
ANNALES
UNIVERSITATIS MARIAE C U RI E - S K L O D O W S K A 

LUBLIN - POLONIA

VOL. LIII, 5 SECTIO A 1999

FREDERICK W. GEHRING*

Variations on a theorem of Fejer and Riesz

This lecture is dedicated to Jan Krzyż 
on the occasion of his 75th birthday

Abstract. This lecture concerns variants of a pair of inequalities due to 
L. Fejer and F. Riesz which are related to hyperbolic geometry, Carleson 
measures, the level set problem, the higher variation of a function and the 
one-dimensional heat equation.

1. Introduction. I will describe here several results which are related to 
the following two attractive theorems due to L. Fejer and F. Riesz [6] and 
to F. Riesz [23]. Throughout this lecture D will denote a simply connected 
Proper subdomain of the plane R1 2, B the open unit disk, H the upper half 
Plane and L the real axis.

Theorem 1.1 (Fejer-Riesz). If g is analytic in B and continuous in B, then

I \g\pds
Jlhb JdB

for 0 < p < oo.

Theorem 1.1 is closely related to the following inequality.
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Theorem 1.2 (Riesz). If u is harmonie in B and continuous in B, then 

variation lob(u) < | variation gs(u).

The following inequality is an immediate consequence of the above two 
theorems.

Corollary 1.3. If f is conformal in B and continuous in B, then 

length(/(L D Bf) < j length(/(9B)).

Proof. Let g — f and p = 1 in the Fejer-Riesz Theorem or let u = f in 
the Riesz Theorem. □

Remark. By the Riemann mapping theorem, for each 0 < a < oo there 
exists a conformal mapping f : B —> D where

D = {z = x + i y : \x\/a + |y| < 1},

such that LnB corresponds to LC\D. The Caratheodory extension theorem 
then implies that f is continuous in B and hence that

length(/(L Cl B)) 2 a 1
length(/(dB)) " "" 2

as a —> oo. Thus the constant ~ is sharp in Corollary 1.3 and hence also in 
the Theorems of Fejer-Riesz and Riesz.

In what follows I will give five variants of the inequalities of Fejer-Riesz 
and Riesz which are connected with

1. hyperbolic geometry,
2. Carleson measures,
3. the level set problem,
4. the higher variation of a function,
5. the one-dimensional heat equation.

2. Hyperbolic geometry. The following is a variant of Corollary 1.3 
which was first conjectured by Piranian and later established by Gehring 
and Hayman in [15].
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Theorem 2.1. If f is conformal in B and continuous in B A H, then 

length(/(£ n B)) < c length(/(9B n H))

where c is an absolute constant.

Remark. The sharp value of c in Theorem 2.1 is not known. The proof 
given in [15] yields the bounds 7r < c < 74. Jaenisch showed later in [18] 
that Theorem 2.1 holds with 4.5 < c < 17.5.

Theorem 2.1 has an interesting interpretation in terms of the hyperbolic 
geometry. If g : D —» B is conformal, then

Pd(*)
2|gz(^)l

i -

is independent of choice of g and the hyperbolic distance hp in D is given 
by

hD^i,z2) = inf pds 
Q J a

where a is any arc joining 21,22 in D. The unique arc /? for which this 
infimum is attained is said to be a hyperbolic geodesic.

Corollary 2.2. If (3 is a hyperbolic geodesic in D and if a is an arc which 
joins the endpoints of (3 in D, then

l(/3) < c 1(a)

where c is the constant in Theorem 2.1.

Proof. Suppose that a meets the hyperbolic line containing (3 only at the 
endpoints of (3. Then we can choose a conformal mapping g : D —> B so 
that g(a) U p(/3) bounds a Jordan domain D' C B fl H and p(/?) C L.

Let h map D' conformally onto B D H so that p(/?) = L D B and reflect 
in L. Then

f = (bog)~l

ts conformal in B, continuous in B and

/(/?) = [ \f'\ds<c I \f'\ds = cl(a)
JLnB JdBnH

by Theorem 2.1. The general case then follows easily from this special case.
□
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Remark. Corollary 2.2 says that in a simply connected domain, a hy­
perbolic geodesic /3 minimizes up to a fixed multiplicative constant the eu­
clidean as well as the hyperbolic length of all arcs a joining its endpoints. 
This is not the case in a multiply connected domain [1]. See [17] and [22] 
for other developments concerning Corollary 2.2.

3. Carleson measures

Definition 3.1 A non-negative measure p in B is a Carleson measure if 
there exists a constant b such that

p(t/ (1 B) < 6rad(F) 

for each disk U with center on dB.

The following theorem due to Carleson [5] illustrates why this particular 
class of measures is important.

Theorem 3.2. A non-negative measure p in B is a Carleson measure if 
and only if there is a constant c such that for each function g analytic in B 
and continuous in B,

[ \g\pdp<c [ \g\p ds 
J B JdB

for 0 < p < oo.

Example 3.3. For each Borel set E C B let p(E} = length(B l~l £). Then 

p(UDB) < 2rad(fZ)

for each disk U with center on dB and hence p is a Carleson measure.

Remark. If p is the measure in Example 3.3, then by Theorem 3.2 there 
is constant c such that

I \g\pds = I \g\p dp < c [ \g\p ds 
JLOB JB JdB

for g analytic in B and continuous in B and 0 < p < oo. Thus Theorem 3.2 
is a far reaching extension of the Fejer-Riesz theorem.

The following lemma yields another useful characterization for Carleson 
measures. See Lemma 3.3 in Chapter 6 of [9].
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Lemma 3.4. A non-negative measure p in B is a Carleson measure if and 
°nly if there is a constant b such that

\h'\ dp < b

for all conformal h : B —► B.

4. Level set problem. Corollary 1.3 implies that

length(/(£ fl B)) < j length(/(dB))

whenever f : B —* D is conformal in B and continuous in B. It is reasonable 
to ask if one can reverse the roles of B and D in this inequality. That is, 
does there exist a constant a such that

length(/(L IT B)) < a length(/(dB))

whenever / : D —> B is conformal in D and continuous in D. This question 
Was answered in the affirmative by Hayman and Wu who established the 
following result [16].

Theorem 4.1. If f : D —> B is conformal, then 

length(/(L n B)) < b,

where b is an absolute constant.

Remarks. Piranian and Weitsman were the first to conjecture that The­
orem 4.1 holds and the proof in [16] yields the result with b = 1037. A 
different argument with additional consequences was later given by Gar­
nett, Gehring and Jones in [10]; see Theorem 4.3 below. The value of the 
constant b has been studied by several people.

1. Flinn: 7.4 < b. In addition b < 7r2 if H C B [8].
2. Fernandez, Heinonen and Martio: b < 4tt2 [7].
3. 0yma: 7r2 < b < 4x in [20] and [21].
4. Rohde: b < Air [24].

The following consequence of Theorem 4.1 in [10] allows one to replace 
the unit disk B in the Fejer-Riesz Theorem by a Jordan domain B with a 
rectifiable boundary.
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Lemma 4.2. If f : D —> B is conformal, then p(E) = length(£n/(LnD)) 
is a Carleson measure.

Proof. Suppose that h : B -> B is conformal. Then g — h o f : D B is 
conformal and

Z |/i'| dp = Z |/i'| ds = length(</(£ D D)) < b 
Jb J J(LOD)

by Theorem 4.1. Hence p is a Carleson measure by Lemma 3.4. □

If we now combine Theorem 3.2 and Lemma 4.2 we obtain the following 
versions of the Fejer-Riesz Theorem and Corollary 1.3 [10].

Theorem 4.3. If dD is a rectifiable Jordan curve and if g is analytic in D 
and continuous in D, then

Z |5|p<Ls <cf |g|pds
JLOD JdD

for 0 < p < oo where c is an absolute constant.

Proof. Suppose that f : D —> B is conformal and let 

p(E) = length(£ n/(£ n £>)).
Then p is a Carleson measure by Lemma 4.2. Next choose h analytic in B 
so that

q(z)p = h(/(z))p/'(z).
Then Theorem 3.2 implies that

Z |q|p ds = Z |h|pds = Z |h|p dp < c Z |h|p ds = c Z |q|pds. 
JloD J f(LDD) Jb JdB JdD

□

Corollary 4.4. If f is conformal in D and continuous in D, then 

length(/(£ D Df) < c length(/(<9£)))
where c is an absolute constant.

Remark. The disk B of the Fejer-Riesz Theorem has disappeared in The­
orem 4.3 and its Corollary. What about the line LI The answer, given by 
Bishop and Jones in [2], depends on the notion of a regular curve due to 
Ahlfors.
Definition 4.5. An arc C is regular if there is a constant a such that 

length(C D U) < arad(f/)
for each disk U.
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Theorem 4.6. Theorem 4.3 holds with C in place of L if and only if C is 
regular.

Remark. The disk B and the line L are now both gone from the original 
Fejer-Riesz Theorem! What about the analytic function g or the conformal 
mapping /?

Program of Bonk-Koskela-Rohde [3].
1. The goal is to characterize the densities cr > 0 in P for which there exist 

analogues of the results for the case where o = \ f | and f is conformal 
in B.

2. Two properties:
a. Harnack type inequality,
b. Growth rate inequality.

3. Many results of function theory follow if a satisfies the above properties 
in B.

4. Example: If /3 is a hyperbolic geodesic in B, then

for all a joining the endpoints of (3 in B where c is an absolute constant. 
This is the inequality in Corollary 2.2 when a = |/'|-

Problem. What are the analogues of Theorem 4.3 and Corollary 4.4 for 
such a density <r?

5. Higher variation of a function. If f is defined over an interval I, 
then for 1 < p < oo we can define the pth power variation of f over I by

p variation /(/) = sup
T

1/p

where the supremum is taken over all subdivisions t = {xo < < • • • < £«}
of I■ The pth power variation of J interpolates between the usual variation 
and the oscillation of f as p varies between 1 and oo. See, for example, [4], 
[12], [19], [26] and [27].

We have the corresponding extension of the Riesz Theorem [11].
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Theorem 5.1. If u is harmonic in B and continuous in B, then 

p variation lob(u) < j P variation 9g(u)

for 1 < p < oo.

6. One-dimensional heat equation. The Riesz Theorem takes the 
following form when D = H.

Theorem 6.1. If u is harmonic in H and continuous in II, then for |a| < oo 
and 0 < b < oo

yOO y oo
/ Ma,y)\dy<% /

J b J —oo

Proof. If h maps B conformally onto {z = x + iy : b < y < oo} and L ("I B 
onto {z = a + iy : b < y < oo}, then v = uo h is harmonic in B, continuous 
in B and

/°°
/ |u„(a, y)\dy = variation lobN)

1 If00
<-variation 9b(v) = - / |ux(x, h)| dx. □

4 J-oo

For |a:| < oo and t > 0 let u = u(x,t) denote the absolute temperature 
in an infinite insulated rod with unit thermal conductivity and unit cross- 
section spread along the x-axis. Then

ut = uxx and u > 0

for (x,t) E H. Temperature functions behave in many ways like positive 
harmonic functions. See Widder [25] and [13], [14].

The following is an analogue of Theorem 6.1 for temperature functions 
[14]-

Theorem 6.2. If u is a temperature function in H, then for |a| < oo and 
0 < b < oo

y OO j r OO

(6.3) / |uI(a,t)|d< < - / u(x,b]dx,
Jb 2 J_oo

yOO I yOO

Jb |u«(a,/)|dt < - J |ur(a:,h)| dx.(6-4)
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Remarks. The following physical interpretations of Theorem 6.2 yield an 
interesting way of viewing the Riesz Theorem.

1. Suppose that the heat in the rod at time t = b is equal to A < oo, that 
is, ,oo

/ u(z, 6) dx = A.
J — oo

Then inequality (6.3) says that the total heat flow across each fixed 
section of the rod in the time interval b < t < oo never exceeds A/2.

2. Suppose next that the variation of temperature along the rod at time 
t — b is equal to V < oo. Then inequality (6.4) says that at each 
section of the rod the temperature variation in time for b < t < oo 
never exceeds V/2.
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