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Some sufficient conditions 
for the convergence of the derivatives 

of weakly quasiregular mappings

Abstract. The aim of this paper is to prove n - dimensional generalizations 
of two theorems from the book of Lehto and Virtanen [8], which deal with 
the convergence of the derivatives for a sequence of plane A'-quasiconformal 
mappings. We use the methods and results of T. Iwaniec and G. Martin 
(W, [5]).

1. Introduction. Developing the ideas from the paper of S. Donaldson and 
D. Sullivan [3], T. Iwaniec and G. Martin introduced in [4] a new approach 
in the theory of quasiregular mappings, in the case when n is even. This 
approach has a strong analogy with the two-dimensional case and relies on 
the study of the Hodge theory on Lp - spaces and of a new Beurling- Ahlfors 
type singular operator.

The Beltrami equation plays an important role in the theory of planar 
quasiconformal mappings.

The basic idea is to consider a weakly quasiregular mapping f : Q —► R" 
as a solution of an n - dimensional Beltrami system and then to lift this 
Beltrami system to the exterior bundle A;(fi).

If n is even and I = n/2 they consider in this way the Beltrami equation in 
even dimensions, which gives the possibility to apply the Beurling- Ahlfors 
operator. Using the Lp - norm of the Beurling-Ahlfors operator Iwaniec
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and Martin have proved in even dimensions a regularity theorem which 
generalizes a well-known theorem of Bojarski [1].

They also proved, for the first time, a Caccioppoli type Lp - estimate, 
with p < n, for quasiregular mappings in even dimensions.

In [5] Iwaniec has obtained similar results for all dimensions, by a different 
approach based on maximal inequalities.

Let fi be a domain in Rn and let f — (f1,/2,--- ,fn>) : fi —> Rn be 
a mapping of Sobolev class Wj„f(fi), 1 < p < oo. The formal differential 
of f, denoted by Df(x), is defined for almost every x £ fi and belongs to 
Afoc(fi,G£(n)). We denote by J(x,f) the Jacobian determinant of f.

Definition 1. A mapping f £ W| ’̂cp(fi) is said to be weakly K - quasire
gular, 1 < K < oo, if

(i) a.e.;
(ii) max|h|=1 |J9/(a;)/i| < A'min|h|=1 |D/(x)/i| for almost every a: £ fi.

If p = n we say that f is A' - quasiregular.

We notice that (i) and (ii) imply |D/(a:)|n < Kn~x J(x, f) a.e. The 
matrix dilatation of f is defined as G(x) = J(x, f D/(x)1 Df(x) if
Df(x) exists and J(x,f") 0, otherwise G(i) = I. In this way, / becomes
a weak solution of the following n - dimensional Beltrami system

D/(x)tD/(x) = J(x,/)2/nG(x).

In order to state the Beltrami equation in even dimension we need some 
auxiliary notation and terminology.

We denote by Afc(fi) the space of ^-differential forms u = ^jUJidx1 
whose coefficients are complex valued distributions. Here J = (ij, 12,... , ifc) 
runs over all ordered fc-tuples of integers 1 < ii < 12 < ... < ifc < n and 
dx1 = dx'1 A dx'2 A ... A dx'k. In the sequel, to each space $ of complex 
functions defined on fi there corresponds the space <I>(fi,Afc) of k - differ
ential forms with coefficients in <t>. Without saying so every time, we will 
sometimes assume that the distributions in question are represented by lo
cally integrable functions. In such a case the pointwise inner product of two 
differentia] forms X,p £ A*:(fi) is a function denoted by

< >= 52
1

The Hodge star operator * : Afc(fi) —> An-/c(fi) is defined by the rule 

p A *A =< X,p > dxx A ... A dxn.
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For n = 21 we denote by A* the eigenspaces of * : A'(fi) -> A'(fi), namely 
h* = {tu € A;(Q) : *w = it'tu}. This gives an orthogonal decomposition 
A'(fi) = A+ © A-.

Let w+ and be the projections of u £ A'(fi) on A+ and A-, respec
tively. We make use of the exterior derivative operator d : Afc(fl) —> A/c+1(Q) 
and of its formal adjoint, the Hodge operator <5 : Afc(fi) —> Afc-1(fl), 

* d * . Then the Laplace-Beltrami operator takes the 
form A = d6 + 6d : A^(f2) —> A^(f2). The Beurling-Ahlfors operator 
5 : £p(Rn, Afc) -> £p(Rn, Afc), which generalizes the complex Hilbert trans
form, has the formal expression S = (dó - 6d) o A-1. It is known that S is 
bounded in all the spaces £P(R", Afc) with 1 < p < oo and fc = 0,1,2,... , n.

In dimension 21 this operator permutes the spaces £P(R2,,A+), and 
£P(R2(,A-), thus Sod* = d*, where d*cv = (du>)±.

Let f : Q -» Rn be a mapping of Sobolev class and let k < p be
a positive integer. Then f induces a homomorphism /* : C°°(Rn,Afc) —> 
£f/cfc(fi, A*), called the pullback, which is defined by

r (£ a, dx') (x) = £ a, (/(x)) dp A dp A ... dp.

Another pullback is that of I - covectors induced by a linear transforma
tion. Let T : E —► F be a linear operator between n - dimensional vector 
spaces and let T' : F' —> E' be its dual. The pullback of I - covectors via 
7’, which will be denoted by T# : A;F —» AlE, is defined as

A £2 A ... A £n) = £ £1 A I £2 A ... A T £n,

for <i,£2, ■ • - Cn G F' and then extended linearly to A'F.
Now we may recall the definition of the Beltrami coefficient of a weakly

quasiregular mapping, the notion which generalizes the complex dilatation 
of a planar quasiregular mapping. Let G be the distortion tensor of the 
weakly quasiregular mapping /.

The Beltrami coefficient of /, denoted by nj : AZQ —> A'fi, is a bundle 
map such that

Apz) = [(^(z) _ 7')(G'(x) + /) T]# .

We recall that the operator norm |/x/(a;)| satisfies for every x £ ft the 
inequality

K‘ - 1 
K‘ + 1 '(1)
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The Beltrami equation in even dimensions takes then the form

(2) d+(/’a) =

where f G *K a weakly quasiregular mapping in a domain Q C R2Z
with I < p < oo, and a is an (Z — 1) - differential form with linear coefficients, 
such that d+a = 0.

We need the following regularity results ([7]).

Proposition 1 (The Caccioppoli type estimate). For each dimension n >2 
and K > 1 there exist exponents q(n,K) < n < p(n,A’) such that if f G

Kn),s weakly A' - quasiregular mapping with q(n, A') < r < p(n, A')
then

(3) || |<P-D/| ||r < c(n, A',r)|11Vip| |/| ||r

for all ip G C^°(Q).

An important consequence of the Cacciopolli type estimate is

Proposition 2 (The Regularity Theorem). Every weakly A'-quasiregular 
mapping of the class Rn) with q = </(n,A') < n belongs to
kF|oCp(fi, Rn) where p = p(n, A') > n.

In the case n — 21 we can say more about these exponents and the con
stant c(n,A',r). Suppose that n = 21. Let f be a A' - quasiregular mapping 
and let po = Po(/) < 2 < Qo(/) = <?o be the critical exponents of /, defined 
by

(4) Im/I ll^llpo = l/vl||< = 1.

Here we have used the norms of S : AP(R2;, A() —► AP(R2(, A() for p = po 
and p = q0. Then \pf\ ||S||P < 1 for every p G (ęo(/),Po(/))-

Now the Regularity Theorem can be given somewhat more precise for
mulation: If f G R2/) is weakly quasiregular with s > <7o(/)> then
f € W|VcP((^’R2Z) for evefy P (9o(/),Po(/))- Consequently f is quasire
gular in the usual sense.

The Caccioppoli type estimate holds now for every p G (<Zo(/), Po(/)) and 
takes the form
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Remark 1. A more careful analysis of the proof of Lemma 2.9 in [4] actually 
shows that it suffices to assume less, namely s > [(2/ — l)/(2/)]qo(/), in the 
Regularity Theorem reformulated above.

In order to obtain an evaluation of the exponents q(2/,A') and p(2l,K) 
which does not depend on the particular choice of the K - quasiregular 
mapping /, we consider the exponents q'o = q'0(l,K) and p'o = p'0(l,K) 
defined by

(5) l|5|l,J = IISIU = '

By (4) and (5) it is clear that ę0(/) < q'o(l,K) < 2 < p'0(l,K) < p0(/) 
for each weakly K - quasiregular mapping f. Then we may take in both 
the Caccioppoli type estimate and the Regularity Theorem q(2Z,A') and 
p(2l,K) to be any numbers such that

Z9'(/, A') < q(2Z,A') < 2/ < p(2/,A') < lp'0(l,K).

Moreover, an explicit form for the constant in (3) is also available,

,, ,__________ sur'iisii./,
c(2I.A,r)- 1_[(^_1)/(r + 1)]||S||r/,'

2. Weak convergence of derivatives. Lehto and Virtanen have proved 
in [8] that the locally uniform convergence of a sequence {wn} of planar 
A"-quasiregular mappings to a mapping w implies the weak convergence of 
the derivatives dwn/dz and dwnld~z to dw/dz and dw/d'z, respectively.

We will prove an analogous result for n - dimensional A - quasiregular 
mappings, which is a generalization of the lemma mentioned above, even 
for n = 2.

We recall the definitions of the weak convergence in L\oc, for functions 
and for differential forms, respectively, given in [9].

Definition 2. Let U C Rn be an open set and let p > 1. We say that 
the sequence {fm} of functions fm G m = 1,2,... , converges
weakly to f0 in Afoc(f/) if it is bounded in Afoc(fZ) and for every function
nOT

lim / fmvdx = / fydx .
Ju Ju

Let {wm} be a sequence of differential forms in L\oSU^kY where 
1 < A; < n. Then we say that this sequence of forms converges to a form w0
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weakly in £f’oc((Z, Afc) if the coefficients of the forms um converge weakly in 
£foc(£Z) to corresponding coefficients of tuo-

Remark 2. We notice that the definition of the weak convergence of func
tions in £foc may be carried over to the class of mappings fm : U —> Rfc, for 
any k > 1.

It is useful to recall that {u>m} converges weakly in £^oc(tZ, A*) to wo if 
and only if the sequence of norms (|u>m|) is bounded in Lfoc(tZ) and

(6) lim I A 6 = / uj AO
m_+o° Ju Ju

for every form 0 E Cq°(U, A.n~k).

The following two lemmas from [9] will play a key role in the proof of 
Theorem 1 in this paper.

The first lemma is a test for a function to belong to the class 
while the second provides sufficient conditions for the weak convergence of 
the pullbacks m= 1,2,... , to /o(da/).

Lemma 1. Let u0 be a function in Lioc(ZZ). Assume that there exists a 
sequence : ZZ —> R of functions in W,^(ZZ), where 1 < p < oo, converging 
to u0 in Lfoc(U) and bounded in kFio'cp(tZ). Then u0 € W^^ZZ).

Remark 3. An analogous statement is true for mappings.

Lemma 2. Let U be an open set in Rn, 1 < k < n and let

9m = (9m,9m,--- ,9m), m = 1,2,... ,

be a sequence of mappings of class W^'^ZZ) where p > k. Assume that 
gm is bounded in W^(U) and that gm -> g0 in L}0C(U), where g0 = 
(Po,Po, • • • ,9o)- Then the sequence of forms {dg^ A dg2m A ... A dgkm} con
verges to {dgg A dg% A ... A dg£} weakly in L^(U, Ak).

Remark 4. For k = n the weak convergence of the Jacobian determinants 
follows: «/(•, Pm )-*•/(•, ffo ) weakly in Lf/cn(ZZ).

Here is our first main result.
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Theorem 1. Let Ll be a domain in Rn and let K > 1. Suppose that 
s € [q(n, K},p{n, A')] and h is an integer in the interval [l,s]. 
ff {fm} is a sequence of weakly K - quasiregular mappings in ^„’’(fl) such 
that fm —► f0 in A|SOC(Q) for some Jo : Ll Rn, then:

(j) /oe^(fi);
(ii) Jo is quasiregular in the usual sense if s > n.
(iii) For every (h - 1) - form a with linear coefficients the sequence of forms

{dj^a} converges to d/0*a weakly in L^{Ll, Ah).

Proof. We notice that fm are actually quasiregular and Jm G (Q) for 
every q £ [q(n, A'),p(n, A')]. Obviously, fm -> f0 in A*oc(fi).

In order to verify that {fm} is bounded in W^’ca(fi) it suffices to prove 
that the sequence of norms {|P/m|} is bounded in ifoc(fi)-

Let F be a compact subset of Q and let <p £ Cq°(Q) be such that = 1 
on F. We denote the support of ip by F'. Applying the Caccioppoli type 
estimate (3), we obtain

|| ||j)F < || [pDfm\||s < c(n, A',S)|| | V^| |/m| ||aF,

< c(n, A»sup|V</>| ||/m||g)F,-

Since {Jm} converges in LS(F'} and therefore is bounded therein, (7) implies 
that {|jD/m|} is bounded in LS(F}. Now, by Lemma 1, fo € VP^’^Q).

We will prove (ii) under the assumption that s > n. Applying Lemma 2, 
we have for every i = 1,2,... , n, df'm —> dfo weakly in Afoc(n,A'), hence 
Vfm VJo weakly in A”0C(D).

Let V CC Ll be a ball. By the lower semicontinuity property of the 
Dirichlet integral (Proposition VI. 7.10, [10]) we have

(8) I |V/o|"di < liminf [ \Vf'm\ndx
Jv m-*°° Jv

for i = 1,2,... , n. Let Ą £ C^{Ll) with = 1 on V. Then, applying the 
A' - quasiregularity of fm and Remark 4, we get

lim inf f\Vf'm\ndx < lim inf [ i/)\\Dfm{x}\\ndx 
m->oo Jv m—»o°

<A'n-1liminf / i/jJ(x, fm}dx 
m->oo

= Knl lim / iJJ(x,Jm}dx m->oo
= Kn~l [ il>J(x,jo}dx .

0)
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For every i = 1,2,... , n, it follows by (8) and (9) that

(10) I \^fo\ndx < Kn~' I if>J(x,f0)dx.
Jv Jn

By an elementary calculation

(11) ipAwir < £iwai < »"-> 52 iv/ir. 
»=1

Then (10) and (11) imply

/ | |D/o(a:)||nda; < (nA')"-1 f t/)J(x, f0)dx.
Jv Jn

Using the Sobolev averaging kernel we build a sequence of test functions 
V’fc € Cq°(Q) such that 0 < V’it < 1 and V’fc(a:) ~► Xv(a;) for almost every 
x G Q (see [9], p.ll). Then we apply the latter inequality to V’ = V’fc, for 
every k > 1, and letting fc -+ oo we obtain by Lebesgue theorem

J ||£>/o(x)||ndx < (nA')"-1 Jv Ąx,fo)dx.

Let g(x) = 11Dfo(x)\|n-1 - (nA')"-1./(z, f0), defined for almost every 
x 6 Q. We define also the set function v as i/(A) = fE g(x)dx for every 
Borel set E C V. The latter inequality shows that i/(B) < 0 for every ball 
B C V. Then the derivative of v with respect to the Lebesgue measure, 
which equals g a.e. in V, is non-positive. This proves the inequality

(12) ||A’/o(^)Hn^<(nA')n-1J(;c,/o)

a.e. in V, for every ball V compactly contained in Q. Since we may find 
a sequence of balls compactly contained in Q, which almost cover Q, (12 ) 
holds a.e. in Q. We conclude that fo is (nA')"-1 - quasiregular.

Let a be a (h — 1) - form with linear coefficients. Then df^a = f*n(da) for 
every m > 0. It suffices to prove that condition (iii) is fulfilled if da — dx1 A 
dx2 A ... A dxn. Taking into account that (/m) is bounded in W| ’̂C*(Q) and 
that fm -> fo in Afoc(Q), the same is true for gm = (/^, fa,... ,fa), m = 
0,1,... .

Now by Lemma 2 we get

/’(do) = dfa Ndfa N...Edfa^ d/J Ad/o2 A ... Ad/* = /0*(do)

weakly in Aa).
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Next we check that Theorem 1 implies Lemma IV.5.1 from [8]. 
If um —► ui0 weakly in L?OC(U, A*) then —► *w0 weakly in 
Let n = 21. Applying Theorem 1 for h = I and s G [</(2/, A), p(2Z, A )],s > /, 
we have, for every (h - 1) - form with linear coefficients

(13) d±f^la-^d±fÓa weakly in A').

Assume now that n = s = 2 and let a = x + iy. Thus d+ = (dfml&z)dz 
and d~ f^a = (dfm/dz)dz. Then by (6) and (13) we get

/„ a a 
/„ A = L (k*) A

for every <p G Cq°(Q).
Let R CC Q be a horizontal rectangle. Using a standard approximation 

of XR by functions in Cq°(Q) we get the conclusion of Lemma 5.1 ([8]), 
namely

lim / ~^dx hdy = f ~^dx A 
m-»oo JR az Jr oz

and
lim [ ~^~dx Kdy = f ~^-dx A dy. 

m—too JR OZ Jr OZ

3. Lp - convergence of derivatives. In the proof of our main result we 
need the following estimates.

Lemma 3. Let LI be a domain in K2;. Consider the exponents p,q G 
(l,oo) and an integer k G {1,2,... ,2/}. Let f,g : fl —> K2i be map
pings in Wio’^ł(fi). For each ordered k - tuple I = (ti,*2>.-. ,*fc) write 
df1 = df'1 A df'2 A ... A df'k. Then, for almost every x G Q, the following 
pointwise estimates hold:

(14) |d/'(x) - dg'(x)\ < k- |P/(x) - JDp(x)|(|2?/(x)|fc-1 + \DyW\k-^

(15)
\df(x) - dg'(x)\ < \Df(x) - Dg(x)\q ^\Df^k^ + \Dg(x)\«k~^ .
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Proof. First we mention the following inequality whose proof is elementary:

m —1
|ai<Z2 • • -am — &1&2 • • .bm| < max Ifflj — bj\

(16) J=1,m J=o
< y max_|flj - 6j|f|a|m_1 + |h|m_1). 

j=l,m v '

Here m is a positive integer, aj,bj,j = 1,2,... ,m, are real numbers and 
we set |a| = maxJ=I^ |aj| and |h| = maxj=T^-|hj|.

Let Qj = {x £ fi : Df(x) and Dg(x) exist}. Then Q \ Qj has Lebesgue 
measure zero. For every x G we make use of (16) and we get

|d/z(x) - dg\x)\ < max |d/J(x) - dgj(x)\
2 j=l,k

X (max |d/J(x)|fc_1 + max \dgj(x)\k~}
\j = l,fc j=i,k

< | \Df(x) - Dg(x)\ (\Df(x')\k~1 + IIW)!*-1) .

(15) is a straightforward consequence of (14) via Holder’s inequality.

Theorem 2. Let Q be a domain in R2'. Fix exponents p > [(21-l)/(21)]qó, 
and qb < q < p'o- Suppose that fm : Q —> R2/,m = 0,1,2... , are weakly 
K-quasiregular mappings of the class kF^^Q) such that

(1) The sequence (/m),m = 1,2,... , converges to f0 uniformly on compact 
subsets of fi;

(2) |pm(x) ~ p(z)| —► 0 for almost every x G fi;
(3) - P/o(-)H 0 in L[o’?/2(fi)-

Then df^a —> d/fia in T’oc(fl) for every (1 — 1) - form a with linear coeffi
cients, such that d+ a = 0.

Proof. We notice that, for every m = 0,1,... , fm are actually K - 
quasiregular and fm G kF,„cs/(Q) for every s G (qb,Po)- Then dfJ G 
for each h - tuple J. Moreover, fm has continuous representative on ft (see 
[10], VII. 3.9). In what follows s G (<7coP0)- Let a be a (1 — 1) - form with 
linear coefficients, o(x) = 52/52<ii c}x'dxr, where in the first sum I runs 
over all ordered (1 — l)-tuples. Then 52iii c'ifm^fm an^

2/

dfma = f^da) = A df^
I «=i
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hence f^a e £(s'>/('-D(Q, A'"1) and df^a E L?oc(n,A‘).
Let rj E C£°(Q). Then

(17) dfjtf^a) = drj A f^a + rjdf^a

belongs to £S(R21,A(). We recall for each fm,™ = 0,1,... , the Beltrami 
equation in even dimension:

(18) d+ foot = Hmd-f^a.

The Ahlfors-Beurling operator S permutes d+(3 and d~/3, for all forms f3 
such that, for some £ > 0,d/3 E £1+£(R2i, A(). Then it follows that

(19) d~(T)f™a) = So d+(rjf^a).

Let F be a compact subset of fl. Now we assume that r] = 1 on F and 
we denote the support of by F'. It suffices to prove that

(20) d+(C<>H<fW) in £’(R2',A').

Indeed, since the operator S : £9(R2/,AZ) —> £’(R2,,A() is bounded, (20) 
still holds after replacing + by —. But d = d+ + d~, thus

(21) d(C«)^») in £’(R2',A').

By (17) and (18) we have

d+(?//^Q) - ^md'«a) = (d?? A /^a)+ - Hm(dr) A /AQ)-- 

Applying the relation above and (19) we get for every m — 0,1,2,...

(/ - pmS)d+(r,/» = (dr? A /* «)+ - ]im{dr] A M- 

Then, for m = 1,2,... ,

(22) (£-/zmS) [d+(r//^a) - d+(7?/0’a)] = (/im -Mo)d-(i?/AQ) + -w0.

Here we write ojm = {dr] A /^,a)+ — ^rnfdr) A According to our
hypothesis

and, therefore, (£ - fimS) is an invertible operator in £’(R2', A') and the 
norm of its inverse satisfies:

nx-li, 1 / 1
||(/-/Xm5)- ||, < i_|Mm|||S||,

" l-[(/f'-l)/(K' + l)]||S||, = W’
(23)
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Then (22) and (23) imply

||d+(ł?/-Q)-d+(77/0*Q)||,<7V(Z,Ar,9)
(24) r iX [ll(Mm - Mo)^ (*?/o «)||g + llwm ~ Wo||,J •

Applying Lebesgue Dominated Convergence Theorem we obtain

(25) lim | K/Xm - Mo)d“(»7/o«)|L =
m—>oo 11 y

as (/zm — /zo)<Z_(ł?/oa) —► 0 almost everywhere in Q and

l(Mm - /xo)rf-(77/o«)| < lrf(’?/oa)l,

pointwise. The proof will be completed once we check that

(26) lim ||u>m - w0||? = 0. 
m—*oo

From the identity

wm - w0 = (d»7 A f^a — dr] /„*o)+ “ A f^a - dr] A /0*a).
- (Mm - Mo)(^A/o*«)-.

we have the following pointwise estimate almost everywhere:

(27) |u>m - u>o| < K^+ \f™a ~ foa\ + iMm - Mol IVt?| |/0*«l- 

Again, by Lebesgue Dominated Convergence Theorem

(28) lim || |Mm - Mol |V??| |/0*a| || = 0.

It suffices to prove for a fixed (Z — 1) - form a with d+a = 0 that

(29) lim 11 |Vt/| 1/^,0 —/o q| 11 = 0. 
m—>oo

Then, by using (27), (28) and (29), (26) follows. We return to the proof of 
(29). If Z = 1, we take a = x1 + ix2. Thus

|Vr/| |/*«-/o‘a|<2|Vł?||/m-/o|.

Then, in the case n = 2, the conclusion of Theorem 2 follows from Condition 
(1) and (2), Condition (3) being superfluous.
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Suppose that I > 2 and let a = i1 dx2 A ... A dx1 — (—i)1 xl+l dxl+2 A .. .A 
dx21. Then we can write

\f> - fta\ < \fm - f0\ + |/o| (\df^ - df'\ + \dti - df0J\) .

Moreover, we have

\^\rma - fta? < 22,_11 Vt/|’|/to - /ol’ll’/ml’^

+ 2’"11Vzyl’II/olloo.F- (Itf' - df'\< + \dfJm - df0J\") .

We may take rj = y?, with ip G C£°(fi), in the relation above. Then by 
Holder’s inequality:
(31)

(30)

J \^\fm - f0\q\Dfm\^dx = (|Vęp|\fm - /olpx

r /• ii/1 r r i1
< lq [pl^l \fm - fo |)’'p [yn \vDfm\qldx

It is clear that

i/i < m(A')1/' fsup |Vqo| sup\fm - /0A • 
\ F' F' /(32)

(33)

I ^<p\\fm~f0\)qldx 
Jn

By the Caccioppoli type estimate (3) we have

I \vDfm\"‘<c(2l,K,qir' [ |VV|’'|Z 
Jn Jn

< c(2/,A',ę/)’'m(F') (sup|Vę>|) (sup |/m -/0| + ||/o||oo,F') •

I'he latter three estimates (31), (32) and (33 ) imply

IIIVt/I \fm - f0\ |£>/m|'-1||, < lc(2Z,
(34) / \

X sup |V<^|* sup l/m — /o| ( SUP \fm — /o I + 11 fo 11 oo,F' I
pi F' \ f '

Thus, by Condition (1) and by continuity of /0 this relation yields

(35) lim |||V7?||/m-/o||P/m|'“I||, = 0. 
m—>oo

Having disposed of this fact we are going to prove that

(36) lim || |Vt/| |/o| \dfń ~ dfo\||? = 0.

i-i

19'
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The same calculation shall apply with J in place of I. By Lemma 3

K - <l’ < \Dfm - Df01’ + I£>/o|’('-2)) •

Now we take r/ = ■0(_1 with ip € Cq°(Q). Then

|| |Vr/| |/o| \df^ - df'\ UJ < ^(|W| \Dfm - ZVol)9

x [|Wm|’('-2) + |Wo|’('-2)] dx

~ {JQ^^9‘/2\Dfm-Dfo^‘/2dx} '
Q } + (jf |Wo|9'^) ((-2)//

Applying again the Caccioppoli type estimate we conclude that 

| IVr/l |/o| \djlm - d^\ ||5 < 1L^c(2Z,

(37)
x sup - P/o||g//2,F-rm ,

F‘

where Tm = (supF, \fm - f0\ + 11 fo 11 oo,F' / 2 + H/oIlL.F'-

Taking into account Conditions (3) and (1) this estimate implies (36), as
required. Finally, we return to the estimate (30) and with the help of (35) 
and (36) we obtain (29), which completes the proof of Theorem 2.

Finally, let us show that Theorem 2 indeed generalizes Theorem V.5.3 of 
Lehto and Virtanen [8].

To this end we use the complex variable 2 = x1 +ix2. As we have already 
seen, Condition (3) is not necessary for n = 2.

Let f be a weakly quasiregular mapping with the distortion tensor G. 
We denote by Gj(z) the entries of the matrix representation of G(z) with 
respect to the standard basis of R2. Then the Beltrami coefficient /z(z) of / 
at z, can be identified with the matrix

, ,_________ i /GSM - cfc) 2GJ(2) \
W2,-Gi(2)+Gi,(2) + 2l 2GJ(2) G?(2)-G!mT

which corresponds to the complex number

(Gi(2)-G5(2) + 2iG‘W) = (||w) / (|((2)) .
G|(2) + G^) + 2
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This is customarily called the complex dilatation of f at z. The above 
identification yields the same norm; the operator norm of the matrix and 
the modulus of the complex number identified with /z(^) are equal.

Condition (2) simply means that the sequence of the complex dilatations 
of fm converges a.e. in Q. Note that dim = 1 and a — cz for some com
plex number c. The assertion of Theorem 2 can now be written as -~^=-d~z —» 
^dz and ^dz -> ^.dz in L,’oc(ft), for all q £ (q'0(2, K),p'0(2, K), which 
is nothing else than the convergence in T’oc(n) of the derivatives dfm/d'z 
and dfm/dz to dfo/dz and dfa/dz, respectively.
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