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The generalized Day norm
Part I. Properties

Abstract. In this paper we introduce a modification of the Day norm in
c0(Γ) and investigate properties of this norm.

1. Introduction. In 1955, M. M. Day introduced a new norm |||·||| in c0(Γ)
to show that the Banach space c0(Γ) with the max-norm can be equivalently
renormed to strictly convex space ([5]). In 1969, J. Rainwater showed that
(c0(Γ), |||·|||) is locally uniformly convex ([18]). Finally in 1978, M. A. Smith
proved that this space is not uniformly convex in every direction ([19]). It
is important to note that using this norm, one can construct Banach spaces
with the claimed properties (see for example [15], [19] and [20]). In our
paper we investigate properties of the modified Day norm |||·|||β,p in c0 and
among others we extend the Day and Rainwater results.

2. Basic notions and facts. Throughout this paper all Banach spaces
are infinite dimensional and real.

First we recall a few notions and facts from the geometry of Banach
spaces. We begin this section with the following well-known definitions.

2010 Mathematics Subject Classification. 46G20, 52A05.
Key words and phrases. Asymptotic normal structure, Day norm, local uniform con-

vexity, normal structure, Opial property, strict convexity, uniform convexity in every
direction.



34 M. Budzyńska, A. Grzesik and M. Kot

Definition 2.1 (see for example [9], [10], [12]). A Banach space (X, ‖·‖)
is strictly convex if

∥∥x+y
2

∥∥ < 1, whenever x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ ≤ 1 and
x 6= y.

Definition 2.2 ([8]). A Banach space (X, ‖·‖) is said to be uniformly convex
in every direction if for every nonzero element z of X and every 0 < ε ≤ 2
there exists δ > 0 such that

∥∥x+y
2

∥∥ ≤ 1 − δ whenever ‖x‖ ≤ 1, ‖y‖ ≤ 1,
x 6= y, x− y = αz for some α ∈ R \ {0} and ‖x− y‖ ≥ ε.

Definition 2.3 ([14], see also [7]). We say that a Banach space (X, ‖·‖)
is locally uniformly convex (LUR) if for each x ∈ X every sequence {xn}n
with limn ‖xn‖ = ‖x‖ and limn ‖x+ xn‖ = 2‖x‖ tends strongly to x.

Remark 2.4. Each locally uniformly convex Banach space and each uni-
formly convex in every direction Banach space is strictly convex (see for
example [19]).

Let Γ be an infinite set and let c0(Γ) denote the Banach space (with the
max-norm) of all real-valued functions u = {ui}i∈Γ on Γ such that for each
ε > 0 the set {i ∈ Γ : |ui| ≥ ε} is finite. We denote the support of u ∈ c0(Γ)
by N(u). Recall that for 1 < p < ∞ the Banach space lp(Γ) consists of
all u ∈ c0(Γ) such that

∑
i∈N(u) |ui|p < ∞ (we set

∑
i∈N(u) |ui|p = 0 if

N(u) = ∅) and then

‖u‖p =

( ∑
i∈N(u)

|ui|p
) 1

p

for u ∈ lp(Γ) (see for example [12]).
Now we recall a definition of the Day norm |||·||| in c0(Γ) (see [5]).

If u = {ui}i∈Γ ∈ c0(Γ) \ {0}, then we enumerate the support N(u) of u
as {τ(j, u)}j∈J(u) (for a detailed definition of τ(·, u) see Remark 2.5) in such
a way that |uτ(j,u)| ≥ |uτ(j+1,u)|. Next we define D(u) = {Di(u)}i∈Γ ∈ l2(Γ)
by

Di(u) =

{
uτ(j,u)

2j
, if i = τ(j, u) for some j ∈ J(u)

0, otherwise

and set |||u||| = ‖D(u)‖2. For 0 ∈ c0(Γ) we set Di(0) = 0 for each i ∈ Γ and
D(0) = {Di(0)}i = 0 ∈ l2(Γ). So |||0||| = ‖D(0)‖2 = 0. It is easy to observe
that

1

2
‖u‖c0(Γ) ≤ |||u||| ≤

1√
3
‖u‖c0(Γ)

for each u ∈ c0(Γ), where ‖·‖c0(Γ) is the standard max-norm in c0(Γ).

Remark 2.5. Throughout this paper we will use the following notation.
Let t = {ti}i∈Γ ∈ c0(Γ), where the set Γ is infinite. Then the {τ(j, t)}j is
defined as follows:
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(1) if the support N(t) of t is infinite, then N(t) is enumerated as
{τ(j, t)}j in such a way that |tτ(j,t)| ≥ |tτ(j+1,t)| for j ∈ J(t) = N,

(2) if N(t) = {tĩ} is a singleton, then we set J(t) = {1}, τ(1, t) = ĩ and
extend τ(·, t) onto N so that τ(·, t) : N→ Γ is an injection,

(3) if the support N(t) of t is finite and consists of k(t) ≥ 2 elements,
then N(t) is enumerated as {τ(j, t) : j ∈ J(t) = {1, . . . , k(t)}} in
such a way that |tτ(j,t)| ≥ |tτ(j+1,t)| for 1 ≤ j ≤ k(t) − 1 and we
extend τ(·, t) onto N so that τ(·, t) : N→ Γ is an injection,

(4) if t = 0, then J(t) = ∅ and τ(·, t) : N → Γ is an arbitrarily chosen
injection.

The following result is well known.

Theorem 2.6 ([4], see also [1] and [11]). For space (lp, ‖·‖p) the following
inequalities between the norms of two arbitrary x and y of the space are
valid (here q is the conjugate index q = p

p−1):

(1) ‖x+ y‖pp + ‖x− y‖pp ≤ 2p−1 (‖x‖pp + ‖y‖pp) for 2 ≤ p <∞,
(2) ‖x+ y‖qp + ‖x− y‖qp ≤ 2 (‖x‖pp + ‖y‖pp)q−1 for 1 < p ≤ 2.

We will also use some elementary inequalities ([5] and see also [18]). We
state them below. These inequalities will play a crucial role in the proofs of
our theorems.

Lemma 2.7 ([5] and [18]). Assume that

(1) s = {si}i is a positive and non-increasing sequence,
(2) t = {ti}i ∈ c0 \ {0},
(3) ti ≥ 0 for each i ∈ N,
(4) ∅ 6= I ⊂ N,
(5) functions f, g : I → N are injective.

Then ∑
i∈I

sf(i) · tg(i) ≤
∞∑
j=1

sj · tτ(j,t).

Corollary 2.8 ([5] and [18]). Let Γ be an infinite set. Assume that

(1) s = {si}i is a positive and non-increasing sequence,
(2) t = {ti}i ∈ c0(Γ) \ {0},
(3) ti ≥ 0 for each i ∈ Γ,
(4) a function f : N→ N is injective,
(5) a function g : N→ Γ is injective.

Then
∞∑
j=1

sf(j) · tg(j) ≤
∞∑
j=1

sj · tτ(j,t).
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Lemma 2.9 ([5] and [18]). If {sj}j and {tj}j are nonnegative and non-
increasing sequences and if a function g : N→ N is injective, then

(1) for each m ∈ N either g|{1,...,m} permutes {1, . . . ,m} onto itself and
m∑
j=1

sjtj −
m∑
j=1

sjtg(j) ≥ 0

or

(2)

m∑
j=1

sjtj −
m∑
j=1

sjtg(j) ≥ (sm − sm+1)(tm − tm+1) ≥ 0,

∞∑
j=1

sjtj ≥
∞∑
j=1

sjtg(j).

As a consequence of Corollary 2.8 and Lemma 2.9 we get

Lemma 2.10 ([18]). Assume that
(1) s = {si}i is a positive and strictly decreasing to 0,
(2) t = {ti}i ∈ c0 \ {0},
(3) ti ≥ 0 for each i ∈ N,
(4) m ∈ N is such that tτ(m,t) > tτ(m+1,t),
(5) if tτ(1,t) > tτ(m,t), then

ω := min
{∑m

j=1 s
jtτ(j,t) −

∑m
j=1 s

jtσ(j) : σ maps {1, . . . ,m} onto

{τ(1, t), . . . , τ(m, t)} and
∑m

j=1 s
jtσ(j) <

∑m
j=1 s

j · tτ(j,t)
}
> 0

and δ := min{(sm − sm+1)(tτ(m,t) − tτ(m+1,t)), ω} > 0,
(6) if tτ(1,t) = tτ(m,t), then δ := (sm − sm+1)(tτ(m,t) − tτ(m+1,t)) > 0,
(7) ϕ : N→ N is injective,
(8)

∑m
j=1 s

jtτ(j,t) −
∑m

j=1 s
jtϕ(j) < δ.

Then
m∑
j=1

sjtτ(j,t) =
m∑
j=1

sjtϕ(j),

ϕ|{1,...,m} maps {1, . . . ,m} onto {τ(1, t), . . . , τ(m, t)} and tτ(j,t) = tϕ(j) for
j = 1, . . . ,m.

3. A generalization of the Day norm. In this section we introduce our
modification of the Day norm |||·||| in c0(Γ). We replace l2(Γ) with lp(Γ). So
fix 1 < p <∞ and choose a strictly decreasing positive sequence β = {βj}j
satisfying the following two conditions

• the series
∑∞

j=1 β
p
j is convergent,

• there exists a constant L > 1 such that for each n ∈ N
∞∑

j=n+1

βpj ≤ Lβ
p
n+1.
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If u = {ui}i∈Γ ∈ c0(Γ) \ {0}, then define Dβ,p(u) = {Di
β,p(u)}i∈Γ ∈ lp(Γ) by

Di
β,p(u) =

{
βju

τ(j,u), if i = τ(j, u) for some j ∈ N
0, otherwise

and set |||u|||β,p = ‖Dβ,p(u)‖p. For 0 ∈ c0 we set Di
β,p(0) = 0 for each

i ∈ Γ and Dβ,p(0) = {Di
β,p(0)}i∈Γ = 0 ∈ lp(Γ) and therefore |||0|||β,p =

‖D(0)‖β,p = 0.

Theorem 3.1. For each 1 < p <∞, |||·|||β,p is a norm in c0(Γ) and

β1‖u‖c0(Γ) ≤ |||u|||β,p ≤

( ∞∑
j=1

βpj

) 1
p

‖u‖c0(Γ)

for each u ∈ c0(Γ), where ‖·‖c0(Γ) is the standard norm in c0(Γ).

Proof. It is obvious that

|||αu|||β,p = |α| |||u|||β,p
for each α ∈ R and each u ∈ c0(Γ). Next by Corollary 2.8 we have

|||u+ v|||β,p = ‖Dβ,p(u+ v)‖p =

( ∞∑
j=1

|βj(u+ v)τ(j,u+v)|p
) 1

p

≤

( ∞∑
j=1

∣∣∣βjuτ(j,u+v)
∣∣∣p) 1

p

+

( ∞∑
j=1

∣∣∣βjvτ(j,u+v)
∣∣∣p) 1

p

≤

( ∞∑
j=1

∣∣∣βjuτ(j,u)
∣∣∣p) 1

p

+

( ∞∑
j=1

∣∣∣βjvτ(j,v)
∣∣∣p) 1

p

= |||u|||β,p + |||v|||β,p

for u = {ui}i and v = {vi}i in c0(Γ).
Finally, it is easy to observe that

β1‖u‖c0(Γ) ≤ |||u|||β,p ≤

( ∞∑
j=1

βpj

) 1
p

‖u‖c0(Γ)

for each u ∈ c0(Γ). �

4. The modified Day norm is LUR. Now we are ready to prove the
main theorem of this paper. This theorem generalizes the Rainwater result
([18]).

Theorem 4.1. The Banach space (c0(Γ), |||·|||β,p) is LUR.
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Proof. The proof is based on the Rainwater concept ([18]).
We have to show that if u∈c0(Γ), un∈c0(Γ) for n = 1, 2, . . . , limn |||un|||β,p

= |||u|||β,p and limn |||u+ un|||β,p = 2|||u|||β,p, then limn un = u. Observe that
without loss of generality we can assume that

(1) Γ = N and therefore c0(Γ) = c0(N) = c0,
(2) |||u|||β,p = limn |||un|||β,p = 1,
(3) for each n, i ∈ N we have uin 6= 0 and ui + uin 6= 0, i.e. the supports

N(un) and N(u+un) are equal to N (in the other case we can replace
the sequence {un}n by suitably chosen {ũn}n such that limn(un−ũn)
= 0).

Suppose that the sequence {u−un}n is not convergent to 0. Then, taking
a subsequence if necessary, we see that there exists η > 0 such that

(i) ‖u‖c0 ≥ η and ‖u− un‖c0 ≥ η
for each n ∈ N. Let

(ii) 0 < λ <
1

3(3L)
1
p

and m be the largest integer which satisfies∣∣∣uτ(m,u)
∣∣∣ ≥ λη.

Then we have

(iii) λη <
1

3

(iv)
∣∣∣uτ(j,u)

∣∣∣ < λη

for each j > m.
Now, by the Clarkson inequalities (see Theorem 2.6) for 2 ≤ p < ∞, we

get

(v) 2p−1
(
|||u|||pβ,p + |||un|||pβ,p

)
− |||u+ un|||pβ,p

= 2p−1

( ∞∑
j=1

∣∣∣βjuτ(j,u)
∣∣∣p +

∞∑
j=1

∣∣∣βjuτ(j,un)
n

∣∣∣p)− ∞∑
j=1

∣∣∣βj(u+ un)τ(j,u+un)
∣∣∣p

≥ 2p−1

( ∞∑
j=1

∣∣∣βjuτ(j,u+un)
∣∣∣p +

∞∑
j=1

∣∣∣βjuτ(j,u+un)
n

∣∣∣p)

−
∞∑
j=1

∣∣∣βj(u+ un)τ(j,u+un)
∣∣∣p

≥
∞∑
j=1

∣∣∣βj(u− un)τ(j,u+un)
∣∣∣p =

∞∑
j=1

∣∣∣βj (uτ(j,u+un) − uτ(j,u+un)
n

)∣∣∣p ≥ 0
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and for 1 < p ≤ 2 we have

(vi) 2
(
|||u|||pβ,p + |||un|||pβ,p

)q−1
− |||u+ un|||qβ,p

= 2

( ∞∑
j=1

∣∣∣βjuτ(j,u)
∣∣∣p +

∞∑
j=1

∣∣∣βjuτ(j,un)
n

∣∣∣p)q−1

−

[ ∞∑
j=1

∣∣∣βj(u+ un)τ(j,u+un)
∣∣∣p] qp

≥ 2

( ∞∑
j=1

∣∣∣βjuτ(j,u+un)
∣∣∣p +

∞∑
j=1

∣∣∣βjuτ(j,u+un)
n

∣∣∣p)q−1

−

[ ∞∑
j=1

∣∣∣βj(u+ un)τ(j,u+un)
∣∣∣p] qp

≥

[ ∞∑
j=1

∣∣∣βj(u− un)τ(j,u+un)
∣∣∣p] qp

=

[ ∞∑
j=1

∣∣∣βj (uτ(j,u+un) − uτ(j,u+un)
n

)∣∣∣p] qp ≥ 0

(here q is the conjugate index q = p
p−1). Since

lim
n

[
2p−1

(
|||u|||pβ,p + |||un|||pβ,p

)
− |||u+ un|||pβ,p

]
= 0

for p ≥ 2 and

lim
n

[
2
(
|||u|||pβ,p + |||un|||pβ,p

)q−1
− |||u+ un|||qβ,p

]
= 0

for 1 < p ≤ 2, we get

(vii) lim
n

[
uτ(j,u+un) − uτ(j,u+un)

n

]
= 0

for each j ∈ N in both cases. Next we observe that (see (v) and (vi))

2p−1

( ∞∑
j=1

∣∣∣βjuτ(j,u)
∣∣∣p +

∞∑
j=1

∣∣∣βjuτ(j,un)
n

∣∣∣p)− ∞∑
j=1

∣∣∣βj(u+ un)τ(j,u+un)
∣∣∣p

≥ 2p−1

( ∞∑
j=1

∣∣∣βjuτ(j,u+un)
∣∣∣p +

∞∑
j=1

∣∣∣βjuτ(j,u+un)
n

∣∣∣p)

−
∞∑
j=1

∣∣∣βj(u+ un)τ(j,u+un)
∣∣∣p ≥ 0
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for p ≥ 2 and

2

( ∞∑
j=1

∣∣∣βjuτ(j,u)
∣∣∣p +

∞∑
j=1

∣∣∣βjuτ(j,un)
n

∣∣∣p)q−1

−

[ ∞∑
j=1

∣∣∣βj(u+ un)τ(j,u+un)
∣∣∣p] qp

≥ 2

( ∞∑
j=1

∣∣∣βjuτ(j,u+un)
∣∣∣p +

∞∑
j=1

∣∣∣βjuτ(j,u+un)
n

∣∣∣p)q−1

−

[ ∞∑
j=1

∣∣∣βj(u+ un)τ(j,u+un)
∣∣∣p] qp ≥ 0

for 1 < p ≤ 2. Consequently, since

lim
n

[
2p−1

( ∞∑
j=1

∣∣∣βjuτ(j,u)
∣∣∣p +

∞∑
j=1

∣∣∣βjuτ(j,un)
n

∣∣∣p)

−
∞∑
j=1

∣∣∣βj(u+ un)τ(j,u+un)
∣∣∣p] = 0

and

lim
n

2

( ∞∑
j=1

∣∣∣βjuτ(j,u)
∣∣∣p +

∞∑
j=1

∣∣∣βjuτ(j,un)
n

∣∣∣p)q−1

−

[ ∞∑
j=1

∣∣∣βj(u+ un)τ(j,u+un)
∣∣∣p] qp

 = 0

for p ≥ 2 and for 1 < p ≤ 2, respectively, we obtain

lim
n

[( ∞∑
j=1

∣∣∣βjuτ(j,u)
∣∣∣p − ∞∑

j=1

∣∣∣βjuτ(j,u+un)
∣∣∣p)

+

∞∑
j=1

(∣∣∣βjuτ(j,un)
n

∣∣∣p − ∣∣∣βjuτ(j,u+un)
n

∣∣∣p)] = 0

and

lim
n

( ∞∑
j=1

∣∣∣βjuτ(j,u)
∣∣∣p +

∞∑
j=1

∣∣∣βjuτ(j,un)
n

∣∣∣p)q−1

−

( ∞∑
j=1

∣∣∣βjuτ(j,u+un)
∣∣∣p +

∞∑
j=1

∣∣∣βjuτ(j,u+un)
n

∣∣∣p)q−1
 = 0,
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respectively. Moreover, by Corollary 2.8
∞∑
j=1

∣∣∣βjuτ(j,u)
∣∣∣p ≥ ∞∑

j=1

∣∣∣βjuτ(j,u+un)
∣∣∣p

and
∞∑
j=1

∣∣∣βjuτ(j,un)
n

∣∣∣p ≥ ∞∑
j=1

∣∣∣βjuτ(j,u+un)
n

∣∣∣p
and therefore

(viii) lim
n

( ∞∑
j=1

∣∣∣βjuτ(j,u)
∣∣∣p − ∞∑

j=1

∣∣∣βjuτ(j,u+un)
∣∣∣p) = 0.

Here we can apply Lemma 2.10 with m as above and with t = {|uτ(j,u)|p}j
and s = {βpj }j and get δ > 0 such that if

m∑
j=1

sjtj −
m∑
j=1

sjtϕ(j) < δ,

then
m∑
j=1

sjtτ(j,t) =
m∑
j=1

sjtϕ(j),

where ϕ|{1,...,m} maps {1, . . . ,m} onto {τ(1, t), . . . , τ(m, t)} and tτ(j,t) = tϕ(j)

for j = 1, . . . ,m. By

k∑
j=1

∣∣∣βjuτ(j,un)
n

∣∣∣p ≥ k∑
j=1

∣∣∣βjuτ(j,u+un)
n

∣∣∣p
for each k ∈ N (see Lemma 2.9) and by (viii) we have

lim
n

(
m∑
j=1

∣∣∣βjuτ(j,u)
∣∣∣p − m∑

j=1

∣∣∣βjuτ(j,u+un)
∣∣∣p) = 0.

Hence there is n0 ∈ N such that
m∑
j=1

∣∣∣βjuτ(j,u)
∣∣∣p − m∑

j=1

∣∣∣βjuτ(j,u+un)
∣∣∣p < δ

for each n ≥ n0. This implies that
m∑
j=1

∣∣∣βjuτ(j,u)
∣∣∣p =

m∑
j=1

∣∣∣βjuτ(j,u+un)
∣∣∣p ,

{τ(1, u), . . . , τ(m,u)} = {τ(1, u+ un), . . . , τ(m,u+ un)}
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and ∣∣∣uτ(j,u)
∣∣∣ =

∣∣∣uτ(j,u+un)
∣∣∣

for j = 1, . . . ,m and each n ≥ n0.
Taking once more a subsequence of {un} if necessary, we can assume that

τ(j, u + un) = τ̃(j) for j = 1, . . . ,m and each n ≥ n0. Therefore, without
loss of generality, we can also assume that

τ(j, u) = τ(j, u+ un) = τ̃(j)

for j = 1, . . . ,m and each n ≥ n0.
Now by (vii) and by limn |||un|||β,p = |||u|||β,p = 1 there exists n1 ≥ n0 such

that

(ix)
∣∣∣uτ(j,u) − uτ(j,u)

n

∣∣∣ < η

for j = 1, . . . ,m and n ≥ n1,

(x)
m∑
j=1

βpj

(∣∣∣uτ(j,u)
∣∣∣p − ∣∣∣uτ(j,u)

n

∣∣∣p) < βpm+1η
p

3 · 3p

for n ≥ n1 and

(xi) |||un|||pβ,p − |||u|||
p
β,p <

βpm+1η
p

3 · 3p
for n ≥ n1. Next by (i) for each n ≥ n1 we choose jn ∈ N such that∣∣∣uτ(jn,u−un) − uτ(jn,u−un)

n

∣∣∣ =
∣∣∣(u− un)τ(jn,u−un)

∣∣∣ = ‖u− un‖c0 ≥ η.

Hence by (ix) for each n ≥ n1 we have

τ(jn, u− un) /∈ {τ(1, u), . . . , τ(m,u)} = {τ(1, un), . . . , τ(m,un)}
and therefore by Corollary 2.8 we have

(xii) |||un|||pβ,p =
∞∑
j=1

βpj

∣∣∣uτ(j,un)
n

∣∣∣p ≥ m∑
j=1

βpj

∣∣∣uτ(j,u)
n

∣∣∣p + βpm+1

∣∣∣uτ(jn,u−un)
n

∣∣∣p .
By (ii) and (iv) we also have

|||u|||pβ,p =

∞∑
j=1

βpj

∣∣∣uτ(j,u)
∣∣∣p < m∑

j=1

βpj

∣∣∣uτ(j,u)
∣∣∣p + λpηp

∞∑
j=m+1

βpj(xiii)

<

m∑
j=1

βpj

∣∣∣uτ(j,u)
∣∣∣p +

βpm+1η
p

3 · 3p
.

The inequalities (iii), (iv) and (x)–(xiii) lead to the following contradiction

2
βpm+1η

p

3p
<

2pβpm+1η
p

3p
= βpm+1

∣∣∣η − η

3

∣∣∣p
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≤ βpm+1

∣∣∣∣∣uτ(jn,u−un)
n − uτ(jn,u−un)

∣∣− ∣∣uτ(jn,u−un)
∣∣∣∣∣p

≤ βpm+1

∣∣∣uτ(jn,u−un)
n

∣∣∣p ≤ |||un|||pβ,p − m∑
j=1

βpj

∣∣∣uτ(j,u)
n

∣∣∣p
=
(
|||un|||pβ,p − |||u|||

p
β,p

)
+ |||u|||pβ,p −

m∑
j=1

βpj

∣∣∣uτ(j,u)
n

∣∣∣p
<
βpm+1η

p

3 · 3p
+

(
|||u|||pβ,p −

m∑
j=1

βpj

∣∣∣uτ(j,u)
∣∣∣p)

+

(
m∑
j=1

βpj

∣∣∣uτ(j,u)
∣∣∣p − m∑

j=1

βpj

∣∣∣uτ(j,u)
n

∣∣∣p)

<
βpm+1η

p

3 · 3p
+
βpm+1η

p

3 · 3p
+
βpm+1η

p

3 · 3p
=
βpm+1η

p

3p

and the proof is complete. �

Corollary 4.2. The Banach space (c0(Γ), |||·|||β,p) is strictly convex.

Proof. It is sufficient to use Theorem 4.1 and Remark 2.4. �

Theorem 4.3. The Banach space (c0(Γ), |||·|||β,p) is not uniformly convex
in every direction.

Proof. Without loss of generality we can assume that Γ = N and let {ei}i
be a standard basis in c0 = c0(N). We set z = e1, un =

∑n+1
i=2 ei and

vn = un + z =
∑n+1

i=1 ei for n = 1, 2, . . . . Then we have

Di(un) =

{
βi, if 2 ≤ i ≤ n+ 1

0, for i > n+ 1,

Di(vn) =

{
βi, if 1 ≤ i ≤ n+ 1

0, for i > n+ 1,

Di

(
un + vn

2

)
=


β1
2 , for i = 1

βi, if 2 ≤ i ≤ n+ 1

0, for i > n+ 1

and

Di(z) =

{
β1, if i = 1

0, for i > 1.

Hence we get
|||vn − un|||β,p = |||z|||β,p = β1 > 0,
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|||un|||β,p ≤

( ∞∑
j=1

βpj

) 1
p

,

|||vn|||β,p ≤

( ∞∑
j=1

βpj

) 1
p

for n = 1, 2, . . . and

lim
n

∣∣∣∣∣∣∣∣∣∣∣∣un + vn
2

∣∣∣∣∣∣∣∣∣∣∣∣
β,p

=

( ∞∑
j=1

βpj

) 1
p

and therefore the Banach space (c0, |||·|||β,p) is not uniformly convex in every
direction. �

Finally, we recall that in [6] the following theorem is proved.

Theorem 4.4. Let a set Γ be uncountable. Then the Banach space c0(Γ)
with the max-norm is not isomorphic to a space that is uniformly convex in
every direction.

5. The modified Day norm and the non-strict Opial property. Now
we recall the Opial property of a Banach space.

Definition 5.1 ([17]). A Banach space (X, ‖·‖) has the Opial property if
for each weakly null convergent sequence {xn}n and each x 6= 0 in X

lim sup
n
‖xn‖ < lim sup

n
‖xn − x‖.

A Banach space (X, ‖·‖) has the non-strict Opial property if for each
weakly null convergent sequence {xn}n and each x in X

lim sup
n
‖xn‖ ≤ lim sup

n
‖xn − x‖.

In this section we prove the following theorem.

Theorem 5.2. The Banach space (c0(Γ), |||·|||β,p) has the non-strict Opial
property.

Proof. Without loss of generality we can assume that Γ = N and c0 =
c0(N). Let {un} ⊂ c0 tend weakly to 0 ∈ c0 and u ∈ c0 \ {0}. Let us take
0 < ε < 1. Then there exists ĩ ∈ N such that

|ui(x)| < ε

for each ĩ < i ∈ N. Therefore

|uin| ≤ |uin − ui|+ |ui| < |uin − ui|+ ε

for each ĩ < i ∈ N and all n ∈ N.
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Now for each 1 ≤ i ≤ ĩ we have either ui = 0 or ui 6= 0. In the second case
setting ηi = min{ε, 1

2 |u
i|} and taking into account the weak convergence of

{un} to 0, we find ñi ∈ N such that

|uin| < ηi

for ñi < n ∈ N and hence we obtain

|uin − ui| ≥ |ui| − |uin| > |ui| − ηi >
1

2
|ui| > |uin|.

It is obvious that in the first case we have

|uin| ≤ |uin − ui|.
This implies that

|uin| ≤ |uin − ui|
for each 1 ≤ i ≤ ĩ and all max{ñ1, . . . , ñĩ} < n ∈ N.

Putting together all above inequalities we get

(xiv) |uin| ≤ |uin − ui|+ ε

for each i ∈ N and for all max{ñ1, . . . , ñĩ} < n ∈ N.
Here observe that replacing u and un by suitably chosen ṽn and z̃n with

limn ṽn = u, limn(z̃n−un) = 0 if necessary, we can assume that all numbers
uin and uin − ui are different from 0.

Now we fix max{ñ1, . . . , ñĩ} < n ∈ N. We have D(un) =
{
βju

τ(j,un)
}
j

and D(un − u) =
{
βj
(
u
τ(j,un−u)
n − uτ(j,un−u)

)}
j
, where {τ(j, un)}j and

{τ(j, un − u)}j are suitable permutations of the set N of natural numbers.

Using (xiv) and Corollary 2.8 with {sj}j = {βpj }j , {tj}j =
{
|uτ(j,un−u)
n −

uτ(j,un−u)|p
}
j

and {g(j)}j = {τ(j, un)}j , we obtain

|||un − u|||β,p + ε

( ∞∑
j=1

βpj

) 1
p

=

[ ∞∑
j=1

(
βj

∣∣∣(un − u)τ(j,un−u)
∣∣∣)p] 1

p

+ ε

( ∞∑
j=1

βpj

) 1
p

≥

[ ∞∑
j=1

(
βj

∣∣∣(un − u)τ(j,un)
∣∣∣)p] 1

p

+ ε

( ∞∑
j=1

βpj

) 1
p

≥

{ ∞∑
j=1

[
βj

(∣∣∣uτ(j,un)
n − uτ(j,un)

∣∣∣+ ε
)]p} 1

p

≥

[ ∞∑
j=1

(
βj

∣∣∣uτ(j,un)
n

∣∣∣)p] 1
p

= |||un|||β,p.

Since 0 < ε < 1 is arbitrarily chosen, by passing n to +∞, we get

|||un|||β,p ≤ |||un − u|||β,p.
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�

Observe that the Banach space (c0(Γ), |||·|||β,p) does not have the Opial
property as the following example shows.

Example 5.3. Consider (c0, |||·|||β,p) with the standard basis {ei}i. Let us
take a sequence {un}n = {en+1 + · · · + en+n}n. This sequence is weakly
convergent to 0 ∈ c0 and for u = e1 we have

lim
n
|||un|||β,p = lim

n
|||un − u|||β,p =

( ∞∑
j=1

βpj

) 1
p

.

6. The modified Day norm and smoothness. We begin with the fol-
lowing definition.

Definition 6.1 (see for example [12]). A Banach space (X, ‖·‖X) is smooth
if for each x ∈ X with ‖x‖X = 1 there exists a unique functional x∗ ∈ X∗
with ‖x∗‖X∗ = 1 such that x∗(x) = 1.

In this section we extend the Day result ([5]).

Theorem 6.2. The Banach space (c0(Γ), |||·|||β,p) is not smooth.

Proof. Without loss of generality we can assume that Γ = N, c0 = c0(N)
and β1 > β2, and let {ei}i be a standard basis in c0. Similarly as in [5] we
take the plane X1 = span {e1, e2}. It is easy to observe that the point

1

(βp1 + βp2)
1
p

e1 +
1

(βp1 + βp2)
1
p

e2

is a corner of the unit sphere S|||·|||β,p in X1. So the Banach space (c0(Γ),

|||·|||β,p) is not smooth. �

7. The modified Day norm and normal structure. Normal structure
is strictly connected with the diameter of a set (see [9] and [10]).

Definition 7.1. Let (X, ‖·‖) be an infinite dimensional Banach space. For
a nonempty, bounded and convex C ⊂ X the number

r‖·‖(C,C) = inf{sup{‖y − y′‖ : y′ ∈ C} : y ∈ C}
is called the Chebyshev self-radius of C.

Definition 7.2. Let (X, ‖·‖) be an infinite dimensional Banach space and
C a nonempty, bounded and convex subset of X. We say that the set C is
diametral if r‖·‖(C,C) = diam‖·‖(C).

Definition 7.3. Let (X, ‖·‖) be a Banach space. A convex set C of X has
a normal structure if for every bounded and convex subset C1 of C with
diam(C1) > 0 we have r‖·‖(C1, C1) < diam‖·‖(C1).
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In particular a Banach space (X, ‖·‖) has a normal structure if it does not
contain any diametral set, i.e. if r‖·‖(C,C) < diam‖·‖(C) for each nonempty,
non-singleton, bounded and convex set C ⊂ X.

M. S. Brodski and D. P. Milman characterized the normal structure in
terms of a diametral sequence.

Definition 7.4 ([3]). Let (X, ‖·‖) be a Banach space. A bounded and not
eventually constant sequence {xn} in (X, ‖·‖) is said to be diametral if

lim
n

dist‖·‖(xn+1, conv{x1, . . . , xn}) = diam‖·‖{x1, x2, . . . }.

Theorem 7.5 ([3]). A bounded and convex C of a Banach space (X, ‖·‖)
has normal structure if and only if it does not contain a diametral sequence.

Theorem 7.6. The Banach space (c0(Γ), |||·|||β,p) does not have normal
structure.

Proof. Without loss of generality we can assume that Γ = N and let {ei}i
be a standard basis in c0 = c0(N). We set x1 = e1 and

xn =

(n+1)(n+2)
2∑

i=
n(n+1)

2
+1

ei

for n = 2, . . . . Then we have

lim
n

dist|||·|||β,p(xn+1, conv{x1, . . . , xn}) =

( ∞∑
j=1

βpj

) 1
p

= diam|||·|||β,p{x1, x2, . . . }.

�

8. The modified Day norm and asymptotic normal structure. The
notion of asymptotic normal structure was introduced in [2].

Definition 8.1. Let (X, ‖·‖) be a Banach space. If for each nonempty, non-
singleton, bounded and convex set C ⊂ X and for each sequence {xn}n in
C satisfying xn− xn+1 → 0 as n→∞, there exists a point x̃ ∈ C such that
lim infn ‖xn − x̃‖ < diam‖·‖(C), then we say that a Banach space (X, ‖·‖)
has asymptotic normal structure.

Theorem 8.2. The Banach space (c0(Γ), |||·|||β,p) does not have asymptotic
normal structure.

Proof. Without loss of generality we can assume that Γ = N and let {ek}k
be a standard basis in c0 = c0(N). We set u1 = e1 and

ui =

(i+1)(i+2)
2∑

k=
i(i+1)

2
+1

ek
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for i = 2, 3, . . . ,

xn =

{
(1− j

22i
)ui + ui+1, if n = 22i + j, j = 1, 2, . . . , 22i

ui+1 + j
22i+1ui+2, if n = 22i+1 + j, j = 1, 2, . . . , 22i+1.

and
C = conv{xn : n = 5, 6, . . . }.

(see [16] and also [2]). Then we have

0 = lim
n
‖xn − xn+1‖c0 = lim

n
|||xn − xn+1|||β,p

and

diam|||·|||β,p(C) =

( ∞∑
j=1

βpj

) 1
p

= lim
n
|||xn − x|||β,p

for each x ∈ C. �
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