ANNALES
UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN - POLONIA

VOL. LIII, 12
SECTIO A
1999

PIOTR LICZBERSKI and JERZY POLUBIŃSKI

Some remarks on Janiec uniqueness theorem for holomorphic mappings in $\mathbb{C}^{\text {n }}$

Abstract

In this paper the authors complete Janiec generalization of the well known Cartan uniqueness theorem for holomorphic mappings in some domains of \mathbb{C}^{n}.

Let $D \subset \mathbb{C}^{n}$ be a bounded complete Reinhardt domain with the centre at the origin. For instance D can be the open unit polydisc

$$
\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}: \max _{\nu}\left|z_{\nu}\right|<1\right\}
$$

or it can be the following domain

$$
\begin{equation*}
B^{\alpha_{1}, \ldots, \alpha_{n}}=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}: \sum_{\nu=1}^{n}\left|z_{\nu}\right|^{\alpha_{\nu}}<1\right\} \tag{1}
\end{equation*}
$$

where $\alpha_{1}, \ldots, \alpha_{n}$ are arbitrarily fixed positive real numbers.
If $g=\left(g_{1}, \ldots, g_{n}\right): D \longrightarrow \mathbb{C}^{n}$ is a holomorphic mapping, then for each integer $\nu \in\{1, \ldots, n\}$ we have the following expansion

$$
\begin{equation*}
g_{\nu}(z)=\sum_{m=0}^{\infty} P_{\nu}^{m}(z) \tag{2}
\end{equation*}
$$

where $P_{\nu}^{m}: \mathbb{C}^{n} \rightarrow \mathbb{C}$ are homogeneous polynomials of $m-t h$ degree and the above series (2) uniformly converges on each compact subset of D.

1991 Mathematics Subject Classification. 32A.
Key words and phrases. Holomorphic mappings, uniqueness theorem.
E. Janiec proved the following

Theorem 1 ([1, Thm. 3]). Let j_{1}, \ldots, j_{n} be arbitrarily fixed positive integers and $g=\left(g_{1}, \ldots, g_{n}\right)$ be a holomorphic mapping of $B^{\alpha_{1}, \ldots, \alpha_{n}}$ into $B^{\alpha_{1} / j_{1}, \ldots, \alpha_{n} / j_{n}}$. If for each $\nu=1, \ldots, n$ in the expansion (2) the polynomials $P_{\nu}^{0}, P_{\nu}^{1}, \ldots, P_{\nu}^{j_{\nu}}$ fulfil

$$
\begin{equation*}
P_{\nu}^{0}=P_{\nu}^{1}=\ldots=P_{\nu \nu}^{j_{\nu}-1}=0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{\nu}^{j_{\nu}}\left(z_{1}, \ldots, z_{n}\right)=z_{\nu \nu}^{j_{\nu}}, \tag{4}
\end{equation*}
$$

then $g\left(z_{1}, \ldots, z_{n}\right)=\left(z_{1}^{j_{1}}, \ldots, z_{n}^{j_{n}}\right)$.
Of course, for $j_{1}=\ldots=j_{n}=1$ this result follows directly from the wellknown theorem of Cartan. In this case g maps holomorphically $B^{\alpha_{1}, \ldots, \alpha_{n}}$ into itself and is normalized by the conditions : $g(0)=0$ and $D g(0)=I$, so consequently $g(z)=z$.

Let us observe that if $D=B^{\alpha_{1}, \ldots, \alpha_{n}}$ is replaced by the open polydisc, then assumption (3) is unnecessary, (see [1, Thm.1]). The question arises whether in Theorem 1 assumption (3) can be omitted. E. Janiec showed ($[1$, Thm. 4$]$) that the answer is affirmative under an additional assumption that f is holomorphic also on the boundary of the domain $B^{\alpha_{1}, \ldots, \alpha_{n}}$. We will show that the answer is positive without additional assumption (3), also when we put $j_{1}=\ldots=j_{n}=j \geqq 1$ and replace the domains $B^{\alpha_{1}, \ldots, \alpha_{n}}$ by the following particular domains

$$
B^{j}=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}: \sum_{\nu=1}^{n}\left|z_{\nu}\right|^{2 j}<1\right\} .
$$

Let us observe that the sets B^{j} are open unit balls with adequate norms and $B=B^{1}$ is the open unit ball with euclidean norm.

Namely, our main result is the following
Theorem 2. Let j be an arbitrarily fixed positive integer and let $f: B^{j} \rightarrow$ B be a holomorphic mapping of the form

$$
\begin{equation*}
f(z)=\sum_{m=0}^{\infty} P^{m}(z) \tag{5}
\end{equation*}
$$

where $P^{m}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ are homogeneous polynomial mappings of $m-$ th degree $\left(P^{m}=\left(P_{1}^{m}, \ldots, P_{n}^{m}\right)\right.$).

If

$$
\begin{equation*}
P^{j}\left(z_{1}, \ldots, z_{n}\right)=\left(z_{1}^{j}, \ldots, z_{n}^{j}\right) \tag{6}
\end{equation*}
$$

then $f=P^{j}$.
In the proof of our theorem we use some properties of j, k-symmetrical functions which are presented in the paper [2]. Now we will give two lemmas.

Let $k \geqq 2$ be an arbitrarily fixed integer and $\varepsilon=\exp (2 \pi i / k)$. A subset U of \mathbb{C}^{n} will be called k -symmetrical set if $\varepsilon U=U$. Let us observe that the domains B^{j} are k-symmetrical sets with every k. For every integer j and a k-symmetrical set $U \subset \mathbb{C}^{n}$ a mapping $f: U \rightarrow \mathbb{C}^{n}$ will be called (j, k)-symmetrical if $f(\varepsilon z)=\varepsilon^{j} f(z), \quad z \in U$.

Lemma 1 ([2], Thm.1, Thm.2). For every mapping $f: U \rightarrow \mathbb{C}^{n}$ there exesists exactly one sequence $f^{0}, f^{1}, \ldots, f^{k-1}$ of (j, k)-symmetrical mappings $f^{j}, j=0,1, \ldots, k-1$ such that

$$
\begin{equation*}
f=\sum_{j=0}^{k-1} f^{j} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{k-1}\left\|f^{j}(z)\right\|^{2}=k^{-1} \sum_{l=0}^{k-1}\left\|f\left(\varepsilon^{l} z\right)\right\|^{2}, \quad z \in U \tag{8}
\end{equation*}
$$

Moreover, for $j=0,1, \ldots, k-1$

$$
\begin{equation*}
f^{j}(z)=k^{-1} \sum_{l=0}^{k-1} \varepsilon^{-j l} f\left(\varepsilon^{l} z\right), \quad z \in U \tag{9}
\end{equation*}
$$

In view of the uniqueness of the partition (7) the mappings f^{j} will be called (j, k)-symmetrical parts of the mapping f.

The next lemma is similar to Corollary 6 from [2].
Lemma 2. Let us fix arbitrary k and $j(k \geqq 2$ and $j \in\{1, \ldots, k-1\})$. If the mapping $f: B^{j} \rightarrow B$ is holomorphic and the (j, k)-symmetrical part f^{j} of f has the form

$$
\begin{equation*}
f^{j}\left(z_{1}, \ldots, z_{n}\right)=\left(z_{1}^{j}, \ldots, z_{n}^{j}\right) \tag{10}
\end{equation*}
$$

then $f=f^{j}$.
Proof. In view of Lemma 1 it is sufficient to show that the (l, k)-symmetrical parts f^{l} of f vanish if $l \in\{0,1, \ldots, k-1\}$ and $l \neq j$. To demonstrate
this, first we observe that by the assumptions and (8) we have

$$
\sum_{m=0}^{k-1}\left\|f^{m}(z)\right\|^{2}<1, \quad z \in B^{j}
$$

From this and (10) we obtain in turn

$$
\left\|f^{l}(z)\right\|^{2}<1-\left\|f^{j}(z)\right\|^{2}=1-\left\|\left(z_{1}^{j}, \ldots, z_{n}^{j}\right)\right\|^{2}=1-\sum_{\nu=1}^{n}\left|z_{\nu}\right|^{2 j} .
$$

Since $\overline{r B^{j}} \subset B^{j}$ for every $r \in(0,1)$,

$$
\max _{\partial\left(r B^{\prime}\right)}\left\|f^{l}(z)\right\|^{2} \leqq \max _{\partial\left(r B^{\prime}\right)}\left(1-\sum_{\nu=1}^{n}\left|z_{\nu}\right|^{2 j}\right)=1-r^{2 j} .
$$

On the other hand $\max _{\overline{r B^{j}}}\left\|f^{l}(z)\right\|=\max _{\partial\left(\tau B^{j}\right)}\left\|f^{l}(z)\right\|$, because of the maximum principle for the euclidean norm of holomorphic mapping.

Thus, for every $r \in(0,1)$

$$
0 \leqq \frac{\max }{r B^{j}}\left\|f^{l}(z)\right\| \leqq \sqrt{1-r^{2 j}}
$$

Now observe that the family of sets $\left\{\overline{r B^{j}}\right\}_{r \in(0,1)}$ increases, so the quantity $\max \overline{r B^{j}}\left\|f^{l}(z)\right\|$ is a nondecreasing function of $r \in(0,1)$. From this and the above inequality and the fact that $\sqrt{1-r^{2 j}}$ is a decreasing function of $r \in(0,1)$, we obtain that for every $r \in(0,1) \max _{\overline{r B^{j}}}\left\|f^{l}(z)\right\|=0$. Therefore $\left\|f^{l}(z)\right\|=0$ for every $z \in B^{j}$, because B^{j} is the union of the family $\left\{\overline{r B^{j}}\right\}_{r \in(0,1)}$

Now we give the proof of Theorem 2.
Proof. Let us take an arbitrary $k>j$. We will show that the mapping $g=f^{j}$ fulfils the assumptions of Theorem 1 with $\alpha_{1}=\ldots=\alpha_{n}=2 j$ and $j_{1}=\ldots=j_{n}=j$.

In fact, observe first that f^{j} maps holomorphically B^{j} into B; this follows directly from the assumptions on f and from formula (9). On the other hand by (5) and (9) f^{j} has the following expansion $f^{j}(z)=\sum_{s=0}^{\infty} P^{j+s k}(z)$. Thus by (6) also (3) and (4) hold.

Therefore, applying the assertion of Theorem 1 to the mapping $g=f^{j}$, we obtain the relation (10). Now it is sufficient to apply Lemma 2.

Now we will generalize Theorem 2, similarly as E. Janiec, (compare [1, Thm.5]). For a complex non-singular square matrix $A=\left[a_{\mu \nu}\right]_{n \times n}$ (of n - th degree) denote by $\operatorname{det} A$ the determinant of A and by $A_{\nu}(w)$ the matrix formed out of the matrix A by replacing its ν-th column with the column $w=\left(w_{1}, \ldots, w_{n}\right)$. Then the set

$$
D^{1}=\left\{w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{C}^{n}: \sum_{\nu=1}^{n}\left|\frac{\operatorname{det} A_{\nu}(w)}{\operatorname{det} A}\right|^{2}<1\right\}
$$

is a complete Reinhardt domain with the centre at the origin.
Under the above notations we have
Theorem 3. Let j be an arbitrarily fixed positive integer and $F: B^{j} \rightarrow D^{1}$ be a holomorphic mapping of the form

$$
F(z)=\sum_{m=0}^{\infty} Q^{m}(z)
$$

where $Q^{m}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ are homogeneous polynomial mappings of $m-t h$ degree. If $Q^{j}\left(z_{1}, \ldots, z_{n}\right)=A\left(z_{1}^{j}, \ldots, z_{n}^{j}\right)$, then $F^{\prime}=Q^{j}$.

Proof. It is sufficient to apply Theorem 2 to the mapping $f=A^{-1} F$.
In fact, the mapping f is holomorphic and from the Cramer theorem it follows that it maps B^{j} into B. On the other hand, f has expansion (5) where $P^{m}=A^{-1} Q^{m}$ and P^{j} is defined in (6). Therefore all assumptions of Theorem 2 are fulfiled. Now we conclude that $f=P^{j}$, so $F=Q^{j}$.

References

[1] Janiec, E., Some uniqueness theorems concerning holomorphic mappings, Demonstratio Math. 23 (1990), 879-892.
[2] Liczberski, P., J. Polubiński, On (j,k)-symmetrical functions, Math. Bohem. 120 (1995), 13-28.

Institute of Mathematics received Novembers 30, 1998
Technical University of Lódź
AI. Politechniki 11, 90-924 Lódź, Poland e-mail:piliczb@ck-sg.p.lodz.pl

