
ANNALES
UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA 

LUBLIN - POLONIA

VOL. LIII, 18 SECTIO A 1999

JOHN A. PFALTZGRAFF and TED J. SUFFRIDGE

An extension theorem 
and linear invariant families 
generated by starlike maps

Abstract. The three goals of this paper are (i) to provide a large number 
of examples of holomorphic mappings of the ball that satisfy some geometric 
criterion, usually starlikeness, (ii) to introduce a new extension of a mapping 
of the ball in dimension n to a mapping of the ball in dimension n + 1 that 
preserves the given mapping on an n dimensional affine subspace and (iii) 
to study the concept of linear invariant families as it relates to families 
generated by these mappings.

1. Introduction. In this paper, we continue the study of linear invariant 
families on the unit ball Bn = {z € C : $3£=1 l2^!2 < !}• linear 
invariant family, hereafter abreviated LIF, on Bn is a family J7 of locally 
biholomorphic mappings f : Bn C such that if f G F then (i) /(0) = 0 
and D/(0) = 1 and (ii) A^(/) € T for all holomorphic automorphisms <j> of 
Bn. Here, the Koebe transform, A^,(/), denotes the composition of f with 
</> followed by a renormalization. That is

a0(/(z)) = - /ww-
The study of LIF’s on the unit disk (i.e. n = 1) was initiated by Pom- 
merenke in [8] and [9]. He was able to relate the order of an LIF, T7, given
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by ord(77) = sup{j|/"(0)| : f £ J7} to the growth of the function and to 
the geometry of the image.

In [4] Pfaltzgraff extended these ideas to LIF’s on the n-ball. Pfaltzgraff 
defined the order of an LIF, T7, by

ord(77)
= sup||

trace : f € T and |w||z?2/(0)(w,-) 4

With this definition, similar distortion results can be proved but some of 
the geometric results are different. For example, for n = 1, an LIF of 
minimum order must be a subset of the family of mappings of the unit disk 
onto convex domains. In addition, the family K of normalized mappings 
of the unit disk onto convex domains is an LIF of minimum order (i.e. 
ord(A) = 1). Neither of these properties holds for n > 1. That is, for n > 2 
there is an LIF of order (n + l)/2 (the minimum possible order) that does 
not consist entirely of convex mappings. In addition, the LIF consisting of 
all normalized convex mappings of the ball has order greater than (n +1)/2
[7]-

In section II, we define an extension of locally biholomorphic mappings 
from Bn into C to a locally biholomorphic mapping from Bn+1 into Cn+1 
so that the restriction of the new mapping to Bn agrees with the original 
mapping (embedded in Cn+1). We can find the precise order of an LIF 
generated by extending all the mappings in a given LIF. We believe the 
extension will preserve convexity. For example, the extension of the Cayley 
transform F(z) = z/(l — zj) on Bn extends to the same function on Bn+1. 
For n = 1 the extension is identical to the extension in [11] and in that case, 
convexity is preserved.

Unlike convexity, starlikeness of a mapping is not a linearly invariant 
property since the Koebe transform moves /(0), the center of starlikeness of 
the image domain. However, one can begin with a set of starlike mappings, 
form the family of all Koebe transforms of this set and thereby generate a 
linearly invariant family. All mappings in this LIF have an interesting geo
metric property that in dimension n = 1 is equivalent to close-to-convexity 
(see section III, below). In section III, we show how to generate a large fam
ily of starlike mappings on the unit ball of a general normed linear space [5]. 
Then, restricting our attention to the finite dimensional case of Bn, we find 
the order of the LIF generated by these starlike mappings and correspond
ing sharp bounds on their volume distortion. This leads us to conjectures 
for the sharp distortion bounds on the family of all starlike maps of the unit 
ball and of the LIF generated by the family of all starlike maps.

Finally, in section IV, we consider a family of mappings defined by Rosay 
and Rudin [12] and show that the LIF generated by these mappings has 
minimum order.
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2. An extension theorem. We Assume f : Bn -» C is locally biholomor- 
phic with /(0) = 0 and D/(0) = I. Let Jf(z) = de^Df^z)] for all z G Bn. 
Then J/(z) is complex valued and never 0 when z G Bn. We define a locally 
biholomorphic extension of f to a function f : Bn+1 —» C”+1 as follows. 
Set z' = (21,22, • • • ,zn) G C and z = (z',zn+1) G Cn+1. Then

(1)

It is easy to see that

(2) 7/z) = [Jy(z')]<n+2)/(n+1)

because /^+1(^z) — 0 for 1 < j < n and = [7/(z')]1An+1). Here
the super script j indicates the jth coordinate function and the subscript k 
denotes the partial derivative with respect to Zk- If G is a set of normalized 
locally biholomorphic mappings on Bn then

A[{7] = {A^f/) : / G G Aut(Bn)}

is the LIF generated by G, [4]. We have the following theorem concerning 
the order of the extension.

Theorem 1. Let T be a LIF on Bn with ord(J7) = a and = {f : f G T7} 
the corresponding set of functions on Bn+1. If A[j"] is the LIF generated 
by T then

(4) ord(A[^) =
n + 1

Proof. By the distortion bounds in [4, Equation 5.1] we have

(i+ih'iir1*-1 /l ” - u - iw+^

for f G T and z' G Bn. Using (2) we conclude

(4)
1 + 11*

n+2
Z||\Cr-\ n + 1

+ II* .(1
< IW <

for all /G 7. Since the left side of (4) decreases and the right side increases 
when ||^z|| is replaced by the larger number ||z||, we may rewrite (4) as

(*)l

1 + IN
1 -11^1

1__________<17.

\i + lkll7 (l-IMI2)**2 ~ f

<
(5)

1

(1
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Now assume F G A[F] so that F = A^,(/(z)) for some f £ F and 
</> G Aut(Bn+1). Using (5.3) in [4] with n replaced by n + 1 (since F is a 
family on Bn+1) we have

le,\ r ft r1n2rrnv 2 m Ml^)l(l - ll^ll2)^) 
(6) -Re{trace[-ZUF(O)( —,•)]} =----

log£1+ 2

for z G Bn+1. Taking logarithms in (5), we get

+ 2\ log(|7;(z)|(l-||2|p)+2)
(7) l+ll£log£

Finally, (6) and (7) together with (2) and the fact that ord(F) = a yield
(3).

Remark 1. It is easy to check that if / : Bn —> C is given by f(z') = 7^77 
then the extended mapping f : Bn+1 —> <Cn+1 is given by /(z) = -j^F2' 
This mapping is extremal for several properties within the family of nor
malized convex mappings (e.g. it has maximum growth in one direction 
and minimum growth in the opposite direction). When n — 1, the exten
sion (1) was used by Roper and Suffridge [11] to extend convex mappings 
of the unit disk to convex mappings of the balls in C2, C3, ••• , C". Indeed, 
if one begins with a complex valued function /(zj) of z\ G B1 the exten
sion to B2 is (/(zj), Z2y//'(zi)). If this mapping is then extended to B3 
then to B4, etc. up to Bn by successive applications of (1) one obtains the 
mapping (/(zi), Z2-y//'(zi),''' , zny/These mappings were studied 
by Pfaltzgraff in [4, Example 4, Equations 3.7, 3.8] and by Roper and Suf
fridge [11, Corollary 1, P. 346]. This extension differs from our extension for 
n > 1 as the following example shows. Consider the mapping on B2 given 
by (z,w) —> (z, w(l + 6z)) extended to B3. The given mapping is known 
to be convex when |6| < [7, Lemma 2.3]. However, our extension, F, to
B3 is given by (z, w,u) —* (z,w(l + 6z),u(l + óz)1/3) and this cannot be 
obtained as the extension of a convex mapping of the unit disk in C. The 
latter mapping, F,does satisfy the necessary condition for convexity

Re<BF(Z)"1 (£>F(Z)(Z) + D2F(Z)(Z,Z)), Z> > 0

when Z = (z,w,u) G B3 but we have not verified that it is convex. With 
this evidence we make the following conjecture.
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Conjecture 1. If f : Bn <Cn,/(0) = 0 and 2?/(0) = I with f(Bn) 
convex, then f is also a convex mapping.

We also believe the property of starlikeness is inherited by the extension 
although we do not have as much evidence that that is the case.

3. Generating starlike maps and a related LIF. In C 1 there is a 
plentiful supply of explicit examples of conformal mappings of the unit disk 
onto domains with various prescribed geometric characteristics, e.g. polyg
onal domains, convex domains and many more. In higher dimensions, such 
formulas are quite rare. In Theorem 2, we give a formula for generating a 
large family of biholomorphic mappings of the unit ball of a normed linear 
space X onto starlike domains in X. We define a family S* of starlike map
pings on Bn and then prove a distortion theorem for this family, Theorem 3. 
We conjecture that this distortion theorem is valid for all starlike mappings 
of Bn. We then apply our results to determine the order of A[<S*], the LIF 
generated by S*.

The term, starlike domain, will mean a domain that contains the origin 
and is starlike with respect to 0. A starlike mapping of Bn will mean a 
biholomorphic mapping F of Bn onto a starlike domain with F(0) = 0.

Let X be a normed linear space with unit ball B and assume P : B —> C. 
We consider conditions under which the mapping F : B X given by 
F(z) — P(z)z has a starlike image. This would include, for example, the 
case where the function F is the extension of a starlike function of one 
variable in the sense that F(z') — f(X)z where u is a unit vector z — Xu + w 
and A/(A) is starlike on the unit disk. Thus, F(Au) = A/(A)u [6].

We assume F : B X is given by F(z) = P(z)z where P is complex 
valued and holomorphic with P(0) = 1. Then

(8) 0F(z) = P(*)(/+ *£(*)(•)),

and

DF(z)“‘ *-£(*)(•)
1 + MW ) where L(z) — DPWS)

We wish to apply the criterion for starlikness given in [14, p. 579], that

(9) Re{^(FF(z)-1(F(z))} > 0, 0 < ||z|| < 1
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for all linear functionals I = fz with ||f|| = 1 and f(z) = ||z||. We find that

(10) DF(z)-1(F(z)) = (l- £(*)(*)
1 + T(z)(z) 1 + T(z)(z)

z — w(z).> =

Now assume lz is a linear functional on X with ||f2|| = 1 and f2(z) = ||z|| 
as described above.

The condition for starlikeness (9) is that Re(f2(w(z))) > 0. This clearly 
reduces to Re Q'4.L(2)(2) > 0. Finally, we obtain the condition

Re(l + Z(z)(z)) > 0.

We have proved the following theorem.

Theorem 2. Let X be a normed linear space with unit ball B and assume 
P : B —> C is holomorphic with P(0) — 1. Then the mapping F : B —> X 
given by F(z) = P(z)z is a starlike mapping if and only if

Re DPWS)\ > 0

for all z 6 B.

Example. Let X = C2 with Euclidean norm and set

, £>P(z)(z) 1 + Z!
P(z) 1 + z2 ■

This function has positive real part since

M2 + |^2|2 < 1 =»

Solving for P(z) yields

(He) 7T
<2-

p(z} = exp(zi log(l + z2)/z2) 
1 ’ 1 + z2

By theorem 2, the function F : B —> C2 given by P(z) = P(z)z is starlike.

In case X = C with Euclidean norm, the following corollary is easy to 
prove.
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Corollary 1. For each v — Jet /„(£) be a conformal mapping of
the unit disk onto a starlike domain fl„ in the plane, /„(O) = 0, /„(0) = 1.

If > 0 and 52"=1 A„ = 1 then
n

(11) F(z) = zII(M^)/^)A*', zeBn
J/=l

is a biholomorphic mapping of Bn onto a starlike domain in Cn. Equiva
lently,

(12) F(z) = z exp
n ,2ir

1
„=1 7o

log(l - zue -it 'jdm^t)}

where each dm„, i/ = 1, ...,n, is a probability measure on [0,27r].

Proof of Corollary 1. Denote the product in the statement of the theorem 
by P and let L(z) = DP(z)(z)/P(z) as before. Then

Since 52”=1 Ap = 1, we readily conclude that

1 + L(z) - 52
p=i

Thus, the corollary follows from the starlikeness criterion

for starlike mappings on the unit disk [10, p. 42].
The formula (12) with the measure dm„ is a direct consequence of (11)

and the standard Herglotz type representation of starlike maps of the unit 
disk, [10, p. 43].

Definition. S* is the class of starlike mappings F defined by (11).

Remark 2. Clearly, when n = 1, S* is the full class of normalized starlike 
mappings of the unit disk. This is no longer true for n > 1. For example, if 
|a| < 3^3/2 then (2, in) -> (2,w + az2) is a starlike mapping of B2, [13, p. 
150], that does not belong to S*.

In earlier work, the authors have used the construction in the next corol
lary to construct starlike mappings of Bn using the starlike maps of F1. 
See examples in [6] and [13].
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Corollary 2. Fix u G Cn, ||u|| = 1, and let /(() = C + + ■■■ be
a univalent starlike mapping of the unit disk. Then (with u* denoting 
conjugate transpose),

F(Z) = f(u'z)z
u*z

ze Bn

is a biholomorphic starlike mapping of Bn. In fact F G 5*.

Proof. Given u, let {ui, U2,..., un} be an orthonormal basis of C n with 
ui = u. Then for any z G C n we have a representation z = + ZjUj.
With Ai = 1, Jj = f in formula (11) we obtain a function F G S* of the 
form

fi(zi) f(u’z)F(z) = z = z-
Zi uz

If /«W + G2<2 + 
star like of order 1/2,

is a convex mapping of the unit disk then it is

«)//«)}> ^, KI<1,

[10, p. 9]. If each fy in the construction (11) of F is a convex mapping 
then it seems unlikely that F is a convex mapping of Bn. However, F will 
satisfy

Re - 1 < 1, o< ||z|| < 1,

which is more restrictive than (9). This follows from (10) since

(z'DF(z)-'F(z))

As mentioned earlier, starlikeness of a mapping is not a linearly invariant 
property since the Koebe transform translates the point /(0). However, one 
can begin with a family F of starlike mappings and pass to the LIF, A(77) 
generated by F. Each mapping / G A(T’) has the interesting geometric 
property that the complement of f(Bn) is the union of noncrossing rays 
(any intersection must be the endpoint of some ray). For dimension n = 1, 
this means that f is a close-to-convex function [2] and [3]. The authors have 
noted that this geometric property is a necessary consequence of close-to- 
starlikeness when n > 1, [6]. We shall prove a distortion theorem for the 
class of starlike mappings S* and then use this result to determine ordA[5[[]-
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Theorem 3. If F £ S’ then

(14) 1 ~ 11*11
(i + ll*ll)2n+1

i+ 11*11
(i - ll*ll)2n+1 11*11 < i< <

and these bounds are sharp.

Proof. Let F G S*. Then as in (11) and (8), F(z) = zg(z) and DF(z) = 
g(z){I + zL(z)ł}. The matrix zL^z)1 has proportional columns, hence rank 
= 1 and therefore det{7 + zL(z)ł} = 1 + trace(z£(z)‘). It follows that

JF(z) = det DF(z) = g(z)n
1 + Ż

i/=i

C(*^)
M*l/)

« .

Thus

(15) ■M*) n / /t/(^i/)\ U Zyfy^Zy)

\ zy J /u(*«z)

In order to obtain the bounds (14) from (15) we first note that the starlike 
functions satisfy

1< <(16)
(1 + 11*1 (1 + I*p|) (1-|*,|)2 - (l-ll*

2 <

[10, p. 9]. Furthermore, for each v = l,...,n, is a point lying in
a disk centered on the positive real axis with diameter the line segment

) \zv\ < r- This follows from (13) and the classical value region
result for functions with positive real part in the unit disk, [10, p. 40]. 
Hence for the convex combination of points in this disk, we have

(17) 1 ~ 11*11 < \ *^/i/(*^)
i + ll*ll - " M*,)

< i + ll*ll 
- i-||*ll'

The bounds (14) follow from (15)-(17). Equality in (14) holds for the func
tion F(z) = (i_\tf z- We take Ai = 1, /i«) = (1 which gives, in 
(15),

The precise growth theorem for the full class of biholomorphic starlike 
maps of Bn is known, [1], but the distortion theorem for this class is still 
an open problem.
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Conjecture 2. The distortion bounds (14) hold for all normalized starlike 
mappings of Bn.

We now turn to the LIF, A[S*].

Theorem 4. ordA[S*] = (3n + l)/2.

Proof. The proof consists of first showing that (3n + l)/2 is an upper 
bound for the order and then producing a function that proves equality.

Let g € A[5*]. Then 5(2) = A^(F)(2) for some F 6 S* and (j> € Aut(d?n). 
Hence by (5.3) in [4],

(18) -Re(tr|i^9(O)(iiJii.-)}) = log(|Jf(2)|(l-||2|l2)<n+1,/2)
l°g(S)

for ||2|| < 1, the distortion bounds (14) for F £ S* give

(19)

(1 - l|2[|)(nł3)/2
(1 + i|2||)<3"+ii/2

< |jr(2)|(i - ||2||!)(n+1,/2

(l-t-lK-W:
- (1 - ||2||)(3»+1)/! •

Applying (19) to (18) we obtain

(20) -£(||2||)<-Re(tr{ic29(O)(jifij,-)}) < fl(|W|)

where for 0 < r < 1,

= n±3log(l + r)-3^iog(i_r) = 3n±l + n±3Q(r) 

log(l + r) - log(l - r) 1 + Q(r)

3n + 1 (n - l)Q(r)
“ 2 1 +Q(r)

and

Ifrl - ^fcllog(1 + r) ~~ r) _ 3n + 1 _ n ~ 1 
log(l + r) - log(l - r) 2 1 + Q(r)

where Q(r) = - gsHid.
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It is easy to see that 0 < Q(r) < 1 when 0 < r < 1 so that

(21)
3n + 1 r/ , 3n+ 1

R(r) < o - and £(r) < ——.

Now, (20) and (21) prove that

(22) ordAK] < 3n + 1

To show that equality holds in (22) we begin with the Koebe function 
&(£) = £/(l — £)2 and form the corresponding mapping

A'(z) = z fc(^i)
Zl

= (—
k(l-s

Zl
zr)2’(1-^)2’ ’(l-^)2

in 5*. We then form the Koebe transform with the automorphism

Zi + a y/1 — a2Z2 y/l - a2zn , 0 < a < 1.0(*) = 1 + azi' 1 + azi , ’ 1 + azi

Straightforward calculation yields that

zi (1 + azi)z2 1 + aziM*) = (
(l-^i)2’ (1-Zl)2 ’-’(1-zi)2 ",

= z + (2zf, (2 + a)ziz2, ■■■ , (2 + a)zizn) + [z3]

where [z3] denotes the terms of degree 3 and higher. Writing A(z) = A^A'(z) 
for brevity, we see from the second order terms that

1
2

j=l

-|4 + (2 + a) H------ h (2 + a)|

4 + (n — 1)(2 + a)
2

(2 + a)n + 2 - a 3n + 1 ------------------------ ► --------  as a —► 1.
2 2

3// I 1
Using (3.2) in [4] we see that ordA(S;) > -—-—. Combining this with (22) 
completes the proof.

Let S* denote the family of all normalized starlike mappings of Bn. We 
have the following conjecture.
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Conjecture 3. ordA[<S*] = (3n + 1)2.

IV. Some examples of LIF’s with minimum order. The mapping 
F : C2 —> C2, given by F(z, w) = (ze2w, we~2W) is a biholomorphic mapping 
of C2 onto itself that has det(P') = 1. This is a special case of an interesting 
family of mappings defined by Rudin and Rosay in [12, pp. 49, 50]. Assume 
n > 2 and choose nonnegative integers aj and complex numbers Cj, 1 < j < 
n with Cjaj = 0. Set P(z) = flLi z;ai and Ej(z) = e*p(.cjJ\P(zy)
where f is a given entire function with /(0) = 0. Now let w, z G C be 
related by Wj = ZjEj(z) for j = 1,2,••• , n. Writing
(23)

w = Fc(z) = exp(c1/(P(z))), c2 exp(/(P(z))), • • • , c„ exp(/(P(z))))

it is easy to check that F~2 = F-c because P(w) = P(z). Now let E(z\c) 
be the diagonal matrix with Ejj = Ej. Then the matrix F^z) can be

written as F(z;c)(/ + A) where Ajk = 2 k ——— (where Ajk is
Zk

its limit value when Zk = 0). Observe that A2 = 0 because the (j,k)

entry in the product is P/'(P)^^^-^2 c«a«- Now it is easy to check 
Zk i=i

that Fć(z)-1 = (/ - A~)E{z\ -c). Since A2 = 0, the only eigenvalue for 
A is 0 (Au = Xv => A2v = X2v => A2u = 0). Thus, det(AJ — A) = A" 
and hence det(/ — A) =det(I + A) = 1. It now follows that det(P'(z)) = 
exp(£"=1 C«/(P(Z)))- A case °f particular interest occurs when $3”=1 C{ = 0 
for in this case, det(P'(z)) = 1. One such choice is to choose each aj = 1 
and Cj — where 7 is an nth root of unity, 7^1.

Now let F be a family of mappings F : Bn —> C that have the property 
Jy?(z) = 1 and let A(P) be the linear invariant family generated by F. Of 
course this includes the functions described above with 52"=1 Ci = 0. We 
have the following theorem.

Theorem 5. The LIF A(P) has minimum order. That is ord(A(F)) = 
(n + l)/2.

Proof. Using (5.3) in [4] with G = A^(P) for an F £ F we have

n 1 PVvnV W in 1°g(lJf’(w)K1-IM|2)(n+1)/2)
- Re(trace{-P G(0)(t]-?| ,’)}) = ------------2 w 1,

It follows that
J-IM

1

Iy

i-l w| y

1+ |w I
1- |w 1

<
n + 1 I log rq-' n + 1



An extension theorem and linear invariant families ... 205

The theorem now follows.
If we now let Fo be the family of mappings Fc (restricted to Fn) with 

cj = 0 as described above, then we have the following corollary.

Corollary 3. The LIF A(Jo) has minimum order (n + l)/2.

We use the functions in the class Jo defined above to enlarge our supply 
of mappings that are known to be starlike.

Example. Let n be a given integer > 2, set 7 = e27r!/n (an nth root of 
unity), and assume g is analytic in the disk Q = {|z| < n-”/2} C C with 
5(0) = 0. For z G Bn, set P(z~) = Ilj=i zj so that P(J9n) G Q. Let 
E be the n X n diagonal matrix with Ejj = exp(7Jg(P(z))). Let z be a 
column vector in C and define F{z) = Ez. Then F is as described above 
except that g may not be entire. We want to apply [13, Theorem 1], the 
condition Re < DF(z)-1 (F(z)), z > > 0 when z G Bn, to determine when F 
is starlike. As above, DFfz)-1 = (f - Pg'^PjA^E-1 where Ajk = ^Zj/zk- 
Since the jth coordinate of Az is wf Pg\P}zj, the required condition is 
that X)"=1 |^j|2(l ~ n Re^Ptj^P)) > 0. We now assume |g'| = b = 
constant. Then using the fact that we may assume ||z|| = 1 the condition 
for starlikeness of F becomes 1 > nb\P^z) 52"=1 7n|^|2|- It is easy to 
check that |P(z)| < n~n^2 and | 53"=1 7Tl|zJ-|2| < 1- Thus, the condition 
n("-2)/2 > 5 or alternatively,

(24) nl"-2)/2 > |ff'(w)|

when w G fi is sufficient for F to be starlike. This result is not sharp 
because the two estimates made are never sharp for the same z. This result 
is included in the following theorem.

Theorem 6. For n > 2, the mapping F given in the example is starlike 
under the following conditions.

(i) n = 2 and 2 > \g'(w)| for ail w G fi.
(ii) n = 3 and 25\/5/( 102 + 7\/21) > |flf'(w)| for ail w G 0.
(iii) n = 4 and 27/2 > |^'(w)| for all w G 0.
(iv) n> 5 and n^n~2^2 > |fif'(w)| for all id G ft.

Proof, (iv) was proved in the example above. In order to obtain a sharper 
result for n < 4, it is necessary to find a better estimate on the upper bound 
of

P(*)£ 7nk;|2 

J=l

(25)
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under the constraint 53"=1 |^j|2 = 1. If we square the quantity (25) and 
replace |zj|2 by Xj then the problem is to maximize the quantity

(26) P(x) 52 XjXk cos(2(/c - j)7r/n)

under the constraints Xj > 0 and xj' ~ 1- W we complete the square in
the terms of (26) for which j = k, then (26) (the quantity to be maximized) 
becomes

(27) P(x)(l-2 52 ®ja:fc(l-cos(2(fc-j)jr/n))).

l<j<fc<n

For n = 2 (27) becomes xy(l — 4xy) where we have used the variables 
(x,?/) instead of (x4,X2). It is easy to check that the maximum of this 
quantity under the constraints is 1/16 which occurs when xy = l/8,x + y = 
1. Therefore the maximum value of (25) is 1/4 and we conclude that for 
n — 2,F is starlike in B2 when 2 > |</'(w)| for all w G Q which proves (i).

For n = 3 (27) becomes xyu(l — 3xy — 3xu — 3?/u) where (x, y, u) replaces 
(a?i,a?2,3:3). Using Lagrange multipliers, one can show that the maximum 
occurs when y = u = (9 - v/2l)/30 and x = (6 + -\/2T)/15. Following the 
same computations as before, using n = 3, we conclude that F is starlike 
in B3 provided 4.83 « 25v/5/\/102 + 7\/21 > |ff'(w)| for all w 6 D which is 
(ii) above. This compares to the bound y/8 in (24).

For n = 4 (27) becomes P(x)(l-2x1X2 — 2x2X3—2x3X4 —2x4X! -4x^X2 — 
4x2X4). Denote the second factor by Q(x). Use Lagrange multipliers with 
K(x, A) — PQ — A(1 — Xj). Differentiating with respect to Xj, 1 < j <4 
yields B(x)(—2xJ+1 — 4xJ+2 — 2xj+3 + Q(x)/xj) = —A where the subscripts 
are taken modulo 4. Using these equations, one can readily show that if 
x4 ^/- X3 then Q(x) — 4x^x3. By symmetry, if in addition X2 / x4 then 
Q(x) = 43:23:4. Then it is easy to show that x4 = X2 or x4 = x4. By 
symmetry, we may assume x4 = x4 and then we also obtain X2 = X3. Easy 
computations then show that Xj and X2 take on the two values | ^1 ±

and (25) has the value l/24\/6. The other possibility is (without loss of 
generality, because of symmetry) that x2 = x4. In this case, it is best to use 
(26) with X2 = x4 = (1 - x4 — x3)/2. A routine calculus exercise then shows 
that (25) has the value 1/54 which is larger than the other possible extreme 
value l/24\/6. The result is that for n = 4,F is starlike if 27/2 > |.7'(?n)| 
for all w € fi. Compare this value 27/2) with the value 4 given by (24). 
The proof is now complete.



An extension theorem and linear invariant families ... 207

References

[1] Barnard, R., C. FitzGerald, and S. Gong, The growth and 1 /4-theorems for starlike 
mappings in C", Pacific J. Math. 150 (1991), 13-22.

[2] Lewandowski, Z., Sur Tidentite de certaines classes de fonctions univalentes,!, Ann. 
Univ. Mariae Curie-Sklodowska, Sect. A 12 (1958), 131-146.

[3] _____ , Sur Tidentite de certaines classes de fonctions univalentes, II, Ann. Univ.
Mariae Curie-Sklodowska, Sect. A. 14 (1960), 19-46.

[4] PfaltzgrafF, J. A., Distortion of locally biholomorphic maps of the n-ball, Complex 
Variables Theory Appl. 33 (1997), 239-253.

[5] Pfaltzgraff, J. A. and T. J. Suffridge, Biholomorphic mappings in several variables, 
AMS Meeting #931, Louisville Kentucky March 20 (1998 Abstracts: V. 19, issue 
2).

[6] _____ , Close-to-starlike holomorphic functions of several variables, Pacific J. Math.
57 (1975), 271-279.

[7] _____ , Linear invariance, order and convex maps in C", submitted.
[8] Pommerenke, Chr., Linear-invarianten Familien analytischer Funktionen I, Math. 

Ann. 155 (1964), 108-154.
[9] ______, Linear-invarianten Familien analytischer funktionen II, Math. Ann. 156

(1964), 226-262.
[10] _____ , Univalent functions, Studia Mathematica/Mathematische Lehrbiicher v. 25.

Vandenhoeck and Ruprecht, Gottingen, 1975.
[11] Roper, K. A. and T. J. Suffridge, Convex mappings on the unit ball of Cn, J. Anal. 

Math. 65 (1995), 333-347.
[12] Rosay, J. P. and W. Rudin, Holomorphic maps from Cn to Cn, Trans. Amer. Math. 

Soc. 310 (1988), 47-86.
[13] Suffridge, T. J., Starlikeness, convexity and other geometric properties of holomor

phic maps in higher dimensions, Complex Analysis, Kentucky 1976, Lecture Notes 
in Math no. 599, Springer-Verlag, New York 1977.

[14] _____ , Starlike and convex maps in Banach spaces, Pacific J. Math. 46 (1973),
575-589.

Department of Mathematics received October 23, 1998
University of North Carolina 
Chapel Hill, NC 27514 
e-mail:jap@math.unc.edu

Department of Mathematics 
University of Kentucky 
Lexington, KY 40506 
e-mail:ted@ms.uky.edu

mailto:jap%40math.unc.edu
mailto:ted%40ms.uky.edu



