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Abstract. Let S(a,0) be the subclass of the familiar class S of normalized 
univalent functions consisting of functions with Hayman’s index a and the 
unique direction of maximal growth coinciding with the real axis.

In this paper we give an example of f g S(a,0) such that f /k $ BMOA, 
where k is the Koebe function. However, if a > 0 and C is the class of close- 
to-convex functions then f/k g BMOA for any f g S(a, 0) 17 C. Moreover, 
if a > 0 and f g S(a, 0) then k/ f g Hp for all p < oo.

!• Introduction and statement of results. Let A denote the unit disc 
A = {z E C : |z| < 1}. If f is a function which is analytic in A and 
0 < r < 1, we set

l^\f^reie>)\Pde) 0<p<oo,

Afoo(r,/) = max|/(z)|.
|»|=r
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For 0 < p < oo, the Hardy space Hp consists of those functions f, analytic 
in A, for which

II/IIhp = sup Mp(r,/)<oo.
0<r<l

We refer to [8] for the theory of Hardy spaces. Let S be the class of 
functions f analytic and univalent in A with /(O) = 0, /'(0) = 1.

The leading example is the Koebe function 

‘(2) = (I^j?
oo

= Z"2"-
n=l

Hayman proved in [12] (see also chapter 5 of [9]) that if f G S then

<*(/) = lin](l - r)2-^oo(r,/) 
r—>1

exists and 0 < «(/) < 1. Moreover, o(/) = 1 if and only if f is a rotation 
of the Koebe function.

The number «(/) is called the Hayman index of f. Hayman’s regularity 
theorem [12] asserts that if /(z) = “n2" € $ then

«(/) = lim
n—*oo n

If f G S has the Hayman index a(/) > 0, then there is a unique direction 
of maximal growth, i.e., there is a unique do G [0,27t) such that

lim(l - r)2|/(re’e°)| = «(/). 
r—»l

Given 0 < a < 1 and 0o G [0,2tt), we shall denote by S(a,6o) the set of 
those f G S with the Hayman index «(/) = ot and 0o as the direction of 
maximal growth.

Notice that the elements of S(a, do) are rotations of those of S(cv,0), 
hence we shall restrict ourselves to this class. Bazilevich [4], [5] (see also [9, 
p. 160]) proved that if a > 0, f G S(q,0) and

log z

oo

= 2£7„z"
n=l

then
oo

E»
n=l

£
n

<
2
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Notice that the left hand side term is (log(//fc)), where 

p(^)= JJjF'(z)\2dxdy

is the Dirichlet integral of F.
The following well known inequality of Lebedev and Milin [16] (see [9, p. 

143], [17, p. 36] or [18, Th. 2.3]) can be used to obtain upper bounds on 
the integral means of exp(F) in terms of B(F).

First Lebedev-Milin inequality. Let F(z) = Aj*2 be a func­
tion which is analytic in A with F(0) = 0 and let G(z) = exp(F(z)) =

z £ A. Then,
OO / oo \

(f) 52 i-0*!2 -exp () ■
Jt=o \k=l /

The left hand side of (1) is simply ||G||^2 • Hence, (1) can be written as

(2) ||G||2H2 < exp = exp(P(F)).

If 0 < a < 1, f £ 5(q,0), 0 < p < oo and we take
7WV/2

G(z) =

then, using Bazilevich’s theorem and (2), we obtain that f/k £ Hp and
/
k(3) <a~p'2.

Hp

This was proved by Hu Ke and Dong Xinhan in [14].
In the same paper Ke and Xinhan gave an example which shows that

f/k need not belong to BMOA, the space of those functions f £ 771 whose 
boundary values have bounded mean oscillation on 3A. We refer to [3] and 
[ll] for the theory of BA/CM-functions. In section 2 we shall give a new 
proof of this result. Indeed, we shall show that it can be deduced from a 
theorem of Hayman and Kennedy [13].

Next we study these questions for certain subclasses of the class S. We 
recall that a function f £ S is said to be a support point of S if there exists 
a continuous linear functional J defined on the space of analytic functions 
in A, J nonconstant on S, such that Re J(/) = max{Re J(q) : g £ S}. The 
set of all support points of S will be denoted by Supp(5). Brickman and 
Wilken proved in [7] that if f £ Supp(S) then J is analytic in the closed 
unit disc A except for a pole of order two at one point of the unit circle. 
From this we easily obtain
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Proposition 1.
(i) If f is a support point of S then it has a positive Hayman index.

(ii) If a > 0 and f E 5(a,0) Pl Supp(5) then f is analytic in A except for a 
pole of order two at 1 and

(4) f/k E H°°.

Let S* denote the subset of S consisting of those functions f E S for 
which /(A) is starlike with respect to 0.

Hayman proved that if f E S has a positive Hayman index then f H1/2. 
Using this result, Eenigenburgh and Keogh [10] proved that the rotations 
of the Koebe function are the only starlike functions with positive Hayman 
index. Consequently, 5(a,0)Pl S* = 0, if 0 < a < 1, while, 5(1,0) PI 5* = 
{&}, and then we see that the following assertion is trivially true.

(5) If a > 0 and f E 5(a,0) PI 5* then f satisfies (4).

A function f analytic in A is said to be close-to-convex if there exist a 
real number (3 and a function g E 5* such that

Re4®r>0, z E A.
e*^fir(z)

Every close-to-convex function is univalent (see e.g. Theorem 2.11 of [18]). 
We shall denote by C the class of all functions f analytic in A with /(0) = 0 
which are close-to-convex and with /'(0) = 1. Clearly, 5* C C C 5. In view 
of the above, it is natural to ask whether or not (5) is true with C in the 
place of 5*. We shall show that the answer to this question is negative. In 
fact, we can prove the following result.

Theorem 1. For every a E (0,1) there exists a function f E S(a,0)flC 
such that f/k is not bounded.

However, we can also prove the following.

Theorem 2. If a > 0 and f E 5(o, 0) Pl C then f /k E BMOA.

The proofs of Theorem 1 and Theorem 2 will be presented in section 3. 
Finally, in section 4 we shall be dealing with quotients of the form k/ f with 
f E 5(a,0), a > 0.



Some results on univalent functions ... 77

2. Recalling a theorem of Hayman and Kennedy. Before embarking 
into the mentioned theorem of Hayman and Kennedy, let us recall that a 
function F, analytic in A is said to be a Bloch function if

sup (1 - |2|2)|F'(z)| < oo.
N<i

The space of all Bloch functions is denoted by B. We refer to [1] for the 
theory of Bloch functions. It is clear that if F £ B then

(6) Mx(t,F) = 0 (log ’ as r “*■ L

Also, it is well known that BMO A C B (see e.g. [3]).

Hayman and Kennedy proved in [13] the following result.

Theorem HK. Let p(r) j 0, as r | 1. Then, there exists f £ S with 
Positive Hayman index and with 0O = 0 as direction of maximal growth 
such that

fog l/(-r)l
/ \ 1/2 P(r) (log

lim sup 
r—►!

> 0.

If we take p(r) = (log[l/(l — r)]) ly/8 we obtain a function f £ S'(a,0) 
for some a > 0 such that

log l/(“r)l / 0 ((log[l/(l - r)])1/4) , as r -» 1.

In particular, |/( —r)| O(log[l/(1 — r)]), as r —+ 1 and then

/(—r)
k(—r)

/ O(log[l/(l-r)]), as r 1.

Then, having in mind the the above comments about Bloch functions, we 
deduce that f/k is not a Bloch function and, hence, it does not belong to 
SMOA.

3. Close to convex functions with positive Hayman index 

Proof of Theorem 1. Take 0 < a < 1 and let

/(2O = «*(*) +log j-”’ *^A.
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Then

/'(z) = „VW + (1 - a)^ = (a|±i + (1 - «)|^) •

It is clear that

Re / 1 + z . 1 — z\ n .
\aT^~z + (1 “ a)T+7) > °’ z e A’

and then we have that Re {zf'(z)/k(z)} >0, z £ A. Hence, f is close-to- 
convex and then it is easy to see that f £ C. The fact that f £ S(a, 0) then 
is clear. Also, \f(—r)| —> oo as r —> 1 and hence, f/k is not bounded. This 
finishes the proof.

Proof of Theorem 2. Suppose that f G S(o,0) (~l C with a > 0. There 
exist (3 G R and a function g G S* such that

(7)

Set

(8)

and,

(9)

z f'(z)
Re / \ 4 >0, z G A. 

elpg(z)

P(Z) = zf\z±
e'^g(z) z £ A,

A = P(0), (hence, A = e~i(}), rj = A*1 = eip. 

Let us also define

(10) 77(z) = A
i + r*

1 - Z ’
z G A.

Then H is a conformal mapping from A onto the right half-plane 
H = {z G C : Rez > 0} and 77(0) = A. Notice that P is analytic in 
A, P(A) C H and P(0) = 77(0). Hence, (see e.g. chapter 2 of [18]) P is 
subordinate to 77, (in short, P -< H).

We have,

/'(*) = 7,^P(Z).
(11)

Since P -< 77, it is clear that

(12) P(r) = O(------ ), as r -> 1.
1 — r
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Krzyz [15] proved that

(13) l/Z(r)l ~ Q^,(r), as r —> 1.

Having in mind that, as we mentioned in section 1, the rotations of the 
Koebe function are the only starlike with positive Hayman index, and using 
(11), (12) and (13), we deduce that g is the Koebe function. Hence, we have 

(M) /'« =

Set F — f/k. Then, a simple computation gives

(15) z2F'(z) = T)zP(z} - (1 - 22)/(2) = /i(z) - /2(z),

where,

(16) A(z) = 7/zP(z), /2(z) = (1 - z2)/(z), z£A.

Our next goal is to obtain an upper bound for M2(r, F'). In view of 
(15), we shall consider M2(r, /i) and M2(r,f2) separately. The following 
Well known lemma (see e.g. [8, p. 65]) will be used to obtain our estimates. 

Lemma 1. If 1 < p < oo, then

J„ |l-r«" VU-O’-V

We start working with /i- Since P -< H, we have M2(r,P} < M2(r,H) 
(0 < r < 1) (see Theorem 2.1 of [18]). Then, using Lemma 1, we easily 
obtain

(17) M2(r,/1) = o((1-1r^7?), asr-1.

In order to obtain an upper bound for M2(r, f2) we shall start working with 
A- A simple computation gives

(18) /'(z) = -2z/(z) + (1 - 22)/'(z) = -2z/(z) + 7/|^P(z).

Since f £ S, we have (see [2], Theorem 5.1 of [18] or chapter 7 of [9])

(19) M2(r’/) = °(p-T7j^)’ asr-\l-
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We shall make use of Baernstein *-function to estimate the integral means 
of{(l + z)/(l-z)}P(z).

Recall [2] (see also [9, Chapt. 7]) that if u is a real-valued function defined 
in A such that, for 0 < r < 1, the function 6 —► u(re,e) is integrable on 
[—7T, 7r], the function u* is defined on {z € C : 0 < |z| < l,Imz > 0} by

u*(re’s) = sup I u^re'1) dt, 0 < r < 1, 0 < 0 < 7r,
|E|=20 Je

where the supremum is taken over all measurable subsets E of [—7r, 7r] whose 
Lebesgue measure, denoted by |P|, is equal to 20.

Set

1 + z

(20)
Ui(z) = log

u(z) = log
1 + Z

1 - z
z € A.

The functions Uj, U2 and u are harmonic in A. Since P H, we have also 
U2 -< log \H | and then

(21) ^<(log|P|)*

(see Lemma 7 in p. 230 of [9]). Now,

(22) log|tf(z)| = log|l +r?2z|+ logp-i-^.

Since |7/| = 1, we see that, for 0 < r < 1, the functions t —► log |1 + rj2re,ł\ 
and t —> log 11 + reH| are equidistributed on [—7r, 7r] and then

(23) (log |1 + r/2re‘fl|)* = (log |1 + rel9|) , 0 < r < 1, 0 < 0 < 7r.

Using (21), (22), Lemma 6 in p. 230 of [9] and having in mind that, for 
0 < r < 1, both the functions 6 —> log 11 + re’9| and 0 —> log are
symmetric functions of 0 on [—7r, 7t], decreasing on [0,7r], we obtain that, for 
0 < r < 1 and 0 < 0 < it,

(24)

) < (log 11 + r]2rei6\)* + (log 

= (log |1 + re‘9|)* + (log j—

★
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Since u = ui -(- u2, (24) and Lemma 6 in [9, p. 230] imply

(25)

u*(z) < uf(z) + u£(z) = 2 (log

1 + z
= log for all z.

Having in mind the definition of u and using Proposition 3 of [2] (see also 
Lemma 5 in p. 218 of [9]), we see that (25) implies

M2 (r, yr-jPW) < M2 (r, 0 < r < 1,

which, using Lemma 1, gives

(26) M2 (r, p(2)) = 0 ((i-^a/i) ’ as r L

Now, (18), (19) and (26) imply

^2(r,^) = o((1_1rj3/2) > as r —► 1,

which, using Theorem 5.5 in p. 80 of [8], gives

M2(r,/2) = o((1_1rpi), asr-^1.

This, with (15) and (17), implies

M2(r,F') = o((1_1r)-T7?), as r —> 1,

and consequently (see [8, Th. 5.4]) F belongs to the mean Lipschitz space 
A2/2. Since A2/2 C BMOA, (see [6]), this proves that F G BMOA which 
ends the proof of Theorem 2.

4. Some results on functions of the form k/f with f G 5(0:, 0), a > 0.
Let 0 < a < 1, f G S(q,0) and 0 < p < oo. If we argue as in the proof of
(3) but taking

fc(z)

then, using Bazilevich’s theorem and the “first Lebedev-Milin inequality we 
obtain the following
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Proposition 2. Let 0 < a < 1 and f E 5(o,0). Then k/f E Hp for all 
p E (0, oo) and

(27) IIV/IIh, <«'p/2, 0 < p < oo.

We do not know whether Proposition 2 can be improved. However, we 
shall make some remarks. First, let us state the following

Lemma 2. If f and g are two elements of S then f / g is a normal function.

We recall that a function f which is meromorphic in A is a normal 
function if and only if

sup(l - |z|2) 
zgA i +1/«

< 00.

We refer to [1] and chapter 9 of [18] for the theory of normal functions. 
Lemma 2 is an extension of the well known result that if f E S then it is 
normal (see Lemma 9.3 in p. 262 of [18]). The proof of Lemma 2 reduces 
to an elementary calculation involving the spherical derivative of f /g and 
will be omitted.

We do not know whether or not if f E 5(«,0) with a > 0 then the func­
tion k/f does belong to H°° or at least to BMOA. However, we should 
remark that, if they exist, the counterexamples must be essentially distinct 
from those given in the previous sections to show that f/k may not be 
bounded or may not belong to BMOA. Indeed, to prove that these ex­
amples worked we studied the behaviour of the function f in a direction 
distinct from that of maximal growth. The following lemma shows that this 
would not work in the case of k/ f.

Lemma 3. Let 0 < a < 1 and f E 5(o,0). Then the following two 
conditions are equivalent.

(i) k/f is not bounded;
(ii) there exists a sequence {zn} C A such that

lim zn = 1, and
n—+oo

lim
n—>oo

k(An)
/(*n)

= 00.

Proof. The implication (ii) ==> (i) is trivial. To prove the reverse impli­
cation, take f £ 5(o,0) with a > 0 and suppose that k/f is not bounded.
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If |£| = 1 and £ 7^ 1, we have limsupz_+^ |A;(z)| < oo and, by the Koebe 
z£A

1/4-Theorem liminfz_£ |/(z)| >1/4. Then, clearly
z£A

lim sup \k(z)/f(z)\ < oo, if |£| = 1, £ / 1. 
z£A

Consequently, since k/f is not bounded,

(28) lim sup |fc(z)//(.j)| = oo.
z-*l
z£A

This is equivalent to (ii).

Remark. We should observe that if f £ 5(0,0) is such that k/f is not 
bounded then, since by Lemma 2 the function k/f is normal, oo cannot 
be an asymptotic value of k/f at 1, i.e. there is no curve r in A ending 
at 1 such that limz-,1 |{k(z)/f(z)}\ = oo. Otherwise k/f would have the
Ron-tangential limit oo at 1 (see Theorem 9.3 of [18]) contrarily to the fact 
k/f is bounded along the radius ending at 1. Consequently, the “lim sup” in 
(28) is attained in “discrete way” .
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