^+1)!l g 1_r2,

where c(0,1/2) is given by the same formula as in the case p G (1/2,1].

Proof. From the definition of Fk it follows that Fk G B'. By Lemma 1 we 
get Fk G B2 for every k, since log(l - 2) G Bi-

1. PutFor positive integers N consider the sequence rjv = Jtfl+i 
f>N = arccosrjy. Then

N—fOo

Im

1 + rNei6"
1 - rjvetSN

1 + rNe,&N _ 2r/vsinó;v 
l — r^elSN 1 - 2rjv cos <$/v + fjv

Re
1 - r2 1 rN

1 - 2rNcos6N + r2N

2r/vV^

= 1,

'TV
TV

2rN
= 2N.

1 N

Now let 6m G [0,7r] be a solution of the equation 

1 + rtvei6m 2rNs\nf)m
Im

1 — r/ve’°m 1 — 2tn cos 6m + rN
= 2m,

where m G [0,7V] is an integer. Setting 7 = cos 6m we obtain a quadratic 
equation y2(4r^m2 + rjy) — 4m2r/v(l + rjy)7 + m2(l + rj^)2 — r2N = 0. Hence

7 = cos 6m =
2m2 1 + 27V2 ms

1 + 4m2 TVv/l + TV2 1 + 4m2 7V2(7V2 + 1)'
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1 “ rN

Let us introduce the expression

1 + rNe,Sm
Xm — -c — 21 - r^e10- 1 - 2rN cos 6m + r'N

4m2 + 1
“ 27V2 + 1 + /(27V2 + 1)2 - 4m2 - 1'

First consider the case p > 1 and use the induction with respect to k 
0,1,2,....
a) For k = 0 we have

/P(rN, Fo) = J’ \F^rNeit^dt = i l^o(rive<t)|pd/

1 _ ' fUm-l
>-Y,

* Jsm

2tt
dt.

Note that for t 6 we have |1 — r/veu| < |1 — rĄTe"5"*-1! and

F(/) = |w(rNe“)| > Rm = e

Moreover,

|1 - u>(rNe“)| = |1 - fl(t)eifl(t)| < |1 - Rmeie(t)\ + (F(Z) - Rm) 

< |1 - Rmeie\ + (1 - Rm) < 2|1 - Rmeie1.

The interval [óm, is mapped by u»(rjve*‘) onto one branch of the spiral
u> = R(t)eie^ = p(0)e*e, 0 € [-27rrn, —27r(m - 1)] and p(0) increases from 
Rm to Rm-i. The element of length |du>| = |d(p(0)e'(’)| of the spiral is not 
less than the element of length \d(Rme'e)\ of the circle {|u>| = Rm}. In this 
way we get

s 1 [ \di
rNIP(rN, Fo) > - 2. |1_rArC«„_1|2(p-l)2p JM=Rm ,! _ W,P 

Since for p > 1 (cf.e.g. [MOS], p. 157)

this means that the function u(r) is positive and continuous on [0,1] with
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Therefore u(r) > c > 0 for r € [0,1] and consequently

rjv-ZP(nv, Fo) >
C7T p-2 1 Rp1Lm

2 m=N |1 - rAre"5m-i|2(p l)(l - Rm)p~x '

For any integer m 6 [0, TV]

Em-i = 4(m - l)2 + 1 27V2 + 1 + ^(27V2 + j)2 _ (4m2 + !)
xm 4m2 + 1 27V2 + 1 + y(2TV2 + l)2 - 4(m - l)2 - 1

= 1-
8m — 4 \1++ - +++

(2AT2 + l)2
>4- 8m - 4 \ 1 k 1 

4m2 + 1J 2 > 10'4m2 + 17 1 + ^/i _ —

Thus

(10)
1

11 — r^e'6”1-112

and
r , „ . C7rP-2

rNlp^NyFo) >

■Em-1 > 'Em 1

N
__  -n-;
0-1 Z_^ 71 _

7?P i;p_1
1Lm m

210P-1 (1 - r2f)P-i (1 - Rm)r-i ' 

Because xm 6 [0,1], we have Rm > e~v, 1 - e~1TXm < Kxm. Thus

7 7 r C7rP~2e~%P N _ ce~*P rN
rN p[rN' o) - 210p-1ttp-1 (1 - r2Ny-' 27T10P-1 (1 - r2̂ -1/2 '

The integral means /p(r, <p) are increasing with respect tor 6 [0,1) for every 
function ip analytic in A (cf.e.g. [H], Theorem 3.1). Therefore Fp(r, Fo) > 
/p(pn,F0) for r e [r/v,r/v+i]- Thus for r € [rjv,r/v+i]

^p(p,F0) >
(U)

>

ce-’P
2tt10p- 1 (1 -

ce_7rp Z2\ 
2rrlOP-1 \5/

_J_______  Z 1 - rN+l

r2)p-i/2 i-r2,

p-1/2 ,

(1 _r2)p-l/2

)
p-1/2

for N > 1. Since N is arbitrary, the inequality (11) holds for r G [l/\/2, 1).

b) Now, suppose that the theorem holds for any fixed positive integer k > 0, 
i.e.

(12) ip(r,F{)> Ck
(1 _ r2)p-l/2

log*
1 — r2

for 1 > r > pk G (0,1).
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We show that it holds for k + 1. For m = 1,... ,N write 

Lm = Mw'*) : t 6 [<5m, <5m_i]),
L-m = {^(r/ve*4) : t 6 [-óm, -<$m_i]},

where Lm is a spiral-like curve which winds once around the point z = 0. 
For t G the quantity |w(rjveli)| increases with respect to t. L-m
is a curve symmetric to Lm with respect to the real axis. Therefore for 
every m = 1,... , N the curve Lm U L_m may be represented as a union 
of two piecewise smooth closed curves rm U rzm, where Tm consists of the 
upper part of Lm and the lower part of L_m, and = Lm U L~m \ rm. 
Both curves rm and F'm fulfil the assumptions of Lemma 2 with ro > Rm 
and r° < Rm-i - Thus by (10) and (1) we obtain

r„/P(rN,^+1) > g \F'k+1(rNeit^dt

> ± V (27r7?Tn)P-1 r 
~ 2x ll - r^e’6"'-1 |2(p-1) JL

771=1 Lmm
TV

> .w

>
(27t)p~2v/2 

~ lOP-^l - r2f)p-1
TV

27T/?m/p(7?m,Ą)x E(a:-^)p"1
771=1

2?+4
- - ((1 - Rm-^ - (1 - Rmy~P)

p - 1
since by Lemma 1 the functions Fk belong to B2, i.e. |F]((z)|(l — |z|2) < 2 
for z E A.

Because ^=1 > for integers m G [0,7V], we have

xm < 10a:m_i => Tr(a;m — zm-i) < 97ra;m_i < 9(e m 1 — 1)
==>■ Rm—1 ^(^-m xm—i') < 9(1

1 ~ fim-l(l — 7r(xm — , q

1 — Rm-1
1 - Rm-1e~ir('Xm l-flr

=>
Rm - 1 1 - Rm-l

< 10 < 10.
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Therefore (see (12)) for Rm G (/>*,, 1)
2P+4

(13) 2ir RmIp(Rm, F'k) - —((1 - JRm_i)1’p - (1 - flm)1_P)

27TC/c-Rm , k 1 2P+4 //1 n \l_p n n \l-»\
(l-^)P-V2lOg 1-R2m p-l((1 Rm~^ (1 Rm^ }>

2tt C k R-m i k 
log= (1-^)1-P _j___ 2p+4 ff i-Rm y-1

1-722, p-1 Hl-^-J

> (1 - ^)4-p

>
irckRm log

27T CkRm , k 1 
log

2P+4

i-Ri p-i
10p -l

(l-^m)P-l/2

for Rm sufficiently close to 1, i.e. for Rm > 1 - ek > Pk, £k S (0,1).

^Ik (0 < Tjk < 1)Rm > 1 £k 4 < %m < logTT 1 - £k

<=>
4m2 + 1

27V2 + 1 + 7(27V2 + l)2 - 4m2 - 1 
4m2 + 1 < (27V2 + 1)47/1 - 4rj4k.

<rfk

The last condition holds for m < Nrjk, with TV > 1/(27/^). Now, suppose 
that TV is sufficiently large (TV > 2/77?). Then the inequality (13) holds for 
1 < m < Nrjk and for TV > 2/rfi

NT)k p-1 np
N ,( «. *+,) _ ^25^1(1 _ L (1 _ ĄJP-1/2 « 1 - JZ*,’

As stated above, 1 — R2n < 2-irxm for every m. Moreover, Rm > 1 — £> for 
m G [1, Nrjk]. Consequently

r f r>l \ \ ck(l — £fc)P \ 1 , k 1
> 2x/x10p~,(1 - rl.'lP-1 Ę -«=><*

771=1

Since xm increases with respect to m, each term in the last sum decreases 
with respect to m (we can assume that r)k is sufficiently small and then 
4nxm < 1). Therefore

pn7„(pa,,f;+1) > 2^F1o:(-1,~?)4)p- £" y=l°g‘
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The change of variables in the integral

X m —
(14)

U =

(22V2 + l)u

1 + VT^u’
4m2 + 1 , 5 4(TV7?fc)2 + 1

(22V2 + l)2 (27V2 + l)2 ’ (27V2 + l)2

yields 2m = ^/(27V2 + l)2u — 1 < (27V2 + and dm = ^2N8^~du >
2ATa+lVz + i

l\/u du.
Consequently 

rNr)k 1z log*
27rxr

-dm

>-L
\/l + \/l — u 27V2 + 1 k 

log
i +vT

>

A y/(2N2 + l)u 4^/u 

>/27V2 + 1 z; log* 1

logW
4(A: + 1)

2tt(27V2 + l)u u 
u=A1

2tt(27V2 + l)i

y/2N2 + 1 
4(fc + 1)

2tt(27V2 + l)u 

du

u=B

fc+1

du

fc+1 27V2 + 1 ,

°g IOtt °g 27r(4TV27/2 + l).
27V2 + 1

. y/2N2 + 1 ,_fc+1 47V2t?2 + 1 
7(Tnrlog ------5------ ’

since ak - bk > (a - b)k for 0 < 6 < a and any positive integers k. Because 
TV is sufficiently large (7V^ > 2), we obtain

y/N2 + 1zNr,k
log*

2ttxt
-dm >

4(fc + 1)
log*+1 —1

logfc+1 y/N2 + 1

1_rT
1 rN

~ 4(Ar + l)2fc+1v/rr^'

In this way for sufficiently large N we have
cfc(l-£fc)p

rN/p(rN,Pfc+1) > 8v^10P-i(Jt+ i)2*+i (1 - r^)P-V2 logfc+i
1 — rN

Now, if r € [r/v,r/v+i], TVrj2k > 2, then

r/p(r, Ffc+i) > rNIp(rN,F'k+1) 

cfc(i - £kyc'> log fc+1 1 
1 — r2

SV'irlOP-1^ + l)2fc+1 (1 - r2)P-V2 ‘
(15)
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where

‘ jv“ /o; V 1-rJ, ) v°g(l - 1-5,+lV 1.
log(l-r?/+i)/

In the above considerations we can take Ek and r]k sufficiently close to 0. 
Therefore we can assume that c'(pfc)(l — £fc)p > 8/10. Then

1
log fc+i/ £ k A

/p^’ Fk+1>> - 2^FlOP(fc + l)2/c+1 (1 - r2)p-1/2 1 _ r2

for r sufficiently close to 1, i.e. for r > pk+i > 1/2.
Now consider the case 1/2 < p < 1. As above, we also use the induction

with respect to k = 0,1,... . For N > 1

Ą(r;v,^)>-E f’n"1|F'(rNeH)|Pdt

The following inequalities

-it Jóml-2MrNe‘‘)| < Rm-i, |l-rNe‘‘| 2 < |1 - rNe'b’n | 2 =
1 “ rJV

hold for t G In a similar way as for p > 1 we obtain

. (1 ~ W N
rNIr(rN,Fi) > £

For 0 < p < 1

2’r2_p (,xmR

3ir/2 dt

1_____  [ J
n-l)1-P J\u\=Rm |1 ~ u>|p'

/•2tt >. /-37r/2««=/ IT
t/2 |i-re“|P (l + r)pr-i2P' 

Therefore c = c(p) = infr£[o,i) u(r) > 0. Consequently

rNIP(rN,F^ > “ r^)1_P J2 I^~1
m=l 

N
> CC * (1 r2 ?-p I —
~ 27Tj_p 1 Z ^-p-

Using change of variables (14) in the integral with u G [fT/v^+Tj7»(2^+1)^ 1 = 
[A, J9] for 1/2 < p < 1 we get

f > (2*’ +1)- > Pf+ /2
Ji X1mp 4 JA 2(2p - 1)
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(27V2 + l)p 2P~1/2 + o(l) y/2N2 + 1(1 + o(l)) 
2(2p—1) (27V2 + l)p-1/2 _ 23/2-P(2p-l)

= 1 “ rw)_1^2, where o(l) —♦ 0.
21_P(2p - 1) V ’ N-oo

In the case p — 1/2, we obtain for sufficiently great TV 

rN dm y/2N2 + 1 , 47V2+ 1 y/N2 + 1r dm_ 
•A Xm2 log >

2^2
log \/7V2 + 1

l0Sdr

2^2(1-r2,)1/2'

Moreover, for TV > 7V0 we have

C6~^ 1
WP(pN,^ó) > 2(2tt)2-p(2p-1)(1 - 4)p-!/2 

ce-’ 1
rNIP^N, ^0) > 2(27t)3/2 1Og 1 - r2/

1 > p > 1/2,

p = 1/2.

Now let TV be sufficiently great and r e [rN, rjv+i]- Then for p 6 (1/2,1] 
we have a result similar to (15)

C€~~^ 1
(16) /p(r, Fó) > IP(rN, FÓ) > 3(27r)2-P(2p- 1) (l _ r2)P-i/2 ’

(17)
CC 1

A/2(p, ^0) > 3(27t)3/2 1OS l_r2 '

Therefore the inequalities (16) and (17) hold for 1 > r > p0(p).
Now suppose that for some integer k > 0 the theorem is true, i.e.

(18) Jp(r,F0 > (1 _Ckr2^j2 (lp6 TZ72) ’

(19) A/2(p,K)>cfc(l/2)
fc+i

hold for 1 > r > pfc(p). We show the theorem to be true for k + 1.
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As above

27T

rS„ZI

k=NJ6m

|du;(rNelt)|
|w'(r/ve,t)|1-p

W P 7rmur-m
Since Fk G B', one can use Lemma 2 for the integrals over Fm and r'm. By 
(1’) with ro > Rm, r° < Rm-i 1/2 < p < 1 we get

rN/p(rN,K+1) > (1z/łł1p~P^Z(^m-iXtn)p-1 I I^H|P|<M

With p = 1 we have the following inequality

r7vA(rN,-Ffe+i) > JL f / l^(^)ll^|-8Frnlog 1 Rm .

[7|u;|=Hm 1 — Cljn—1 J
From (18) and (19) it follows that for 1/2 < p < 1

8(1+ p) 
p(l - p)

>0,

|Fj((u;)||dw| - 8log 10 > 0,

where Rm > Pk^p} and Rm is sufficiently close to 1, i.e. Rm > 1 — £k, £k — 
£k(p) G (0,1). This is equivalent to 1 < m < Npk, Pk = Pk(p) G (0,1) 
where N is sufficiently great and (Nrf. > 2). We have shown that

as m G [0, A]. Thus for N > 2/p^ and m G [1, Npk] we have the following 
inequality

fl - r2 V“P
(20) rN > k ,n y/iYfR^x^-^UR^Fi).
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This implies for 1/2 < p < 1 and 1 - R2m < 2nxm

N r{ ‘+.>- (2»)'-»v/2 V gl-<J

1 ' - (2I)>-p^2(2,)f-V2 2-, iK-!/2 P°S 2„xJ
. <*w(i - ri,)1-' s i (. i y

The last sum in (21) has the same form as in b) in the first part of the 
proof. Therefore for N > 2/t/^

rjv/P(rjv,F(+1) > + \ r2^p-1/2 log*+1 TT^T-

Now, if r G [r/v, r/v+i], Nrf. > 2, then, similarly as above (see (15)) we 
obtain

(22) 7p(r, F'k+1) > 10^fc + r2)P-i/2 loSfc+1 777/7’

for N sufficiently great. This means that (22) holds with r sufficiently close 
to 1, i.e. 0 < pjt-)-i(p) < r < 1. In this way the proof is complete for 
1/2 <p< 1.

For p = 1/2 we obtain from (20)

r ( p> \> Cfe(1/2) t/i _ r2 V' ____ IrNI1/2(rNJ k+1) > N \ r—.2\At V m=l —1

Nr)k 1
Jfc+l 1

log,fc+l
1 - JŻ21 •łLm

, o.(i/2) t y _J_iog
“ 2a/tt V N 2nx’ m=l

We have obtained the sum of the same form as in (21). I hus for TV >2/^

T / r' CkW2) ioe-fc+2 *rN/i/2(r/v,^+1) > 8^_^ + 2)log i_r2^.

This implies (in a similar way as before) the following inequality 

, ( V 1 ■> Cfc(1/2) 1np-*:+2 1
/i/2(r,n+1) > 10v^(A. + 2) lo§ ! _ r2
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for r sufficiently close to 1 which shows the theorem in the case p = 1/2. 
The proof of the theorem is complete. □

The idea of constructing the function Fk appears in [S], where the author 
considered the linearly invariant families Ua of locally univalent functions 
/i(z) = z + ... of the order a (cf. [P2]).

For h G Ua sharp inequality

|h'(z)| < a + nr-1
(l-|*l)"+1’

z g A

was shown in [P2]. Hence

(23) h£Ua ==> h'= (/')“+1, /€F',

and for functions f G B', defined by (23) /a+i(r,/') = Ą(r, h'). For h G Ua 
the inequality

A(r,/i') < ^l-r)-1/2-^02-3/4-',

where c = const and e > 0 sufficiently small, was given in [P3] (p. 182, 
Problem 5). Since a + 1/2 > y/a2 — 3/4 + 1/2 — a + 1/2 + 0(1/q), we 
have a —> oo and after integration of |/'|Q+1 the order of the growth of 
/a+i(r,/') is reduced, as compared with the growth

.max. M2)! = max |/'(z)|“+1
h.eUa,\z\=r /,|z|=r

by more than 1/2.
Thus we obtain the following

Problem. Does there exist a function f G B1 for which Ip^r,/') has an 
order of growth greater than that given in Theorem? For p > 0

inf{/? > 0 : 7p(r,/') = 0((l - r)^) V/ G B'} = /3(p).

The author is greatly indebted to Professors J. M. Anderson and D. Girela 
for discussions on the results and for information on some related papers.
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