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The Denjoy-Wolff theorem
for s-condensing mappings

ABSTRACT. In this short note we establish the locally uniform convergence
of iterates of fixed-point-free, s-condensing and holomorphic self-maps of the
open unit ball in a strictly convex Banach space.

In 1926 Denjoy and Wolff independently and simultaneously proved the
theorem that bears their name [8],[34]. Since then there were many mod-
ifications and generalizations of this theorem ([1], [5], [6], [13], [15], [17],
(18], [20], [23], [27], [31], [32], [33]). The recent one deals with a condensing,
fixed-point-free and holomorphic self-map of the open unit ball in a strictly
convex Banach space and the convergence of its iterates in the compact-open
topology [16]. In this short note we show the locally uniform convergence
of the iterates of fixed-point-free, s-condensing and holomorphic self-maps
of the open unit ball in a strictly convex Banach space.

1. Preliminaries. All Banach spaces will be complex. If D is a bounded
domain in a Banach space (X, ||||) then kp always denotes its Kobayashi dis-
tance. We remark in passing that all distances assigned to a convex bounded
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domain D by Schwarz-Pick systems of pseudometrics ({10], [11],[12]) co-
incide ([9],[14],[22]). Next, the Kobayashi distance kp is topologically
equivalent to the norm metric and this equivalence is even locally uniform
(10, [11], [12]).

Let (X, |||l x) and (Y, ||:||y ) be Banach spaces. If D is a bounded convex
domain in X and D' is a bounded convex domain in Y, then the family of all
holomorphic functions from D to D' is denoted by H (D, D'). The compact
open topology on H (D, D') is the topology generated by pseudodistances

Pk (f,9) =sup {||If (z) —g(z)lly : 2 € K},

where f,g € H (D, D') and K ranges over the compact subsets of D. The
topology of locally uniform convergence on H (D, D') is the topology in-
duced by pseudodistances

98(a,r) (f,9) = sup {||f (z) g (@)lly : = € B(a,m)},

where f,g € H(D,D') and B(a,r) C D ranges over the open balls in X
satisfying dist (B (a,7),dD) > 0 and @D denotes the boundary of D. If X is
a finite-dimensional space, then the topology of locally uniform convergence
on H (D, D') is equivalent to the compact open topology. Here we have to
mention that the locally uniform convergence of iterates is a necessary claim
in many applications ([19], [25], [26], [27], (28], [29]).

Let (D,d) be a metric space. A mapping f : D — D is said to be

d-nonexpansive if
d(f(z),f(y)) < d(z,y)

for all z,y € D. If D is a bounded domain in a Banach space (X,||-||) and
kp is the Kobayashi distance in D then each holomorphic f : D — D is
kp-nonexpansive ([10],[11],[12],[14]).

Let (Y,p) be a metric space and let § # D C Y. We say that f : D —
D is an s-condensing mapping with respect to Kuratowski’s measure of
noncompactness a, (s-condensing mapping, in short) ([2], [3], [21]), if there
exists s € [0,1) such that

a, (f(A)) < sa,(A)

foreach A C D. The s-condensing mappings are also called set-contractions.
The mapping f: D — D is a,-condensing (condensing, in short) if

a, (f(A)) < a,(A)
for each A C D with a,(A) > 0.

Condensing and s-condensing mappings play an important role in the
fixed point theory. See, for example (2], [3], [4], [7], [24], [30], and the
references mentioned there.

Recently, the following Denjoy-Wolfl type theorem has been proved.
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Theorem 1.1 [16]. If B is the open unit ball of a strictly convex Banach
space (X,||:||) and f : B — B is kp-nonexpansive, condensing with respect
to o). and fixed-point-free, then there exists £ € B such that the sequence

{f"} of iterates of f converges in the compact-open topology to the constant
map taking the value £.

It is also known that in the case of uniformly convex Banach spaces one
can prove the locally uniform convergence of the sequence of iterates.

Theorem 1.2 [16]. Let X be a uniformly convex Banach space with the
open unit ball B. Let f: B — B be a condensing with respect to o). and
kg-nonexpansive map with no fixed point in B. Then there exists £ € 0B
such that the sequence { "} of iterates of f converges locally uniformly on
B to the constant map taking the value £.

In this note we show that Theorem 1.2 is still valid for s-contractions in
strictly convex Banach spaces.

2. s-condensing mappings. Here we recall two basic properties of s-
condensing mappings which we need in the proof of the Denjoy- Wolff theo-
rem. The first property is stated in the following

Lemma 2.1. Let (Y,p) be a metric space, ® # D C Y a bounded set,
and f : D — D an s-condensing mapping with respect to a,. If there
exists a sequence {A;} of nonempty subsets of D such that A;, C f(A;)
for j = 1,2,... and {z;} is a sequence with z; € A; for j = 1,2,... then
a,({r € D:3;z =z;})=0.

Proof. This is sufficient to observe that
a,({z € D: 3z =z;}) = a,({z € D: Ijpkz = z,})
< 0, (A4) € 850y (A1) = 0.

O

For the next property we need the definition of a strictly convex domain.
We say that a bounded convex open set D in a Banach space X is strictly

convex if for every =,y € T)&"'"

the open segment
(z,y)={z€ X:2=vz+(1-7)y for some0<y<1}

lies in D.
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Lemma 2.2 [16]. Let D be a strictly convex bounded domain in a Banach
space (X,||-||). Let {z,} and {y.} be two sequences in D which converge
to £ € D and to n € D, respectively. If sup {kp (Zn,¥s):n=1,2,..} =
c < oo then £ = 1.

3. The Denjoy-Wolff Theorem for s-condensing mappings. In this
section we prove two main theorems. The first one is the following.

Theorem 3.1. If B is the open unit ball of a strictly convex Banach space
(X,|ll) and f : B — B is a holomorphic, s-condensing with respect to
a., and fixed-point-free mapping, then there exists £ € OB such that
the sequence {f™} of iterates of f converges locally uniformly on B to the
constant map taking the value £.

Proof. By Theorem 1.1 there exists £ € 0B such that lim, f"(0) = £.
Then, by Lemma 2.1, for each sequence {z;} with ||z;|| < r < 1 for j =
1,2,..., and every strictly increasing sequence of natural numbers {n;} we
have

aj. ({.’L‘ €EB: 3]'2: = fn’ (l‘J)}) = llfﬂ T (AJ) =uoe
where A; = T™ (B) for j = 1,2,... . We also have

supkg (f™ (0), f™ (z;)) <supkp(0,z;) < argtanh r < oo.
3 3

Hence for an arbitrary convergent subsequence {f™m (z; )} we get
limy, ff= (z; ) = £ by Lemma 2.2. It implies that lim; f™ g and
therefore the sequence {f"} of iterates of f converges locally uniformly on
B to the constant map taking the value §.

O

Remark 3.1. Since the proofs of Lemmas 2.1 and 2.2 and Theorems 1.1
and 3.1 have a strictly metric character, we can extend Theorem 3.1 to the
case of kg-nonexpansive mappings.

In many applications in place of sequences of iterates of mappings we
have to deal with one-parameter continuous semigroups ([19], [25], [26],
[27], [28], [29]) and therefore we need an analog of Theorem 3.1. We begin
with the definition of a one-parameter continuous s-condensing semigroup
of mappings.

Definition 3.1. Let (X,p) be a metric space and let ) # D C X be a
bounded subset of X. A family § = {S:},,, of selfmappings of D is called
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a one-parameter continuous s-condensing with respect to a, semigroup of
mappings if it satisfies the following properties:

(l) SO = Id1

(ii) St+s = 5¢05,,

(ii) S,: D — D is s -condensing with respect to T,

(iv) [0,00) 3t — Sz is continuous for every z € D.

Now we are ready to state the basic theorem for such a semigroup.

Theorem 3.2. Let B be the open unit ball of a strictly convex Banach
space (X, ||-||) and S = {S:},5, a one parameter continuous s-condensing
with respect to o semigroup of kg-nonexpansive mappings on B. If for
some ty > 0 the mapping S, is fixed point free, then there is a point £ € 0B
such that S converges locally uniformly to €, as t tends to infinity.

Proof. Since S;, has no fixed point in B, Theorem 1.1 says that there is a
point £ € OB such that Sy, = Sf. converges to £ locally uniformly on B.
Fix Z € B. By continuity of the semigroup S = {S,},5, the set

C={2,€ B:2,=.5,2),0<s<t}

is a compact subset of B. Hence for each ¢ > 0 one can find ng € N such
that

sup [|Snto4s(2) = €ll = sup ||Se,n (25) =€l

Ossgto 0<3 to

= sup[|S7, (2) ~ €| <€

for all n > ng. This implies that ||S,(2) — &|| < € for each t > noto. Now we
repeat arguments from the proof of the previous theorem to get the locally
uniform convergence of S to £. O

Remark 3.2. In the case of the open Hilbert ball it is worth comparing
Theorem 3.2 with Proposition 4.3 in [19]. For the convenience of the reader
we recall this proposition.

Proposition 3.3 [16]. Let B be the open unit ball in a Hilbert space H.
Let G be a class of kg nonexpansive mappings on B which satisfies the
Denjoy- Wolff property and let S = {5, }r>n be a one parameter continuous
semigroup of kg-nonexpansive mappings on B which has no common fixed
point in B. If §;, € G for at least one to > 0, then there is a point £ € OB

such that S converges to £, as t tends to infinity, uniformly on each compact
Subset of B.
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