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Spectral analysis of singular
Sturm–Liouville operators on time scales

Abstract. In this paper, we consider properties of the spectrum of a Sturm–
Liouville operator on time scales. We will prove that the regular symmetric
Sturm–Liouville operator is semi-bounded from below. We will also give some
conditions for the self-adjoint operator associated with the singular Sturm–
Liouville expression to have a discrete spectrum. Finally, we will investigate
the continuous spectrum of this operator.

1. Introduction. A time scale T is an arbitrary nonempty closed set of
real numbers. Dynamic equations on time scales has attracted much inter-
est because it unites the theory of differential and difference equations. It
has led to several important applications, e.g., in the study of heat transfer,
insect population models, epidemic models stock market, and neural net-
works (see [13], [17], [24], [25]). However, there are very few results known
for the Sturm–Liouville operators on time scales.

On the other hand, the spectral analysis of a self-adjoint differential oper-
ator is one of the most popular problems in operator theory. The spectrum
of such operators depends on the behavior of the coefficients of the cor-
responding differential expression. This problem has been investigated by
many mathematicians (see [4], [8]–[10], [14], [16], [20], [22], [26]).
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The aim of this paper is to extend some results for differential operators
obtained in [10] to the case of Sturm–Liouville dynamic equation

(1) L (y) := −
[
p (t) y∆ (t)

]∇
+ q (t) y (t) = λy (t) , t ∈ [a,∞)T,

where p, q are real-valued continuous functions on T and p (t) 6= 0 for all
t ∈ T. We prove that the regular symmetric Sturm–Liouville operator is
semi-bounded from below. Using the splitting method [10], we will give
some conditions for the self-adjoint operator associated with the singular
expression (1) to have a discrete spectrum. We also investigate the contin-
uous spectrum of this operator.

2. Preliminaries. Now, we recall some necessary fundamental concepts of
time scales, and we refer to [3], [5], [6], [11], [13], [15], [19] for more details.

Definition 1. Let T be a time scale. The forward jump operator σ : T→ T
is defined by

σ (t) = inf {s ∈ T : s > t} , t ∈ T
and the backward jump operator ρ : T→ T is defined by

ρ (t) = sup {s ∈ T : s < t} , t ∈ T.

It is convenient to consider the graininess operators µσ : T → [0,∞) and
µρ : T → (−∞, 0] defined by µσ (t) = σ (t) − t and µρ (t) = ρ (t) − t,
respectively. A point t ∈ T is left scattered if µρ (t) 6= 0 and left dense if
µρ (t) = 0. A point t ∈ T is right scattered if µσ (t) 6= 0 and right dense
if µσ (t) = 0. We introduce the sets Tk, Tk, T∗ which are derived from
the time scale T as follows. If T has a left scattered maximum t1, then
Tk = T − {t1}, otherwise Tk = T. If T has a right scattered minimum t2,
then Tk = T− {t2}, otherwise Tk = T. Finally, T∗ = Tk ∩ Tk.

Definition 2. A function f on T is said to be ∆-differentiable at some
point t ∈ T if there is a number f∆(t) such that for every ε > 0 there is a
neighborhood U ⊂ T of t such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|, s ∈ U.
Analogously one may define the notion of a ∇-differentiability of some func-
tion using the backward jump ρ. One can show (see [5])

f∆(t) = f∇(σ(t)), f∇(t) = f∆(ρ(t))

for continuously differentiable functions.

Example 3. If T = R, then we have

σ(t) = t, f∆(t) = f ′(t).

If T = Z, then we have

σ(t) = t+ 1, f∆(t) = ∆f(t) = f (t+ 1)− f (t) .
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If T = qN0 =
{
qk : q > 1, k ∈ N0

}
, then we have

σ(t) = qt, f∆(t) =
f(qt)− f (t)

qt− t
.

Definition 4. Let f : T→ R be a function, and a, b ∈ T. If there exists
a function F : T→ R, such that F∆ (t) = f (t) for all t ∈ Tk, then F is a
∆-antiderivative of f . In this case the integral is given by the formula∫ b

a
f (t) ∆t = F (b)− F (a) for a, b ∈ T.

Analogously one may define the notion of ∇-antiderivative of some function.

Let L2
∇(T) be the space of all functions defined on T such that

‖f‖ :=

(∫ b

a
|f (t)|2∇t

)1/2

<∞.

Let T be a time scale which is bounded from below and unbounded from
above such that inf T = a > −∞ and supT =∞. We will denote T also as
[a,∞)T.

The space L2
∇[a,∞)T is a Hilbert space with the inner product (see [23])

(f, g) :=

∫ ∞
a

f (t) g (t)∇t, f, g ∈ L2
∇[a,∞)T.

The Wronskian of y (.), z (.) is defined by (see [5])

(2) Wt (y, z) := p (t)
[
y (t) z∆ (t)− y∆ (t) z (t)

]
, t ∈ T.

Definition 5. Let DA denote a subset of the complex Hilbert space H. A
linear operator A is said to be Hermitian if, for all x, y ∈ DA, (Ax, y) =
(x,Ay) holds. A Hermitian operator with a domain of definition dense in H
is called a symmetric operator. An operator A∗ defined on H is called the
adjoint of symmetric operator A if for all x, y ∈ DA, (x,Ay) = (A∗x, y). An
operator with a domain of definition dense in H is said to be self-adjoint if
A = A∗. An operator A is said to be compact if it maps every bounded set
into a compact set (see [21]).

Definition 6. A complex number λ is called a regular point of the linear
operator A acting in complex Hilbert space H if

(R1) the inverse Rλ (A) = (A− λI)−1 (where I is the identity operator
in H) exists, and

(R2) Rλ (A) is a bounded operator defined on the whole space H.
Assume that
(R3) Rλ (A) is defined on a set which is dense in H.
The operator Rλ(A) is then called the resolvent of the operator A. All

non-regular points λ are called points of the spectrum of the operator A.
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The point spectrum or discrete spectrum σp (A) is the set such that
Rλ (A) does not exist. A number λ ∈ σp (A) is called an eigenvalue of
A. The spectrum of the operator A is said to be purely discrete if it consists
of a denumerable set of eigenvalues with no finite point of accumulation.

The continuous spectrum σc (A) is the set such that Rλ (A) exists and
satisfies (R3) but not (R2).

The residual spectrum σr (A) is the set such that Rλ (A) exists but does
not satisfy (R3) (see [18]).

Theorem 7 ([18]). The residual spectrum σr (A) of a self-adjoint linear
operator acting on a complex Hilbert space H is empty.

Theorem 8 ([21]). All self-adjoint extensions of a closed, symmetric op-
erator which has equal and finite deficiency indices have one and the same
continuous spectrum.

Definition 9 ([21]). The direct sum A1 ⊕ A2 of two operators A1, A2 in
the spaces H1, H2 is an operator in the space H1 ⊕H2 of all ordered pairs
{x1, x2}, x1 ∈ H1, x2 ∈ H2; its domain of definition is the set of all ordered
pairs {x1, x2}, x1 ∈ DA1 , x2 ∈ DA2 , and

(A1 ⊕A2) {x1, x2} = {A1x1, A2x2} .

It is easily seen that if A1 and A2 are each self-adjoint operators, then their
direct sum A1 ⊕A2 is also a self-adjoint operator.

Definition 10 ([21]). A symmetric operator A is said to be semi-bounded
from below if there is a number m such that, for all x ∈ DA, the inequality

(Ax, x) ≥ m ‖x‖2

holds. Similarly, if there is a number M such that for all x ∈ DA, the
inequality

(Ax, x) ≤M ‖x‖2

holds, then A is said to be semi-bounded from above.

Theorem 11 ([21]). If a symmetric operator A with finite deficiency indices
(n, n) satisfies the condition

(Ax, x) ≥ m ‖x‖2 , x ∈ DA,

or the condition

(Ax, x) ≤M ‖x‖2 , x ∈ DA,

then the part of the spectrum of every self-adjoint extension of A which lies
to the left of m or to the right of M can consist of only a finite number of
eigenvalues and the sum of their multiplicities does not exceed n.



Spectral analysis of singular Sturm–Liouville operators... 5

3. Main Results. Let us consider the linear set Dmax consisting of all vec-
tors y ∈ L2

∇[a,∞)T such that y and py∇ are locally ∆ absolutely continuous
functions on [a,∞)T and Ly ∈ L2

∇[a,∞)T. We define the maximal operator
Lmax on Dmax by the equality Lmaxy = Ly.

For every y, z ∈ Dmax we have Green’s formula

(Ly, z)− (y, Lz) = [y, z]b − [y, z]a, b ∈ [a,∞)T

where [y, z]t := p (t)
{
y (t) z∇ (t)− y∇ (t) z (t)

}
(see [11]).

Let Dmin be the linear set of all vectors y ∈ Dmax satisfying the conditions

(3) y (a) = (py∇) (a) = y (b) = (py∇) (b) = 0, b ∈ (a,∞)T.

The operator Lmin, that is the restriction of the operator Lmax to Dmin is
called the minimal operator and the equalities Lmax = L∗min holds. Further
(it follows from (3)), Lmin is a closed symmetric operator with deficiency
indices (2, 2) ([7], [21]).

Theorem 12. If p (t) > 0 (t ∈ [a, b]T, a < b < ∞), then the regular
operator Lmin is semi-bounded from below. Further, the negative part of the
spectrum of every self-adjoint extension of Lmin consists of not more that a
finite number of negative eigenvalues of finite multiplicity.

Proof. For y ∈ Dmin we have

y (a) = (py∇) (a) = y (b) = (py∇) (b) = 0.

By integration by parts, we get

(Lminy, y) =

∫ b

a
Lyy∇t =

∫ b

a

[
−
[
p (t) y∆ (t)

]∇
+ q (t) y (t)

]
y∇t

=

∫ b

a

[
−
[
p (t) y∆ (t)

]∇
y + q (t) |y|2

]
∇t

=

∫ b

a
[p (t)

∣∣y∆
∣∣2 + q (t) |y|2]∇t.

We set

v (t, ξ) =

{
1, ξ ≤ t,
0, ξ > t,

and

H (ξ, η) = −
∫ b

a
q (t) v (t, ξ) v (t, η)∇t.

For y ∈ Dmin we have

y (t) =

∫ b

a

v (t, ξ)
(
py∆

)
(ξ)

p (ξ)
∇ξ.
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Hence we get

(4)
(Lminy, y) =

∫ b

a

∣∣(py∆) (ξ)
∣∣2

p (ξ)
∇ξ

−
∫ b

a

∫ b

a

H (ξ, η) (py∆) (ξ)
(
py∆) (η)

)
p (ξ) p (η)

∇ξ∇η.

Let L2
∇,p (a, b) be the Hilbert space of all complex-valued functions defined

on [a, b] with the inner product

(f1, f2)1 =

∫ b

a
f1 (t) f2 (t)

1

p (t)
∇t.

In L2
∇,p (a, b) we consider the integral operator K with the symmetric kernel

H(ξ, η):

Kf =

∫ b

a

H (ξ, η)

p (η)
f (η)∇η,

where ∫ b

a

∫ b

a

|H (ξ, η)|2

p (ξ) p (η)
∇ξ∇η <∞.

Then K is a compact operator in the space L2
∇,p (a, b).

Let ϕ1, ϕ2, ϕ3, . . . be a complete orthonormal system of eigenfunctions of
the operator K and λ1, λ2, λ3, . . . be the corresponding eigenvalues. Then
we get

(Kf, f)1 =

∞∑
k=1

λk |(f, ϕk)1|
2 .

As k → ∞, we have λk → 0. Then there is a certain number N such that
λk < 1 for k > N . For (f, ϕk)1 = 0, k = 1, 2, . . . , N , we have

(Kf, f)1 =
∞∑

k=N+1

λk |(f, ϕk)1|
2 ≤

∞∑
k=N+1

|(f, ϕk)1|
2 ,

that is,

(5) (Kf, f)1 ≤ (f, f)1 .

Let D denote the manifold of all functions y ∈ Dmin which satisfy the
conditions (

py∆, ϕk
)

1
= 0, k = 1, 2, . . . , N, y ∈ Dmin.

By (5), we have, for y ∈ D,∫ b

a

∫ b

a

H (ξ, η)
(
py∆) (ξ)

) (
py∆ (η)

)
p (ξ) p (η)

∇ξ∇η ≤
(
Kpy∆, py∆

)
1

≤
(
py∆, py∆

)
1

=

∫ b

a

∣∣(py∆) (ξ)
∣∣2

p (ξ)
∇ξ.
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From the equality (4), we obtain

(Lminy, y) ≥ 0.

On the other hand, the dimension of the manifold Dmin modulo D is N , and
consequently, the operator Lmin is semi-bounded from below on the whole
manifold Dmin. By Theorem 11, we get the desired result. �

Let H ′ denote the set of all functions f from L2
∇ (0,∞)T which vanish

outside a finite interval [α, β] ⊂ [0,∞)T and D′min = H ′ ∩Dmin.
Further, let L′min denote the restriction of the operator Lmin to D′min.

Then Lmin is the closure of the operator L′min, i.e., L̃′min = Lmin ([21]).
Now we restrict D′min by imposing the additional conditions

y (c) = (py∇) (c) = 0,

where c is a fixed point of the interval (a,∞)T. By this restriction, we obtain
the manifold D′′min.

The restriction L′′min of the operator L′min to D′′min is called the splitting
of the operator L′min at the point c of the interval (a,∞)T. It is clear that

(6) L′′min = L′1 ⊕ L′2,
i.e., the operator L′′min is the direct sum of two operators L′1 and L′2 in the
spaces L2

∇ (0, c)T and L2
∇ (c,∞)T, where L′1 and L′2 are generated in these

spaces from the Sturm–Liouville expression L in the same way as L′min was.
If L1 = L̃′1 and L2 = L̃′2 are the closures of the operators L′1 and L′2, then

(6) implies that
L̃′′min = L1 ⊕ L2.

If we extend the symmetric operators L1 and L2 into self-adjoint operators
L1,s and L2,s in the spaces L2

∇ (0, c)T and L2
∇ (c,∞)T respectively, then the

direct sum
A = L1,s ⊕ L2,s

will be a self-adjoint extension of the symmetric operator L̃′′min. The spec-
trum of the operator A is the set-theoretic sum of the spectra of L1,s and
L2,s.

Since the deficiency indices of the operator L̃′′min are finite, by Theorem 8,
all its self-adjoint extensions have one and the same continuous spectrum.
Both the operator A and also each self-adjoint extension Ls of the operator
Lmin are such extensions. Hence, the continuous parts of the spectrum of
the two operators A and Ls coincide.

Therefore, we have the following theorem:

Theorem 13. The continuous parts of the spectrum of every self-adjoint
extension of the operator Lmin is the set-theoretic sum of the continuous
parts of the spectra of L1,s and L2,s, where L1,s and L2,s have been obtained
by the splitting of the operator Lmin.
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Theorem 14. If

(7) lim
t→∞

q (t) = +∞

and

(8) p (t) > 0, t ∈ [a,∞)T

then every self-adjoint extension Ls of the singular operator Lmin has a
purely discrete spectrum.

Proof. Let N > 0 be an arbitrary number. From (7), one can choose a
number c such that

(9) |q (t)| > N for c < t <∞.
By the condition (8), via integration by parts, we obtain (y ∈ DL′

2
)(

L′2y, y
)

=

∫ ∞
c

Lyy∇t =

∫ ∞
c

[
−
[
p (t) y∆ (t)

]∇
+ q (t) y (t)

]
y∇t

=

∫ ∞
c

[
−
[
p (t) y∆ (t)

]∇
y + q (t) |y|2

]
∇t

=

∫ ∞
c

p
∣∣y∆
∣∣2 + q (t) |y|2∇t > N

∫ ∞
c
|y|2∇t = N (y, y) .

Hence the operator L′2 is bounded from below and its closure L2 is also
bounded from below by the number N . Therefore, by Theorem 11, the
half-axis −∞ < λ < N , contains no point of the continuous spectrum of the
self-adjoint extension L2,s of L2.

On the other hand, since the operator L1 is regular, the spectrum of any
self-adjoint extension L1,s of L1 is purely discrete. Hence the half-axis−∞ <
λ < N , contains no point of the continuous spectrum of A = L1,s ⊕ L2,s.

By Theorem 13, every self-adjoint extension Ls of the operator Lmin has
this property. Since the number N is arbitrary, the spectrum of the operator
Ls has no continuous part at all. �

Theorem 15. Let
lim
t→∞

q (t) = M

and p (t) > 0 (t ∈ [0,∞)T). Then the interval (−∞,M) contains no point of
the continuous spectrum of any self-adjoint extension Ls of the singular op-
erator Lmin; on the contrary, any Ls can only have at most point-eigenvalues
on this interval and these can have a point of accumulation only at λ = M .

Proof. If we decompose the operator at a point c such that

q (t) > M − ε for c < t <∞,
then we obtain (

L′2y, y
)
> (M − ε) (y, y) .
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Hence, the part of the spectrum of L2 lying in the interval (−∞,M − ε) can
consist only of a finite number of eigenvalues of finite multiplicity. On the
other hand, by Theorem 12, the operator L1 is regular and bounded below.
Hence its spectrum is purely discrete and any point of accumulation of the
spectrum L1,s can only be at λ = +∞. Thus, from Theorem 13, we get the
desired result. �

Now, we need the following lemma.

Lemma 16. If the interval [λ0 − δ, λ0 + δ] contains no point of the spectrum
of a self-adjoint operator A except perhaps for a finite number of eigenval-
ues, each of finite multiplicity, and if Q is a bounded Hermitian operator
satisfying the condition

‖Q‖ < δ,

then the point λ0 does not lie in the continuous part of the spectrum of the
operator A+Q.

Proof. See [21]. �

Theorem 17. Let p(t) ≡ 1 and

lim
t→∞
|q (t)| = M.

Then any interval, of length greater than 2M , of the positive half-axis con-
tains points of the continuous spectrum of any self-adjoint extension Ls of
the singular operator Lmin.

Proof. Suppose, contrary to our claim, that an interval [λ0 − δ, λ0 + δ] of
the half-axis λ > 0 contains no point of the continuous spectrum of Ls,
δ > M . Then, though the operator may be decomposed, this interval would
contain no point of the continuous spectrum of any self-adjoint extension of
L2. If we choose the point c such that

|q (t)| ≤M + ε < δ for t > c,

then, by Lemma 16, λ0 can not belong to the continuous spectrum of the
self-adjoint extension of the minimal operator generated by the expression
−
[
p (t) y∆ (t)

]∇ and the same boundary conditions. But this is contradic-
tion because the continuous spectrum of the last operator covers the whole
of the positive half-axis. �

In particular, for M = 0 we have the following corollary.

Corollary 18. Let p(t) ≡ 1 and

lim
t→∞
|q (t)| = 0.

Then the whole positive half-axis is covered by the continuous spectrum of
any self-adjoint extension Ls of the singular operator Lmin.
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Corollary 19. Let p(t) ≡ 1 and

lim
t→∞
|q (t)| = ρ <∞, lim

t→∞
|q (t)| = σ > −∞.

Then any interval, of length greater than ρ− σ, of the half-axis

λ >
1

2
(ρ+ σ)

contains points of the continuous spectrum of any self-adjoint extension Ls
of the singular operator Lmin.

Proof. For, if q1 (t) = q (t)− 1
2 (ρ+ σ), then

lim
t→∞
|q1 (t)| = 1

2
(ρ− σ) ,

and the result follows by replacing q (t) by q1 (t), i.e., by applying Theo-
rem 17 to the operator Ls − 1

2 (ρ+ σ) I. �
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