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The constructions of general connections
on the fibred product of q copies

of the first jet prolongation

Abstract. We describe all natural operators A transforming general con-
nections Γ on fibred manifolds Y → M and torsion-free classical linear con-
nections Λ on M into general connections A(Γ,Λ) on the fibred product
J<q>Y → M of q copies of the first jet prolongation J1Y → M .

1. Introduction. All manifolds are smooth, Hausdorff, finite dimensional
and without boundaries. Maps are assumed to be smooth, i.e. of class C∞.

The concept of r-th order connections for arbitrary fibred manifolds was
introduced by I. Kolář in [3].

Let us recall that an r-th order connection on a fibred manifold p : Y →
M is a section Θ: Y → JrY of the r-jet prolongation β : JrY → Y of
p : Y → M . A general connection on p : Y → M is a first order connection
Γ: Y → J1Y or (equivalently) a lifting map

Γ: Y ×M TM → TY.

By Con(Y → M) we denote the set of all general connections on a fibred
manifold p : Y →M .
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If p : Y → M is a vector bundle and an r-th order connection Θ: Y →
JrY is a vector bundle morphism, then Θ is called an r-th order linear
connection on p : Y →M .

An r-th order linear connection on M is an r-th order linear connection
Λ: TM → JrTM on the tangent bundle πM : TM → M of M . By Qr(M)
we denote the set of all r-th order linear connections on M .

A classical linear connection on M is a first order linear connection
∇ : TM → J1TM on M , which can be also (equivalently) considered as
its corresponding covariant derivative ∇ : X(M)× X(M)→ X(M).

A classical linear connection ∇ on M is called torsion-free if its torsion
tensor T (X,Y ) = ∇XY − ∇YX − [X,Y ] is equal to zero. By Qτ (M) we
denote the set of all torsion-free classical linear connections on M .

Let FM denote the category of fibred manifolds and their fibred maps
and let FMm,n ⊂ FM be the (sub)category of fibred manifolds with m-
dimensional bases and n-dimensional fibres and their local fibred diffeomor-
phisms. Let Mfm denote the category of m-dimensional manifolds and
their local diffeomorphisms.

Let F : FMm,n → FM be a bundle functor on FMm,n of order r in
the sense of [4]. Let Γ: Y ×M TM → TY be the lifting map of a gen-
eral connection on an FMm,n-object p : Y → M . Let Λ: TM → JrTM
be an r-th order linear connection on M . The flow operator F of F
transforming projectable vector fields η on p : Y → M into vector fields
Fη := ∂

∂t |t=0
F (Flηt ) on FY is of order r. In other words, the value Fη(u)

at every u ∈ FyY, y ∈ Y depends only on jryη. Therefore, we have the cor-
responding flow morphism F̃ : FY ×Y JrTY → TFY , which is linear with
respect to JrTY . Moreover, F̃(u, jryη) = Fη(u), where u ∈ FyY, y ∈ Y .
Let XΓ be the Γ-lift of a vector field X on M to Y , i.e. XΓ is a pro-
jectable vector field on p : Y → M defined by XΓ(y) = Γ(y,X(x)), y ∈ Yx,
x = p(y) ∈ M . Then the connection Γ can be extended to a morphism
Γ̃ : Y ×M JrTM → JrTY by the following formula Γ̃(y, jrxX) = jry(XΓ).
By applying F , we obtain a map F(Γ̃) : FY ×M JrTM → TFY defined by
F(Γ̃)(u, jrxX) = F̃(u, jry(XΓ)) = FXΓ(u). Further, the composition

F(Γ,Λ) := F(Γ̃) ◦ (idFY × Λ): FY ×M TM → TFY

is the lifting map of a general connection on FY → M . The connection
F(Γ,Λ) is called F -prolongation of Γ with respect to Λ and was discovered
by I. Kolář [2].

In particular, if F : FMm,n → FM is a bundle functor on FMm,n of
order r = 1 and Γ is a general connection on an FMm,n-object p : Y →M
and ∇ is a torsion-free classical linear connection on M , then one can obtain
the general connection F(Γ,∇) as in [2].



The constructions of general connections... 79

In the paper [1] authors introduced some interesting constructions on
connections using other methods.

2. Natural operators. The canonical character of construction of this
connection can be described by means of the concept of natural operators.
The general concept of natural operators can be found in the fundamental
monograph [4]. In particular, we have the following definitions.

Definition 1. Let F : FMm,n → FM be a bundle functor of order r = 1
on the category FMm,n and B : FMm,n → Mfm be a base functor. An
FMm,n-natural operator D : J1 × Qτ (B)  J1(F → B) transforming gen-
eral connections Γ on fibred manifolds Y → M and torsion-free classical
linear connections ∇ on M into general connections D(Γ,∇) : FY → J1FY
on FY →M is a system of regular operatorsDY : Con(Y →M)×Qτ (M)→
Con(FY → M), (p : Y → M) ∈ Obj(FMm,n) satisfying the FMm,n-
invariance condition.

The FMm,n-invariance means that for any connections Γ ∈ Con(Y →
M), Γ1 ∈ Con(Y1 → M1), ∇ ∈ Qτ (M) and ∇1 ∈ Qτ (M1) such that if
Γ is f -related to Γ1 by an FMm,n-map f : Y → Y1 covering f : M →
M1 (i.e. J1f ◦ Γ = Γ1 ◦ f) and ∇ is f -related to ∇1 (i.e. J1Tf ◦ ∇ =

∇1◦Tf), then DY (Γ,∇) is Ff -related to DY1(Γ1,∇1) (i.e. J1Ff ◦DY (Γ,∇)
= DY1(Γ1,∇1) ◦ Ff).

Equivalently the FMm,n-invariance means that for any Γ ∈ Con(Y →
M), Γ1 ∈ Con(Y1 →M1), ∇ ∈ Qτ (M) and ∇1 ∈ Qτ (M1) if diagrams

J1Y
J1f // J1Y1

Y

Γ

OO

f // Y1

Γ1

OO J1TM
J1Tf

// J1TM1

TM

∇

OO

Tf
// TM1

∇1

OO

commute for an FMm,n-map f : Y → Y1 covering f : M → M1, then the
diagram

J1FY
J1Ff // J1FY1

FY

DY (Γ,∇)

OO

Ff // FY1

DY1
(Γ1,∇1)

OO

commutes.
We say that the operator DY is regular if it transforms smoothly parame-

trized families of connections into smoothly parametrized ones.

Thus the construction F(Γ,∇) can be considered as an FMm,n-natural
operator F : J1 ×Qτ (B) J1(F → B).
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3. Quasi-normal fibred coordinates. According to [6], let

Φr : Jr−1
0 (T ∗Rm ⊗ Rn)→ Jr0 (Rm,Rn)0

be the usual symmetrization

r−1⊕
q=0

SqT ∗0 Rm ⊗ T ∗0 Rm ⊗ Rn →
r−1⊕
q=0

Sq+1T ∗0 Rm ⊗ Rn

modulo the following GL(m)-invariant identifications:

Jr−1
0 (T ∗Rm ⊗ Rn) =

r−1⊕
q=0

SqT ∗0 Rm ⊗ T ∗0 Rm ⊗ Rn,

Jr0 (Rm,Rn)0 =

r−1⊕
q=0

Sq+1T ∗0 Rm ⊗ Rn.

In other words, Φr : Jr−1
0 (T ∗Rm ⊗ Rn) → Jr0 (Rm,Rn)0 is the linear map

such that

Φr

(
jr−1
0

(
(xi1 . . . xiqdxj)ek

))
=

1

q + 1
jr0(xi1 . . . xiqxjek)

for any i1, . . . , iq, j = 1, . . . ,m, q = 0, . . . , r−1 and k = 1, . . . , n, where (ek)
is the usual canonical basis in Rn and (x1, . . . , xm) are the usual coordinates
on Rm. Then it holds

Φr

(
jr−1
0 (dσ)

)
= jr0(σ)

for any σ : Rm → Rn with σ(0) = 0. In addition, Φr is GL(m)-invariant
and linear.

Let Γ: Y → J1Y be a general connection on a fibred manifold p : Y →M ,
where dim(M) = m, dim(Y ) = m+n. Let Λ be a torsion-free classical linear
connection on M . Let y0 ∈ Y be a point such that x0 = p(y0) ∈M .

We present a concept of (Γ,Λ, y0, r)-quasi-normal fibred coordinate sys-
tem on Y , which was introduced by W. Mikulski, [6], [7].

Definition 2. A fibred chart ψ on Y with ψ(y0) = (0, 0) ∈ Rm,n covering a
Λ-normal coordinate system ψ on M with centre x0 is called a (Γ,Λ, y0, r)-
quasi-normal fibred coordinate system on Y , if the condition

Φr

(
jr−1
0

( ∑
|α|+|β|≤r−1

m∑
j=1

n∑
k=1

Γkjαβx
αdxj ⊗ ek

))
= 0

holds for any multiindex β ∈ (N ∪ {0})n such that |β| ≤ r − 1, where

jr−1
0

( m∑
i=1

dxi ⊗ ∂

∂xi
+

∑
|α|+|β|≤r−1

m∑
j=1

n∑
k=1

Γkjαβx
αyβdxj ⊗ ∂

∂yk

)
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is the expression of an element jr−1
(0,0)(ψ∗Γ) and (x1, . . . , xm, y1, . . . , yn) are

the usual coordinates on the product Rm × Rn.

In [6], W. Mikulski proved the following theorem.

Theorem 1. Let Γ: Y → J1Y be a general connection on an FMm,n-
object p : Y → M such that dim(M) = m, dim(Y ) = m + n and let Λ be a
torsion-free classical linear connection on M and let y0 ∈ Y be a point such
that x0 = p(y0) ∈M . Then:
(i) There exists a (Γ,Λ, y0, r)-quasi-normal fibred coordinate system ψ on Y .
(ii) If ψ1 is another (Γ,Λ, y0, r)-quasi-normal fibred coordinate system on
Y , then

jry0ψ
1 = jry0

(
(B ×H) ◦ ψ

)
for a map B ∈ GL(m) and a diffeomorphism H : Rn → Rn preserving
0 ∈ Rn.

From the proof of this theorem it follows that (B×H)◦ψ is a (Γ,Λ, y0, r)-
quasi-normal fibred coordinate system on Y for any B ∈ GL(m) and any
diffeomorphism H : Rn → Rn preserving 0 ∈ Rn. In other words, the
FMm,n-maps of the form B × H for B ∈ GL(m) and diffeomorphisms
H : Rn → Rn preserving 0 ∈ Rn transform (Γ,Λ, y0, r)-quasi-normal fibred
coordinate systems on Y into (Γ,Λ, y0, r)-quasi-normal fibred coordinate
systems.

The generalization of this theorem in the case r = 2 for fibred-fibred
manifolds was proved by J. Kurek and W. Mikulski in [5].

4. The fibred product of q copies of the first jet prolongation.
In [4], the authors described all FMm,n-natural operators D : J1 ×Qτ (B)
 J1(F → B) for a bundle functor F = J1 : FMm,n → FM. They
constructed an additional FMm,n-natural operator P and proved that all
FMm,n-natural operators D : J1 × Qτ (B)  J1(J1 → B) form the one
parameter family tP + (1− t)J 1, t ∈ R.

In other words, they showed that any FMm,n-natural operator

C : J1 ×Qτ (B) J1(J1 → B)

transforming pairs (Γ,Λ) consisting of general connections Γ: Y → J1Y
on FMm,n-objects p : Y → M and torsion-free classical linear connections
Λ: TM → J1TM on M into general connections CY (Γ,Λ): J1Y → J1J1Y
on J1Y →M is of the form

(1) C = t · P + (1− t) · J 1, t ∈ R,

where P and J 1 are natural operators constructed in the monograph [4].
In [8], we generalized this result to the case F = J2. In other words, we

classified all FMm,n-natural operators D : J1 ×Qτ (B)  J1(J2 → B).



82 M. Plaszczyk

A pair (Γ,Λ) consisting of a general connection Γ: Y → J1Y on a fibred
manifold p : Y →M and a torsion-free classical linear connection Λ: TM →
J1TM on M is called an admissible pair on p : Y →M .

We can consider the first jet prolongation functor J1 as an affine bundle
functor on the category FMm,n. The corresponding vector bundle functor is
T ∗B⊗V , where V is a vertical tangent functor. For this reason, for any fibred
manifold p : Y →M , the first jet prolongation J1Y → Y is the affine bundle
with the corresponding vector bundle T ∗M⊗V Y . Therefore, J1J1Y → J1Y
is the affine bundle with corresponding vector bundle T ∗M ⊗ V J1Y . Thus
the set of all FMm,n-natural operators

C : J1 ×Qτ (B) J1(J1 → B)

transforming admissible pairs (Γ,Λ) on fibred manifolds p : Y → M into
general connections CY (Γ,Λ): J1Y → J1J1Y on J1Y → M possesses the
affine space structure.

Let
∆̃ := J 1 − P : J1 ×Qτ (B) (J1, T ∗B ⊗ V J1)

be an FMm,n-natural operator transforming admissible pairs (Γ,Λ) on
p : Y → M into fibred maps ∆̃Y (Γ,Λ): J1Y → T ∗M ⊗ V J1Y covering the
identity idJ1Y : J1Y → J1Y , where V J1Y = V (J1Y → M) is the vertical
bundle of J1Y →M .

By theorems presented in the monograph [4] it follows that the FMm,n-
natural operator ∆̃ : J1 ×Qτ (B) (J1, T ∗B ⊗ V J1) is of finite order.

Then the equality (1) can be written in the following form

(2) J 1 − C = t · (J 1 − P ).

If we denote E := J 1 − C, then we can interpret the equality (2) in the
following way.

Any FMm,n-natural operator

E : J1 ×Qτ (B) (J1, T ∗B ⊗ V J1)

transforming admissible pairs (Γ,Λ) on p : Y → M into fibred maps
EY (Γ,Λ): J1Y → T ∗M ⊗ V J1Y covering the identity idJ1Y : J1Y → J1Y
is of the form

E = t · ∆̃.
Let

J<q> := J1×Mfm · · · ×Mfm︸ ︷︷ ︸
q-times

J1 : FMm,n → FM

be the bundle functor transforming FMm,n-objects Y → M into fibred
products

J<q>Y := J1Y ×M · · · ×M︸ ︷︷ ︸
q-times

J1Y
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of q copies of J1Y →M and FMm,n-maps f : Y → Y1 covering f : M →M1

into the induced fibred maps

J<q>f := J1f ×f · · · ×f︸ ︷︷ ︸
q-times

J1f : J<q>Y → J<q>Y1.

5. The classification of constructions of general connections on the
fibred product of q copies of the first jet prolongation. We want to
describe all FMm,n-natural operators

A : J1 ×Qτ (B) J1(J<q> → B)

transforming admissible pairs (Γ,Λ) on p : Y →M into general connections
AY (Γ,Λ): J<q>Y → J1(J<q>Y ) on J<q>Y →M .

An example of such A is the FMm,n-natural operator J <q> of finite
order constructed by I. Kolář.

By theorems presented in the monograph [4] it follows that FMm,n-
natural operators A : J1 ×Qτ (B) J1(J<q> → B) are of finite order.

Next, J1(J<q>Y )→ J<q>Y is the affine bundle with corresponding vec-
tor bundle T ∗M ⊗ V J<q>Y , where V J<q>Y = V (J<q>Y → M) is the
vertical bundle of J<q>Y →M . Therefore, we obtain the following FMm,n-
natural operator

∆: J1 ×Qτ (B) (J<q>, T ∗B ⊗ V J<q>)

of finite order transforming admissible pairs (Γ,Λ) on p : Y →M into fibred
maps ∆Y (Γ,Λ): J<q>Y → T ∗M ⊗ V J<q>Y covering the identity map of
J<q>Y given by

∆Y (Γ,Λ) := AY (Γ,Λ)− J <q>Y (Γ,Λ).

The natural operator A is completely described by the natural operator
∆, because it holds

AY (Γ,Λ) = ∆Y (Γ,Λ) + J <q>Y (Γ,Λ)

for any admissible pair (Γ,Λ). In other words, it holds A = ∆ + J <q>.
Therefore, in order to determine all FMm,n-natural operators

A : J1 × Qτ (B)  J1(J<q> → B) it is sufficient to describe all FMm,n-
natural operators ∆: J1 ×Qτ (B) (J<q>, T ∗B ⊗ V J<q>).

Using the following identifications

V J<q>Y = V J1Y ×M · · · ×M︸ ︷︷ ︸
q-times

V J1Y,

T ∗M ⊗ V J<q>Y = (T ∗M ⊗ V J1Y )×M · · · ×M︸ ︷︷ ︸
q-times

(T ∗M ⊗ V J1Y ),

we find out that any fibred map

τ : J<q>Y → T ∗M ⊗ V J<q>Y
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is the system τ = (τ1, . . . , τq) of fibred maps

τi := (idT ∗M ⊗ V pi) ◦ τ : J<q>Y → T ∗M ⊗ V J1Y

covering the usual projection pi : J
<q>Y → J1Y onto an i-th factor

of the fibred product J<q>Y = J1Y ×M · · · ×M︸ ︷︷ ︸
q-times

J1Y , i = 1, . . . , q.

So, the FMm,n-natural operators A : J1 × Qτ (B)  J1(J<q> → B) are
in a bijective correspondence with systems (B1, . . . , Bq) of FMm,n-natural
operators

Bi : J1 ×Qτ (B) (J<q>, T ∗B ⊗ V J1)

transforming admissible pairs (Γ,Λ) on Y → M into fibred maps
Bi
Y (Γ,Λ): J<q>Y → T ∗M ⊗ V J1Y given by

Bi
Y (Γ,Λ) = (idT ∗M ⊗ V pi) ◦∆Y (Γ,Λ)

covering pi : J<q>Y → J1Y for i = 1, . . . , q.
By theorems presented in the monograph [4] it follows that FMm,n-

natural operators Bi : J1×Qτ (B) (J<q>, T ∗B⊗V J1) are of finite order.
Therefore, in order to determine all FMm,n-natural operators

A : J1 × Qτ (B)  J1(J<q> → B) it is sufficient to describe all FMm,n-
natural operators Bi : J1 × Qτ (B)  (J<q>, T ∗B ⊗ V J1) of the same type
for i = 1, . . . , q.

Therefore, in order to determine all FMm,n-natural operators
A : J1 × Qτ (B)  J1(J<q> → B) it is sufficient to describe all FMm,n-
natural operators

B : J1 ×Qτ (B) (J<q>, T ∗B ⊗ V J1)

transforming admissible pairs (Γ,Λ) on p : Y → M into fibred maps
BY (Γ,Λ): J<q>Y → T ∗M ⊗ V J1Y given by

BY (Γ,Λ) = (idT ∗M ⊗ V p1) ◦∆Y (Γ,Λ)

covering idY : Y → Y .
By theorems presented in the monograph [4] it follows that FMm,n-

natural operators B : J1 ×Qτ (B) (J<q>, T ∗B ⊗ V J1) are of finite order.
Consider the map δ : J1Y → J1Y ×M · · · ×M︸ ︷︷ ︸

q-times

J1Y given by

δ(u) = (u, . . . , u)

for any element u ∈ J1
xY , where x ∈M . Then the FMm,n-natural operator

B defines an FMm,n-natural operator

B ◦ δ : J1 ×Qτ (B) (J1, T ∗B ⊗ V J1)

of finite order transforming admissible pairs (Γ,Λ) on p : Y →M into fibred
maps (B ◦ δ)Y (Γ,Λ): J1Y → T ∗M ⊗ V J1Y given by

(B ◦ δ)Y (Γ,Λ) := BY (Γ,Λ) ◦ δ
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covering the identity idJ1Y .
Hence we see that B ◦ δ = t · ∆̃ for the real number t, i.e.

BY (Γ,Λ)(u, . . . , u) = t · ∆̃Y (Γ,Λ)(u)

for any admissible pair (Γ,Λ) on Y → M and for any element u ∈ J1
xY ,

where x ∈M .
We have the projection V π1

0 : V J1Y → V Y , where π1
0 : J1Y → Y is the

jet projection. Then the FMm,n-natural operator B defines an FMm,n-
natural operator

D := (idT ∗M ⊗ V π1
0) ◦B : J1 ×Qτ (B) (J<q>, T ∗B ⊗ V )

transforming admissible pairs (Γ,Λ) on p : Y → M into fibred maps
DY (Γ,Λ): J<q>Y → T ∗M ⊗ V Y given by

DY (Γ,Λ) = (idT ∗M ⊗ V π1
0) ◦BY (Γ,Λ)

covering the projection π1
0 ◦ p1.

By theorems presented in the monograph [4] it follows that the
FMm,n-natural operator D : J1 × Qτ (B)  (J<q>, T ∗B ⊗ V ) is of finite
order.

Because of the invariance of D with respect to fibred manifold charts,
the existence of (Γ,Λ, y0, r)-quasi-normal fibred coordinate systems and the
non-linear Peetre theorem (see [4]), we deduce that D is determined by the
values

(3)

DY

(
Γ0 +

n∑
k=1

m∑
j=1

∑
|α|+|β|≤r−1

Γkjαβx
αyβdxj ⊗ ∂

∂yk
,

( ∑
1≤|γ|≤s

Λi1i2i3γx
γ
)i1=1,...,m

i2,i3=1,...,m

)
(ũ)

from T ∗0 Rm ⊗ V(0,0)Rm,n for all ũ = (u1, . . . , uq) such that u1, . . . , uq ∈
(J1Rm,n)(0,0), all natural numbers r, s = 1, 2, . . ., all Λi1i2i3γ ∈ R and all
Γkjαβ ∈ R satisfying the condition

(4) Φr

(
jr−1
0

( ∑
|α|≤r−1

m∑
j=1

n∑
k=1

Γkjαβx
αdxj ⊗ ek

))
= 0

for any multiindex β ∈ Nn such that |β| ≤ r−1, where Γ0 =
∑m

i=1 dx
i⊗ ∂

∂xi

is a trivial general connection on the fibred manifold Rm,n.
Using the invariance of D with respect to the homotheties t · idRm,n for

t > 0 (they preserve u1, . . . , uq) and next applying the homogeneous function
theorem (we can apply it because of the condition (4)) and putting t → 0,
we see that every value (3) is equal to

DY (Γ0,Λ
0)(u1, . . . , uq) ∈ T ∗0 Rm ⊗ V(0,0)Rm,n,
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where Λ0 is a flat torsion-free classical linear connection on Rm.
Consider a tangent vector ξ ∈ T0Rm and elements u1 = j1

0(idRm , ρ) ∈
(J1Rm,n)(0,0), u2, . . . , uq ∈ (J1Rm,n)(0,0) for a map ρ = (ρ1, . . . , ρn) : Rm →
Rn such that j1

0(ρa) 6= 0 for a = 1, . . . , n.
Write

BY (Γ0,Λ
0)(u1, . . . , uq)(ξ) :=

d

dt |t=0

(
j1
0(idRm , ρ+ tv)

)
for some function v = (v1, . . . , vn) : Rm → Rn and

va(0) := v0
a

for a = 1, . . . , n. Then

DY (Γ0,Λ
0)(u1, . . . , uq)(ξ) =

d

dt |t=0
(0, tv0

a).

The fibred map

xi = xi, yk = yk + (yk)2

preserves: the trivial general connection Γ0, the flat torsion-free classical
linear connection Λ0, the FMm,n-natural operator B, elements u1, . . . , uq,
the vector ξ and sends d

dt |t=0
(j1

0(idRm , ρ+tv)) into d
dt |t=0

(
j1
0(ρ+ρ2

a+2t(1
2v+

ρav
0
a + 1

2 t(v
0
a)

2))
)
. Then it holds v0

a = 0 for a = 1, . . . , n. Hence we have the
equality

DY (Γ0,Λ
0)(u1, . . . , uq)(ξ) = 0.

Consequently,

D : J1 ×Qτ (B) (J<q>, T ∗B ⊗ V )

is the zero operator.
Consider the well-known exact sequence

(5) 0→ T ∗M ⊗ V Y → V J1Y → V Y → 0

over J1Y . Next we obtain the following exact sequence

0→ T ∗M ⊗ T ∗M ⊗ V Y → T ∗M ⊗ V J1Y → T ∗M ⊗ V Y → 0

over J1Y .
Therefore, the FMm,n-natural operator B can be interpreted as an

FMm,n-natural operator

B : J1 ×Qτ (B) (J<q>, T ∗B ⊗ T ∗B ⊗ V )

of finite order transforming admissible pairs (Γ,Λ) on p : Y →M into fibred
maps BY (Γ,Λ): J<q>Y → T ∗M⊗T ∗M⊗V Y covering the projection π1

0◦p1.
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Using the invariance of the FMm,n-natural operator B with respect to
fibred manifold charts, the existence of (Γ,Λ, y0, r)-quasi-normal fibred coor-
dinate systems and non-linear Peetre theorem, we deduce that the FMm,n-
natural operator B is determined by the values

(6)

BY

(
Γ0 +

n∑
k=1

m∑
j=1

∑
|α|+|β|≤r−1

Γkjαβx
αyβdxj ⊗ ∂

∂yk
,

( ∑
1≤|γ|≤s

Λi1i2i3γx
γ
)i1=1,...,m

i2,i3=1,...,m

)
(ũ)

from T ∗0 Rm⊗ T ∗0 Rm⊗ V(0,0)Rm,n for all elements ũ = (u1, . . . , uq) such that
u1, . . . , uq ∈ (J1Rm,n)(0,0), all natural numbers r, s = 1, 2, . . ., all numbers
Λi1i2i3γ ∈ R and all numbers Γkjαβ ∈ R satisfying the condition (4) for any
multiindex β ∈ Nn such that |β| ≤ r − 1.

We use the following identifications

(J1Rm,n)(0,0)
∼= Rm∗ ⊗ Rn,

T ∗0 Rm ⊗ T ∗0 Rm ⊗ V(0,0)Rm,n ∼= Rm∗ ⊗ Rm∗ ⊗ Rn.
Using the invariance of the FMm,n-natural operator B with respect to the
homotheties t · idRm,n for t > 0 (they preserve the elements u1, . . . , uq) and
next applying the homogeneous function theorem (we can apply it because
of the condition (4)), we observe that every value (6) is equal to

(7)

BY

(
Γ0 +

n∑
k,l=1

m∑
j=1

Γkjly
ldxj ⊗ ∂

∂yk

+
n∑
k=1

m∑
i,j=1

Γkjix
idxj ⊗ ∂

∂yk
,Λ0

)
(u1, . . . , uq),

where Γkjl := Γkj(0)el
∈ R and Γkji := Γkjei(0) ∈ R. Of course, Γkji = −Γkij .

Moreover, the value (7) is linear in Γkji and Γkjl with coefficients being smooth
functions in (u1, . . . , uq).

In particular, it holds

(8)
BY

(
Γ0 + yldxj ⊗ ∂

∂yk
,Λ0

)
(u1, . . . , uq)

= BY (Γ0 + dxj ⊗ Ỹ ,Λ0)(u1, . . . , uq)

for Ỹ = (yl + 1) ∂
∂yk

. Since Y0 := ∂
∂yk |0

6= 0, there is a local diffeomorphism

H : Rn → Rn such that an element j1
0H = id and H∗Ỹ = ∂

∂yk
near 0.

The map idRm × H preserves elements u1, . . . , uq, the FMm,n-natural
operator B and the connection Λ0, and sends Γ0+dxj⊗Ỹ into Γ0+dxj⊗ ∂

∂yk

and acts on T ∗0 Rm ⊗ T ∗0 Rm ⊗ V(0,0)Rm,n as the identity map. Then using
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the invariance of the FMm,n-natural operator B with respect to idRm ×H,
we see that

BY (Γ0 + dxj ⊗ Ỹ ,Λ0)(u1, . . . , uq) = BY

(
Γ0 + dxj ⊗ ∂

∂yk
,Λ0

)
(u1, . . . , uq).

From (8) we obtain

BY

(
Γ0 + dxj ⊗ ∂

∂yk
,Λ0

)
(u1, . . . , uq) = BY (Γ0,Λ

0)(u1, . . . , uq) = 0.

Therefore, it holds

BY

(
Γ0 + yldxj ⊗ ∂

∂yk
,Λ0

)
(u1, . . . , uq) = 0.

Consequently, the values (6) are equal to∑
f jik (u1, . . . , uq)Γ

k
ji

for some smooth functions f jik .
Using the invariance of FMm,n-natural operator B with respect to fibre

homotheties idRm × t · idRn for t > 0, we get the homogeneous conditions

t · f jik (tu1, . . . , tuq) = t · f jik (u1, . . . , uq).

Cancelling both sides by t and putting t→ 0, we see that functions f jik are
constants.

Thus the FMm,n-natural operator B is determined by the values

BY

(
Γ0 + xidxj ⊗ ∂

∂yk
− xjdxi ⊗ ∂

∂yk
,Λ0

)
(0, . . . , 0)

for 1 ≤ i < j ≤ m and k = 1, . . . , n. In other words, we claim that the
FMm,n-natural operator B is determined by the FMm,n-natural operator
B ◦δ, where the map δ : J1Y → J<q>Y is given by δ(u) = (u, . . . , u). As we
observed earlier, the equality B◦δ = t·∆̃ holds for some t ∈ R. It means that
FMm,n-natural operators B ◦ δ form 1-parameter family of operators. Of
course, any ∆̃ ◦ pi is an example of a such B for i = 1, . . . , q. In particular,
B is proportional to ∆̃ ◦ p1 and similarly Bi is proportional to ∆̃ ◦ pi for
i = 1, . . . , q. Thus we proved the following classification theorem.

Theorem 2. The FMm,n-natural operators

A : J1 ×Qτ (B) J1(J<q> → B)

transforming admissible pairs (Γ,Λ) on FMm,n-objects p : Y → M into
general connections AY (Γ,Λ): J<q>Y → J1(J<q>Y ) on J<q>Y →M form
the q-parameter family

(9) J <q> + (ti · ∆̃ ◦ pi)i=1,...,q

for real numbers ti.
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Remark 1. The q-parameter family (9) can be written equivalently in the
following form:

(10)
(
J <q> + t1 · ∆̃,J <q> + t2 · ∆̃, . . . ,J <q> + tq · ∆̃

)
.

The curvature

RY (Γ) : Y →
2∧
T ∗M ⊗ V Y

can be treated as the fibred map

RY (Γ) : J1Y → T ∗M ⊗ T ∗M ⊗ V Y.
Moreover, by the exact sequence (5) the curvature can be treated as the
fibred map

RY (Γ) : J1Y → T ∗M ⊗ V J1Y.

Thus we obtain an FMm,n-natural operator

(11) R : J1 ×Qτ (B) (J1, T ∗B ⊗ V J1).

By theorems presented in the monograph [4] it follows that the
FMm,n-natural operator R : J1 × Qτ (B)  (J1, T ∗B ⊗ V J1) is of finite
order.

Clearly, we can use R instead of ∆̃ in Theorem 2. Because of Theorem 2
for q = 1 we conclude that R is proportional to ∆̃. Therefore, we can
reformulate Theorem 2 in the following way.

Theorem 3. The FMm,n-natural operators

A : J1 ×Qτ (B) J1(J<q> → B)

transforming admissible pairs (Γ,Λ) on FMm,n-objects p : Y → M into
general connections AY (Γ,Λ): J<q>Y → J1(J<q>Y ) on J<q>Y →M form
the q-parameter family

J <q> + (ti · R ◦ pi)i=1,...,q

for real numbers ti, where R is the FMm,n-natural operator from (11).
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