ANNALES UNIVERSITATIS MARIAE CURIE – SKLODOWSKA LUBLIN – POLONIA

VOL. LIII, 5

SECTIO A

1999

FREDERICK W. GEHRING*

Variations on a theorem of Fejer and Riesz

This lecture is dedicated to Jan Krzyż on the occasion of his 75th birthday

ABSTRACT. This lecture concerns variants of a pair of inequalities due to L. Fejér and F. Riesz which are related to hyperbolic geometry, Carleson measures, the level set problem, the higher variation of a function and the one-dimensional heat equation.

1. Introduction. I will describe here several results which are related to the following two attractive theorems due to L. Fejér and F. Riesz [6] and to F. Riesz [23]. Throughout this lecture D will denote a simply connected proper subdomain of the plane \mathbb{R}^2 , B the open unit disk, H the upper half plane and L the real axis.

Theorem 1.1 (Fejer-Riesz). If g is analytic in B and continuous in \overline{B} , then

$$\int_{L \cap B} |g|^p \, ds \le \frac{1}{2} \, \int_{\partial B} |g|^p \, ds$$

for 0 .

Theorem 1.1 is closely related to the following inequality.

¹⁹⁹¹ Mathematics Subject Classification. Primary 30F40.

^{*}Research supported in part by grants from the U. S. National Science Foundation and the University of Jyväskylä, Finland.

Theorem 1.2 (Riesz). If u is harmonic in B and continuous in \overline{B} , then

variation
$$_{L\cap B}(u) \leq \frac{1}{2}$$
 variation $_{\partial B}(u)$.

The following inequality is an immediate consequence of the above two theorems.

Corollary 1.3. If f is conformal in B and continuous in \overline{B} , then

$$\operatorname{length}(f(L \cap B)) \leq \frac{1}{2} \operatorname{length}(f(\partial B)).$$

Proof. Let g = f' and p = 1 in the Fejér-Riesz Theorem or let u = f in the Riesz Theorem.

Remark. By the Riemann mapping theorem, for each $0 < a < \infty$ there exists a conformal mapping $f : B \to D$ where

$$D = \{ z = x + i y : |x|/a + |y| < 1 \},\$$

such that $L \cap B$ corresponds to $L \cap D$. The Carathéodory extension theorem then implies that f is continuous in \overline{B} and hence that

$$\frac{\operatorname{length}(f(L \cap B))}{\operatorname{length}(f(\partial B))} = \frac{2 a}{4\sqrt{a^2 + 1}} \to \frac{1}{2}$$

as $a \to \infty$. Thus the constant $\frac{1}{2}$ is sharp in Corollary 1.3 and hence also in the Theorems of Fejér-Riesz and Riesz.

In what follows I will give five variants of the inequalities of Fejer-Riesz and Riesz which are connected with

- 1. hyperbolic geometry,
- 2. Carleson measures,
- 3. the level set problem,
- 4. the higher variation of a function,
- 5. the one-dimensional heat equation.

2. Hyperbolic geometry. The following is a variant of Corollary 1.3 which was first conjectured by Piranian and later established by Gehring and Hayman in [15].

Theorem 2.1. If f is conformal in B and continuous in $\overline{B} \cap H$, then

$$\operatorname{ength}(f(L \cap B)) \leq c \operatorname{length}(f(\partial B \cap H))$$

where c is an absolute constant.

Remark. The sharp value of c in Theorem 2.1 is not known. The proof given in [15] yields the bounds $\pi \leq c < 74$. Jaenisch showed later in [18] that Theorem 2.1 holds with $4.5 \leq c \leq 17.5$.

Theorem 2.1 has an interesting interpretation in terms of the hyperbolic geometry. If $g: D \to B$ is conformal, then

$$\rho_D(z) = \frac{2|g'(z)|}{1 - |g(z)|^2}$$

is independent of choice of g and the hyperbolic distance h_D in D is given by

$$h_D(z_1, z_2) = \inf_{\alpha} \int_{\alpha} \rho \, ds$$

where α is any arc joining z_1, z_2 in D. The unique arc β for which this infimum is attained is said to be a hyperbolic geodesic.

Corollary 2.2. If β is a hyperbolic geodesic in D and if α is an arc which joins the endpoints of β in D, then

$$l(\beta) \leq c \ l(\alpha)$$

where c is the constant in Theorem 2.1.

Proof. Suppose that α meets the hyperbolic line containing β only at the endpoints of β . Then we can choose a conformal mapping $g: D \to B$ so that $g(\alpha) \cup g(\beta)$ bounds a Jordan domain $D' \subset B \cap H$ and $g(\beta) \subset L$.

Let h map D' conformally onto $B \cap H$ so that $g(\beta) = L \cap B$ and reflect in L. Then

$$f = (h \circ g)^{-1}$$

is conformal in B, continuous in \overline{B} and

$$l(\beta) = \int_{L \cap B} |f'| \, ds \le c \, \int_{\partial B \cap H} |f'| \, ds = c \, l(\alpha)$$

by Theorem 2.1. The general case then follows easily from this special case.

Remark. Corollary 2.2 says that in a simply connected domain, a hyperbolic geodesic β minimizes up to a fixed multiplicative constant the euclidean as well as the hyperbolic length of all arcs α joining its endpoints. This is not the case in a multiply connected domain [1]. See [17] and [22] for other developments concerning Corollary 2.2.

3. Carleson measures

Definition 3.1 A non-negative measure μ in *B* is a Carleson measure if there exists a constant *b* such that

$$\mu(U \cap B) \le b \operatorname{rad}(U)$$

for each disk U with center on ∂B .

The following theorem due to Carleson [5] illustrates why this particular class of measures is important.

Theorem 3.2. A non-negative measure μ in B is a Carleson measure if and only if there is a constant c such that for each function g analytic in B and continuous in \overline{B} ,

$$\int_{B} |g|^{p} \, d\mu \leq c \, \int_{\partial B} |g|^{p} \, ds$$

for 0 .

Example 3.3. For each Borel set $E \subset B$ let $\mu(E) = \text{length}(E \cap L)$. Then

 $\mu(U \cap B) \le 2 \operatorname{rad}(U)$

for each disk U with center on ∂B and hence μ is a Carleson measure.

Remark. If μ is the measure in Example 3.3, then by Theorem 3.2 there is constant c such that

$$\int_{L\cap B} |g|^p \, ds = \int_B |g|^p \, d\mu \le c \, \int_{\partial B} |g|^p \, ds$$

for g analytic in B and continuous in \overline{B} and 0 . Thus Theorem 3.2 is a far reaching extension of the Fejer-Riesz theorem.

The following lemma yields another useful characterization for Carleson measures. See Lemma 3.3 in Chapter 6 of [9].

Lemma 3.4. A non-negative measure μ in B is a Carleson measure if and only if there is a constant b such that

$$\int_B |h'|\,d\mu \leq b$$

for all conformal $h: B \rightarrow B$.

4. Level set problem. Corollary 1.3 implies that

$$\operatorname{length}(f(L \cap B)) \leq \frac{1}{2} \operatorname{length}(f(\partial B))$$

whenever $f: B \to D$ is conformal in B and continuous in \overline{B} . It is reasonable to ask if one can reverse the roles of B and D in this inequality. That is, does there exist a constant a such that

$$\operatorname{length}(f(L \cap D)) \leq a \operatorname{length}(f(\partial D))$$

whenever $f: D \to B$ is conformal in D and continuous in \overline{D} . This question was answered in the affirmative by Hayman and Wu who established the following result [16].

Theorem 4.1. If $f: D \rightarrow B$ is conformal, then

$$\operatorname{length}(f(L \cap D)) \leq b,$$

where b is an absolute constant.

Remarks. Piranian and Weitsman were the first to conjecture that Theorem 4.1 holds and the proof in [16] yields the result with $b = 10^{37}$. A different argument with additional consequences was later given by Garnett, Gehring and Jones in [10]; see Theorem 4.3 below. The value of the constant b has been studied by several people.

1. Flinn: 7.4 $\leq b$. In addition $b \leq \pi^2$ if $H \subset D$ [8].

- 2. Fernandez, Heinonen and Martio: $b \leq 4\pi^2$ [7].
- 3. Øyma: $\pi^2 \le b \le 4\pi$ in [20] and [21].
 - 4. Rohde: $b < 4\pi$ [24].

The following consequence of Theorem 4.1 in [10] allows one to replace the unit disk B in the Fejér-Riesz Theorem by a Jordan domain D with a rectifiable boundary. **Lemma 4.2.** If $f: D \to B$ is conformal, then $\mu(E) = \text{length}(E \cap f(L \cap D))$ is a Carleson measure.

Proof. Suppose that $h: B \to B$ is conformal. Then $g = h \circ f: D \to B$ is conformal and

$$\int_{B} |h'| \, d\mu = \int_{f(L \cap D)} |h'| \, ds = \operatorname{length}(g(L \cap D)) \leq b$$

by Theorem 4.1. Hence μ is a Carleson measure by Lemma 3.4.

If we now combine Theorem 3.2 and Lemma 4.2 we obtain the following versions of the Fejér-Riesz Theorem and Corollary 1.3 [10].

Theorem 4.3. If ∂D is a rectifiable Jordan curve and if g is analytic in D and continuous in \overline{D} , then

$$\int_{L\cap D} |g|^p \, ds \le c \, \int_{\partial D} |g|^p \, ds$$

for 0 where c is an absolute constant.

Proof. Suppose that $f: D \to B$ is conformal and let

$$\mu(E) = \operatorname{length}(E \cap f(L \cap D)).$$

Then μ is a Carleson measure by Lemma 4.2. Next choose h analytic in B so that

$$g(z)^p = h(f(z))^p f'(z).$$

Then Theorem 3.2 implies that

$$\int_{L\cap D} |g|^p \, ds = \int_{f(L\cap D)} |h|^p \, ds = \int_B |h|^p \, d\mu \le c \, \int_{\partial B} |h|^p \, ds = c \, \int_{\partial D} |g|^p \, ds.$$

Corollary 4.4. If f is conformal in D and continuous in \overline{D} , then

 $\operatorname{length}(f(L \cap D)) \leq c \operatorname{length}(f(\partial D))$

where c is an absolute constant.

Remark. The disk B of the Fejér-Riesz Theorem has disappeared in Theorem 4.3 and its Corollary. What about the line L? The answer, given by Bishop and Jones in [2], depends on the notion of a regular curve due to Ahlfors.

Definition 4.5. An arc C is regular if there is a constant a such that

 $length(C \cap U) \le a \operatorname{rad}(U)$

for each disk U.

Theorem 4.6. Theorem 4.3 holds with C in place of L if and only if C is regular.

Remark. The disk B and the line L are now both gone from the original Fejér-Riesz Theorem! What about the analytic function g or the conformal mapping f?

Program of Bonk-Koskela-Rohde [3].

- 1. The goal is to characterize the densities $\sigma > 0$ in B for which there exist analogues of the results for the case where $\sigma = |f'|$ and f is conformal in B.
 - 2. Two properties:
 - a. Harnack type inequality,
 - b. Growth rate inequality.
- 3. Many results of function theory follow if σ satisfies the above properties in B.
- 4. Example: If β is a hyperbolic geodesic in B, then

$$\int_{\beta} \sigma \ ds \le c \int_{\alpha} \sigma \ ds$$

for all α joining the endpoints of β in *B* where *c* is an absolute constant. This is the inequality in Corollary 2.2 when $\sigma = |f'|$.

Problem. What are the analogues of Theorem 4.3 and Corollary 4.4 for such a density σ ?

5. Higher variation of a function. If f is defined over an interval I, then for $1 \le p < \infty$ we can define the p^{th} power variation of f over I by

$$p \text{ variation } _I(f) = \sup_{\tau} \left(\sum_{j=1}^n |f(x_j) - f(x_{j-1})|^p \right)^{1/p}$$

where the supremum is taken over all subdivisions $\tau = \{x_0 < x_1 < \ldots < x_n\}$ of *I*. The p^{th} power variation of *f* interpolates between the usual variation and the oscillation of *f* as *p* varies between 1 and ∞ . See, for example, [4], [12], [19], [26] and [27].

We have the corresponding extension of the Riesz Theorem [11].

Theorem 5.1. If u is harmonic in B and continuous in \overline{B} , then

$$p$$
 variation $_{L \cap B}(u) \leq \frac{1}{2} p$ variation $_{\partial B}(u)$

for $1 \leq p < \infty$.

6. One-dimensional heat equation. The Riesz Theorem takes the following form when D = H.

Theorem 6.1. If u is harmonic in H and continuous in \overline{H} , then for $|a| < \infty$ and $0 < b < \infty$

$$\int_b^\infty |u_y(a,y)|\,dy \leq \tfrac12 \,\,\int_{-\infty}^\infty |u_x(x,b)|\,dx.$$

Proof. If h maps B conformally onto $\{z = x + iy : b < y < \infty\}$ and $L \cap B$ onto $\{z = a + iy : b < y < \infty\}$, then $v = u \circ h$ is harmonic in B, continuous in \overline{B} and

$$egin{aligned} &\int_b^\infty |u_y(a,y)|\,dy = ext{variation }_{L\cap B}(v) \ &\leq rac{1}{2} ext{ variation }_{\partial B}(v) = rac{1}{2} \ \int_{-\infty}^\infty |u_x(x,b)|\,dx. \end{aligned}$$

For $|x| < \infty$ and t > 0 let u = u(x, t) denote the absolute temperature in an infinite insulated rod with unit thermal conductivity and unit crosssection spread along the x-axis. Then

 $u_t = u_{xx}$ and u > 0

for $(x,t) \in H$. Temperature functions behave in many ways like positive harmonic functions. See Widder [25] and [13], [14].

The following is an analogue of Theorem 6.1 for temperature functions [14].

Theorem 6.2. If u is a temperature function in H, then for $|a| < \infty$ and $0 < b < \infty$

(6.3)
$$\int_{b}^{\infty} |u_{x}(a,t)| dt \leq \frac{1}{2} \int_{-\infty}^{\infty} u(x,b) dx$$

(6.4)
$$\int_{b}^{\infty} |u_t(a,t)| dt \leq \frac{1}{2} \int_{-\infty}^{\infty} |u_x(x,b)| dx$$

Remarks. The following physical interpretations of Theorem 6.2 yield an interesting way of viewing the Riesz Theorem.

1. Suppose that the heat in the rod at time t = b is equal to $A < \infty$, that is,

$$\int_{-\infty}^{\infty} u(x,b) \, dx = A.$$

Then inequality (6.3) says that the total heat flow across each fixed section of the rod in the time interval $b \le t < \infty$ never exceeds A/2.

2. Suppose next that the variation of temperature along the rod at time t = b is equal to $V < \infty$. Then inequality (6.4) says that at each section of the rod the temperature variation in time for $b \le t < \infty$ never exceeds V/2.

References

- Beardon, A. F. and C. Pommerenke, The Poincaré metric of plane domains, J. London Math. Soc. 18 (1978), 475-483.
- Bishop, C. J. and P. W. Jones, Harmonic measure and arclength, Ann. Math. 132 (1990), 511-547.
- [3] Bonk, M., P. Koskela and S. Rohde, Conformal metrics on the unit ball in Euclidean space, (to appear).
- Bruneau, M., Variation totale d'une fonction, Lecture Notes Math. 413, Springer Verlag, 1974.
- [5] Carleson, L., Interpolations by bounded analytic functions and the corona problem, Ann. Math. 76 (1962), 547-559.
- [6] Fejer, L. and F. Riesz, Über einige funktionentheoretische Ungleichungen, Math. Z. 11 (1921), 305-314.
- Fernandez, J. L., J. Heinonen and O. Martio, Quasilines and conformal mappings, J. d'Analyse Math. 52 (1989), 117-132.
- [8] Flinn, B. B., Hyperbolic convexity and level sets of analytic functions, Indiana Univ. Math. J. 32 (1983), 831-841.
- [9] Garnett, J. B., Bounded analytic functions, Academic Press, 1981.
- [10] Garnett, J. B., F. W. Gehring and P. W. Jones, Conformally invariant length sums, Indiana Univ. Math. J. 32 (1983), 809-829.
- [11] Gehring, F. W., A study of pth-power variation, Cambridge Univ. Thesis, 1952.
- [12] _____, A study of α-variation, Trans. Amer. Math. Soc. 76 (1954), 420-443.
- [13] _____, On solutions of the equation of heat conduction, Mich. Math. J. 5 (1958), 191-202.
- [14] _____, The boundary behavior and uniqueness of solutions of the heat equation, Trans. Amer. Math. Soc. 94 (1960), 337-364.
- [15] _____ and W. K. Hayman, An inequality in the theory of conformal mapping, J. Math. Pures Appl. 41 (1962), 353-361.
- [16] Hayman, W. K. and J.M. Wu, Level sets of univalent functions, Comment Math. Helv. 56 (1981), 366-403.
- [17] Heinonen, J. and S. Rohde, The Gehring-Hayman inequality for quasihyperbolic geodesics, Math. Proc. Camb. Phil. Soc. 114 (1993), 393-405.

- [18] Jaenisch, S., Length distortion of curves under conformal mappings, Mich. Math. J. 15 (1968), 121-128.
- [19] Lyons, T., Differential equations driven by rough signals (I): An extension of an inequality of L. C. Young, Math. Research Letters 1, 1994.
- [20] Øyma, K., Harmonic measure and conformal length, Proc. Amer. Math. Soc. 115 (1992), 687-689.
- [21] _____, The Hayman-Wu constant, Proc. Amer. Math. Soc. 119 (1993), 337-338.
- [22] Pommerenke, C. and S. Rohde, The Gehring-Hayman inequality in conformal mapping, Quasiconformal mappings and analysis, Springer-Verlag, 1998.
- [23] Riesz, F., Eine Ungleichung für harmonische Funktionen, Monatshefte Math. Physik 43 (1936), 401-406.
- [24] Rohde, S. (in preparation).
- [25] Widder, D. V., Positive temperatures on a semi-infinite rod, Trans. Amer. Math. Soc. 75 (1953), 510-525.
- [26] Wiener, N., The quadratic variation of a function and its Fourier coefficients, J. Mass.Inst. Tech. 3 (1924), 72-94.
- [27] Young, L. C., An inequality of the Hölder type connected with Stieltjes integration, Acta Math. 67 (1936), 251-282.

University of Michigan Ann Arbor, MI 48109 USA received April 7, 1999