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Kahler potentials 
of the Weil-Petersson metric

Abstract. The Weil-Petersson metric on Teichmuller space is Kahler. We 
survey explicit constructions of Kahler potentials that have been obtained by 
various authors. The physical interpretation of the problem in the context 
of bosonic string theory is discussed.

In the context of number theory, Hans Petersson introduced an inner 
product on the spaces of modular forms of arbitrary weight. The case of 
weight 2 corresponds to holomorphic quadratic differentials, i.e., deforma­
tions of Teichmuller space. That Petersson’s inner product should provide 
Teichmuller space with an interesting metric was suggested by Andre Weil 
in a letter to Lars Ahlfors. The metric was introduced by Weil in [11]. 
Ahlfors [1] established that the Weil-Petersson metric is Kahler.

Let X be a compact oriented Riemann surface of genus 7 > 1 and the 
corresponding Teichmuller space. Its holomorphic tangent and cotangent 
spaces T[x]Ty and TfaT-y at a point [X] e Ty can be identified, respectively, 
with the space of harmonic forms 'W°’1(X,7’X) and 1 ’°(X,7 *X). I he 
corresponding pairing (.,.): 7Y0,1(X,TX) ® 7f10(X,T*X) —> C is given 
by the integral

(P,9)= / P9 
Jx
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where p £ Ti0,1 (X,TX),q € 7f1,0(A,T*A), and the integration is with 
respect to the Poincare metric, i.e., the unique metric of constant curvature 
— 1 on X. The Weil-Petersson Hermitian metric is defined as (., . )iv_p = 
(.,*.) where the Hodge star * corresponds to the Poincare metric on X. 
The corresponding symplectic form is denoted by u>w_p.

It is a problem of some interest to search for an explicit Kahler potential 
of the Weil-Petersson metric, i.e., a complex function K such that

uw-p = dd K

either locally or globally. Equivalently, in real terms, we may look for a 
real-valued energy function E such that the Hessian of E coincides with 
(., ,)w-p- Here we survey the answers obtained for this geometrical problem 
and briefly explain its physical interpretation.

A local potential on Teichmiiller space. The first result was obtained 
by Tromba in 1982. The Teichmiiller space E, of a compact Riemann surface 
of genus 7 > 1 can also be described in purely Riemannian terms. Let 
Ad_i be the Frechet manifold of Riemannian metrics of constant negative 
curvature on X. The tangent space of Af_i at a metric g consists of those 
covariant 2-tensors h on M satisfying the equation

A(trfl h) + 6g6gh + |(trs h) = 0

where trs h — gl}hij is the trace of h with respect to g, the term 6g6gh = 
DiDjhij contains twice the divergence, and A = —is the Laplace 
operator on functions.

Let Po be the Frechet Lie group of diffeomorphisms of X which are 
homotopic to the identity. Then Po acts on Ad_i by pull-back, i.e., / 
f*g, where g £ Ad_i and / G Po- Teichmiiller space is then simply defined 
as the moduli space

7; = jM-i/Po.

An L2 metric on Ad_i is given by the inner product

(h,k) = / trace(/f o K'jdpg 
Jx

where H — g~Ah, K = g_1k are the (1,1) tensors on X obtained from h and 
k via the metric g, or by raising an index, i.e., /fj = glkhkj and similarly 
for K. Finally, dpg is the volume element induced on X by g and by the 
given orientation.
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The above inner product is Po invariant. Thus Po acts smoothly on A^-i 
as a group of isometries with respect to this metric, and consequently we 
have an induced metric on 7^. It coincides with the Weil-Petersson metric 
up to some constant factor. This formalism yields an alternative proof for 
the Kahlerity of the Weil-Petersson metric [5, 10].

Next we fix some go £ .M_i and suppose that s : (X,g) —> (Y,go) is a 
smooth C1 map homotopic to the identity which is viewed as a map from 
X with some arbitrary metric g € Al_i to X with its g0 metric.

Define the Dirichlet energy of s by the formula

Eg(s) = I, \ds\2dpg

where |ds|2 = tracers ® ds depends on both g and go- For fixed g, the 
critical points of the functional E are said to be harmonic maps. The 
following result is due to Schoen and Yau [7].

Theorem 1. For given metrics g and g0, in M-i there exists a unique 
harmonic map s(g) : (X,g) -> (X,g0) which is homotopic to the identity. 
Moreover, s(g) depends smoothly on g.

Consider now the function g i-> Ffl(s(g)). It is Po invariant on A4_i 
and therefore descends to a function on Teichmiiller space. To see this, one 
must show that

EkW'h)) = EgW».

Let c(g) be the complex structure associated to g, and induced by a 
conformal coordinate system for g. For/ € Po,/ • (X,f*c(9y) —* (^Cc(<7)) 
is holomorphic and consequently since the composition of a harmonic map 
and a holomorphic map is still harmonic we may conclude, by uniqueness, 
that

s(/*s) = s(g)° f-

Since Dirichlet’s functional is invariant under complex holomorphic changes 
of coordinates it follows immediately that

Efg(s(g)of) = Eg(s(g)).

Consequently, for [g] € Al-i/Po define the smooth function F : Ad-i/Po —*■
R by E[g] = Eg(s{g)). We may now state Tromba’s result [9]:
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Theorem 2. [gp] is the only critical point of E. The Hessian of E at [<7o] 
is given by

Hess E[</o](/i, &) = (h, k)w-P 

where h,k € T[So]7"(X).

In complex terms, the functional E gives a local Kahler potential for the 
Weil-Petersson metric on Teichmiiller space.

The above construction was independently discovered by Jost [3]. Es­
sentially the same construction also occurs in Wolf [12] where the energy 
is studied as a function of the image rather than of the domain metric. It 
turns out that the Hessian of the energy with respect to the image metric 
also yields the Weil-Petersson metric.

A global potential on Schottky space. We first review some classi­
cal material concerning Schottky uniformization [8]. Let X be a marked 
compact Riemann surface, i.e., a Riemann surface X with a system of gen­
erators {a^, /3i,f3y} of the fundamental group 7r1(A, i0), xo € X,
satisfying the relation

= 1.
«=i

A marked Riemann surface X can be represented as a quotient fi/E 
where fi C C is the domain of discontinuity of some Schottky group E. 
Moreover, the covering map 7T£ : fi —> X can be chosen in such a way that 
the covering group coincides with the minimal normal subgroup J\T C 7Ti (A) 

generated by the elements The group E is then isomorphic to
the quotient group Tri(X)/j\f and is uniquely determined up to conjugation 
in PSL(2,C).

By a Schottky group we mean here a finitely generated strictly loxodromic 
free Kleinian group. The marked Schottky group E of rank 7 > 1 is a 
Schottky group with a fixed system £1,..., £7 of free generators. The domain 
of discontinuity fi of a Schottky group is the connected complement of a 
Cantor set in C; the fundamental domain D = fi/E of a marked Schottky 
group can be chosen to be a domain in C bounded by 27 non-intersecting 
Jordan curves Ci,...,C7, Cj, ...,C7 such that = 1,...,7-
Each element Li 6 E can be represented in normal form

LiW — di 

LiW — bi
= A,

w — di 
w — bi'

w 6 C,

where di and bi are attracting and repelling points, respectively, and 
0 < |Ai| < 1, i = 1,... ,7.



Kahler potentials of the Weil-Petersson metric 187

A Schottky group E is called normalized if aj = 0,hi = oo, and a,2 = 1. 
The mapping (£; Li,Z7) ►-+ (03, ...,a7, h2) ■■■, b-,, At,..., A7) establishes a 
one-one correspondence between the normalized marked Schottky groups 
and a certain set 57 C C 7 .In fact, this set is a domain in C37 3 and 
is called the Schottky space. Thus we have a map ifr : Ty —> Sy which is a 
complex analytic covering.

On the domain of discontinuity Q of a marked normalized Schottky group 
£ there exists a T-invariant Poincare metric, i.e., a complete conformal met­
ric of constant negative curvature —1. This metric has the form e^w^|dw|2, 
where the real-valued function satisfies the Liouville differential equation

<Pww = ev.

Define the function £ : <S7 —> R by the formula

+ 4tt ^2 log IM2,
J=2

where D = ft/E is the fundamental domain of a marked normalized Schot­
tky group E, dD = U (—Tj(Cj))), and lj is the left bottom matrix
element of the matrix Lj € PSL(2,C),j = 1,...,7. The following result is 
due to Zograf and Takhtajan [15].

Theorem 3. The function is a Khler potential of the Weil-Petersson 
metric on the Schottky space S7 while the function plays the same
role for the Teichmiiller space Ty.

A global potential on Torelli space. Along with the above-discussed 
marked Riemann surfaces one can consider the Torelli marking of Riemann 
surfaces X of genus 7 > 0. This means that we fix for X a canonical basis 
{oi,/?i, of its homology group 7fi(X,Z). The set of isomorphic
Riemann surfaces marked in the Torelli sense is called Torelli space and 
will be denoted by LL,. The natural map 7^ -► ZĄ is a complex analytic 
covering, so the Weil-Petersson metric projects onto ZĄ. One can try to 
look for a Kahler potential for this metric on the Torelli space Uy.
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To state the result, we introduce some additional concepts and notations. 
The canonical basis of //](%, Z) has the intersection numbers

f ■ Pj — 6ij 
[tti-aj = 0 = /3i -f3j

for 1 < i,j < 7. By Riemann-Roch’s theorem, the complex vector space 
of holomorphic 1-forms on X has dimension 7. We may choose a basis 
{u>i, ...,u>7} of such forms normalized so that fa = 6ij. Then the entries

form the period matrix r = t(X'). It can be shown that r is symmetric and 
has positive-definite imaginary part Imr.

The Selberg zeta function Z(s) of a Riemann surface X is defined for 
Re s > 1 by the absolutely convergent product

OO
zw=nn(i-e’(s+'’)1")-

0} *=o

where I runs over the set of all simple closed geodesics on X supplied with 
the Poincare metric, and |Z| is the length of a geodesic I. The function Z(s) 
has a meromorphic continuation to the entire complex s-plane with a simple 
zero at s = 1. Another result due to Zograf and Takhtajan [13, 16] now 
states:

Theorem 4. Let r be the period matrix of a Torelli marked Riemann 
surface X and Z(s) the Selberg zeta-function for X. Then the function

K = log
^(1) ,

det Im t ’

up to a constant factor, is a Kahler potential for the Weil-Petersson metric 
on U-y.

The cases of genus 0 and 1. Let X be a Riemann surface of genus 7 = 0 
with n punctures. The case n < 3 is trivial because Teichmiiller space then 
is a point. In the case n > 3 a formula analogous to that of Theorem 3 has 
been derived in [14] but it is somewhat too technical to be stated concisely 
here.
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In the case of a compact surface of genus 7 = 1, the Teichmuller space 
71 is the upper half-plane 1HI = {z = x + iy £ C | y > 0}. The Weil- 
Petersson metric coincides with the standard hyperbolic metric. A well- 
known computation yields the Kahler potential

A' = log(t/|77(2)|4)

where OO

7/(2) = e"z/12 JJ(1 -e2™*) 

n=l

is the Dedekind eta function.
The case of genus 7 > 1 with punctures seems not to have been considered 

in the literature.

Comments on the physical interpretation. In [6] we discussed the 
relevance of universal Teichmuller space T(l) for the purposes of bosonic 
string theory. On the other hand, we ignore if there exists a viable notion of 
universal Torelli space. According to the tenets of geometric quantization, it 
would be of interest to have a notion of universal Kahler potential A'qq which 
should be the relevant Action Principle. It is for this reason that we have 
reviewed above the various finite-dimensional constructions. Unfortunately, 
we do not see how to make use of any of them for a construction of K^.

There exists, however, one set-up where has been defined. Recall 
first the description of T(l) as the space of quasisymmetric (QS) homeo- 
morphisms of the unit circle S1 modulo Mobius moves,

T(1) = QS(51)/Mob(51).

A well-understood, holomorphically embedded slice of this space is 

M = Diff(S1)/Mob(51).

The slice M carries a canonical Kahler form u which, in terms of the Fourier 
modes

t — Pin6_  z = e*9Ln~e dS' '

at the origin and up to a constant factor, is given by

w(fm,In) = (m3 - m)6m m, n € Z \ {0, ±1}.

This expression converges when applied to tangent vectors to T’(l) which 
are C3/2+e smooth. Deformations of quasisymmetric maps are merely in a
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Zygmund class so that C3/2+e smoothness is not guaranteed. Nonetheless, 
in a sense explained in [4], w = ww-p,oo can be interpreted as the universal 
Weil-Petersson Kahler form.

Another possible description of T'(l) is as the space of univalent (=holo- 
morphic and injective) functions f in the unit disk such that /(0) = 0 and 
/'(0) = 1 and allowing quasiconformal extension to the whole plane. Every 
element of T(l) then has an expansion of the form

/(z) = z + a2z2 + a3z3 + ...

The coefficients a*,, which according to Bieberbach-de Branges’ theorem 
satisfy |a^| < k, can be thought of as coordinates on T(l).

In [2], it is shown that, at the origin and up to a constant factor, the 
expression

OO

Koo = - *)|Ofc+lI2,
fc=l

whenever it converges, is a Kahler potential of ll>w-p,oo-
Let us finally mention that the motivation for Theorem 3 and its coun­

terpart with punctures also stems from bosonic string theory. Indeed, the 
functional £ in Theorem 3 is closely related to the conformal anomaly in 
Polyakov’s string theory.
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