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A note on quasisymmetric functions 
and BMO

Abstract. We present examples of quasisymmetric functions on the line 
that are absolutely continuous but for which the logarithm of the derivative 
is not in BMO.

Introduction. The motivation for the problem studied in this note is the 
following result of H. M. Reimann, [R]:

Theorem 1. If f is a quasiconformal mapping of Rn(n > 2) onto itself 
with Jacobian determinant Jf, then log Jf G BMO.

Since the analogue of quasiconformal mappings on R are the quasisym­
metric mappings, it is natural to ask if log <p' G BMO whenever is such a 
mapping. But A. Beurling and L. Ahlfors, ([B/A], p. 139), gave an exam­
ple of a completely singular quasisymmetric mapping, and for this function 
¥>, logy?' is not even locally integrable. More examples of quasisymmetric 
functions that are not absolutely continuous are known. (See footnote, p. 
139 in [B/A].)

D. Partyka asked the following question during the Lublin Conference 
8-31 - 9.4.1998: Suppose that y>: R —> R is quasisymmetric and absolutely 
continuous. Is logy?' in BMO? We answer this question in the negative.
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Main result. Our result is the following:

Theorem 2. There exists an absolutely continuous quasisymmetric func­
tion <p: R —> R with log p' 0 BMO.

To prove this theorem we need:

Lemma 1. If u is defined on an interval (finite or infinite), u > 0 and 
logu E BMO, then there exist constants C > 0 and o 6 (0,1] such that 
for all measurable sets E and all intervals I in the domain of u such that 
E C I, we have:

(1) yyy < C (y u(x)adx ! JjU(x)adx^ ' .

Here | | denotes the Lebesgue measure.

This inequality is equivalent to the fact that u° G A2, the Muckenhoupt 
class. Proof of this Lemma follows from [C/F], [R/R] or [G], p. 258.

The next observation is due to P.W. Jones (private communication).

Lemma 2. If f: [a,h] —> [c, d] is a quasisymmetric homeomorphism that is 
not absolutely continuous, and if i is the identity function i(x) = x, then 
the function = f + i is quasisymmetric and not absolutely continuous, 
with an inverse p — 4>_1 that is quasisymmetric and absolutely continuous.

Proof of Lemma 2. A p-quasisymmetric function f defined on an interval 
I (finite or infinite), is a continuous, strictly increasing, real-valued function 
satisfying:

f(x + t) - /(x) < 
/(*) - f(x -t) ~

for t > 0 and for all x,x + t and x — t in I. (See also [Ke].)
It follows that if f is quasisymmetric in I, so is f + i in the same interval.

Since f is not absolutely continuous clearly the same is true for f + i. Next 
since f + i increases distance, p — (f + i)_1 decreases distance, and p is 
therefore absolutely continuous. That p is also quasisymmetric follows from 
Theorem 9 in [Ke]. O

We shall also need the following generalization of Theorem [5] in [Ke].
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Lemma 3. If ip: [a, b] —> [c,d] is a p-quasisymmetric bijection, then ip has a 
28p4-quasisymmetric extension (p toR. Moreover, (p is absolutely continuous 
if and only if ip is absolutely continuous.

Proof of Lemma 3. It follows easily that if ip is p-quasisymmetric then 
S' o ip o T is p-quasisymmetric when S and T are linear mappings. The first 
claim of the lemma follows from this observation combined with Theorem 
5 in [Ke]. The second claim follows from inspection of the proof in [Ke].

Proof of Theorem 2. Let /: [0, 27t] —> [0,27r] be the Beurling - Ahlfors 
function mentioned above. Then the function <p:[0,47r] —> [0, 27t] defined 
by:

= (/ + t)"1

is quasisymmetric and absolutely continuous with an inverse <h which is not 
absolutely continuous. Assume for contradiction that log ip' € BMO. Then 
we know from above that there exist constants a £ (0,1] and C > 0 such 
that (1) holds, i.e.:

for all measurable sets E C I = [0,47r].
Since $ is not absolutely continuous, there exist e > 0 and open sets

E'n ę [0,27t] for each natural number n with < l/ra, but with
|$(£Jj)| > e. The sets En = are also open sets and <p(En) = E'n.
Hence our statement is equivalent to the following. There exist open sets 
Ln C [0, 47t] with |J5n| > £ and such that

|<p(L„)| = f <p'(x)dx < - 
Je„ n

since ip is absolutely continuous and En is a Borel set.
Since 0 < a < 1, we have by Holder’s inequality:

and consequently

(3) I ip\x)adx < IEJ1-0 f I <p\x)dx
JEn \JEn

Now |£n| < 4x and 1 - a > 0, and therefore limn_oo /£ ip'(x}adx - 0. 
This is in contradiction to (2) since |£„| > £ for all n.

To extend our function ip to the whole line, we use Lemma 3. □
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Remarks. In [R] the following result is proved:

Theorem 3. Suppose that f is a self homeomorphism of Rn which is ACL 
and differentiable a.e. Then f is quasiconformal if and only if the mapping 
v rv v o f is a bijective isomorphism of the space BMO for which || vo f ||, 
< C || v ||,.

(See also [Ka])
Again, a natural question to ask is the following: Does this result hold for 

n = 1 with quasisymmetric functions instead of quasiconformal mappings? 
In [J] P. W. Jones has given a complete answer to this question. Theorem 
3 is true for n = 1 if the function f : R —* R is a strictly increasing 
homeomorphism with f £ A^, the Muckenhoupt class.

But one could ask the question: If f : R —> R is an absolutely continuous 
quasisymmetric function, does it then follow that f 6 A^l

Again our example above answers this question in the negative. Since 
Aoo = Ui<p<oo ^P’ it t°ll°ws easily that for our function <p above, <p' $ A^.
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