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Periodic solutions of Euler–Lagrange equations
with sublinear potentials

in an Orlicz–Sobolev space setting

Abstract. In this paper, we obtain existence results of periodic solutions of
hamiltonian systems in the Orlicz–Sobolev space W 1LΦ([0, T ]). We employ
the direct method of calculus of variations and we consider a potential function
F satisfying the inequality |∇F (t, x)| ≤ b1(t)Φ′0(|x|) + b2(t), with b1, b2 ∈ L1

and certain N -functions Φ0.

1. Introduction. This paper deals with a system of equations of the type:

(1)
{

d
dtDyL(t, u(t), u′(t)) = DxL(t, u(t), u′(t)) a.e. t ∈ (0, T ),
u(0)− u(T ) = u′(0)− u′(T ) = 0,

where L : [0, T ] × Rd × Rd → R, d ≥ 1, is called the Lagrange function or
lagrangian and the unknown function u : [0, T ]→ Rd is absolutely continu-
ous. In other words, we are interested in finding periodic weak solutions of
Euler–Lagrange system of ordinary differential equations.
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The problem (1) comes from a variational one, that is, the equation in
(1) is the Euler–Lagrange equation associated to the action integral

(2) I(u) =

∫ T

0
L(t, u(t), u′(t)) dt.

This topic was deeply addressed for the Lagrange function

(3) Lp,F (t, x, y) =
|y|p

p
+ F (t, x),

for 1 < p <∞. For example, the classic book [9] deals mainly with problem
(1) for the lagrangian L2,F and through various methods: direct, dual action,
minimax, etc. The results in [9] were extended and improved in several
articles, see [11, 12, 16, 13, 18] to cite some examples. Lagrange functions
(3) for arbitrary 1 < p <∞ are considered in [15, 14] and in this case (1) is
reduced to the p-laplacian system{

d
dt

(
u′(t)|u′|p−2

)
= ∇F (t, u(t)) a.e. t ∈ (0, T ),

u(0)− u(T ) = u′(0)− u′(T ) = 0.

In this context, it is customary to call F a potential function, and it is
assumed that F (t, x) is differentiable with respect to x for a.e. t ∈ [0, T ] and
the following conditions hold:

(C) F and its gradient ∇F , with respect to x ∈ Rd, are Carathéodory
functions, i.e. they are measurable functions with respect to t ∈
[0, T ] for every x ∈ Rd, and they are continuous functions with
respect to x ∈ Rd for a.e. t ∈ [0, T ].

(A) For a.e. t ∈ [0, T ],

|F (t, x)|+ |∇F (t, x)| ≤ a(|x|)b(t).
In this inequality, it is assumed that the function a : [0,+∞) →
[0,+∞) is continuous and non-decreasing, and 0 ≤ b ∈ L1([0, T ],R).

In [1] there was treated the case of a lagrangian L which is lower bounded
by a Lagrange function

LΦ,F (t, x, y) = Φ(|y|) + F (t, x),

where Φ is an N -function (see section 2 for the definition of this concept).
In the paper [1] there was also assumed a condition of bounded oscillation
on F . In this current paper we will study a condition of sublinearity (see
[12, 16, 18, 14, 19]) on ∇F for the lagrangian LΦ,F , or more generally for
lagrangians which are lower bounded by LΦ,F .

The paper is organized as follows. In Section 2, we give preliminaries
facts on N -functions and Orlicz–Sobolev spaces of functions. Section 3 is
devoted to the main result of this work and it also includes an auxiliary
lemma of vital importance. Section 4 contains the proofs and Section 5
provides an application of our result to a concrete case.
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2. Preliminaries. For reader’s convenience, we give a short introduction
to Orlicz and Orlicz–Sobolev spaces of vector valued functions. Classic
references for these topics are [2, 7, 10, 8].

Hereafter we denote by R+ the set of all non negative real numbers. A
function Φ : R+ → R+ is called an N -function if Φ is convex and it also
satisfies that

lim
t→+∞

Φ(t)

t
= +∞ and lim

t→0

Φ(t)

t
= 0.

In addition, in this paper for the sake of simplicity we assume that Φ is
differentiable and we call ϕ the derivative of Φ. On these assumptions,
ϕ : R+ → R+ is a homeomorphism whose inverse will be denoted by ψ.
We write Ψ for the primitive of ψ that satisfies Ψ(0) = 0. Then, Ψ is an
N -function which is known as the complementary function of Φ.

We recall that an N -function Φ(u) has principal part f(u) if Φ(u) = f(u)
for large values of the argument (see [7, p. 16] and [7, Section 7] for properties
of principal part).

There exist several orders and equivalence relations between N -functions
(see [10, Section 2.2]). Following [10, Definition 1, pp. 15–16] we say that
the N -function Φ2 is stronger than the N -function Φ1, in symbols Φ1 ≺ Φ2,
if there exist a > 0 and x0 ≥ 0 such that

(4) Φ1(x) ≤ Φ2(ax), x ≥ x0.

The N -functions Φ1 and Φ2 are equivalent (Φ1 ∼ Φ2) when Φ1 ≺ Φ2 and
Φ2 ≺ Φ1. We say that Φ2 is essentially stronger than Φ1 (Φ1 Î Φ2) if and
only if for every a > 0 there exists x0 = x0(a) ≥ 0 such that (4) holds.
Finally, we say that Φ2 is completely stronger than Φ1 (Φ1 ½ Φ2) if and only
if for every a > 0 there exist K = K(a) > 0 and x0 = x0(a) ≥ 0 such that

Φ1(x) ≤ KΦ2(ax), x ≥ x0.

We also say that a non-decreasing function η : R+ → R+ satisfies the
∆∞2 -condition, denoted by η ∈ ∆∞2 , if there exist constants K > 0 and
x0 ≥ 0 such that

(5) η(2x) ≤ Kη(x),

for every x ≥ x0. We note that η ∈ ∆∞2 if and only if η ½ η. If x0 = 0, the
function η : R+ → R+ is said to satisfy the ∆2-condition (η ∈ ∆2). If there
exists x0 > 0 such that inequality (5) holds for x ≤ x0, we will say that Φ
satisfies the ∆0

2-condition (Φ ∈ ∆0
2).

We denote by αη and βη the so-called Matuszewska–Orlicz indices of
the function η, which are defined next. Given an increasing, unbounded,
continuous function η : [0,+∞)→ [0,+∞) such that η(0) = 0, we define

αη := lim
t→0+

log

(
sup
u>0

η(tu)
η(u)

)
log(t)

, βη := lim
t→+∞

log

(
sup
u>0

η(tu)
η(u)

)
log(t)

.
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It is known that the previous limits exist and 0 ≤ αη ≤ βη ≤ +∞ (see
[8, p. 84]). The relation βη < +∞ holds true if and only if η ∈ ∆2 ([8,
Theorem 11.7]). If (Φ,Ψ) is a complementary pair of N -functions, then

(6)
1

αΦ
+

1

βΨ
= 1,

(see [8, Corollary 11.6]). Therefore 1 ≤ αΦ ≤ βΦ ≤ ∞.
If η is an increasing function that satisfies the ∆2-condition, then η is

controlled by above and below by power functions ([5, Section 1], [4, Eqn.
(2.3)–(2.4)] and [8, Theorem 11.13]). More concretely, for every ε > 0 there
exists a constant K = K(η, ε) such that, for every t, u ≥ 0,

(7) K−1 min
{
tβη+ε, tαη−ε

}
η(u) ≤ η(tu) ≤ K max

{
tβη+ε, tαη−ε

}
η(u).

Let d be a positive integer. We denote by M :=M([0, T ],Rd) the set of
all measurable functions defined on [0, T ] with values on Rd and we write
u = (u1, . . . , ud) for u ∈M. For the set of functionsM, as for other similar
sets, we will omit the reference to codomain Rd when d = 1.

Given an N -function Φ, we define the modular function ρΦ :M→ R+ ∪
{+∞} by

ρΦ(u) :=

∫ T

0
Φ(|u|) dt.

Here |·| is the Euclidean norm of Rd. Now, we introduce the Orlicz class
CΦ = CΦ([0, T ],Rd) by setting

CΦ := {u ∈M | ρΦ(u) <∞} .

The Orlicz space LΦ = LΦ([0, T ],Rd) is the linear hull of CΦ; equivalently,

LΦ := {u ∈M | ∃λ > 0 : ρΦ(λu) <∞} .

The Orlicz space LΦ equipped with the Orlicz norm

‖u‖LΦ := sup

{∫ T

0
u · v dt

∣∣∣ ρΨ(v) ≤ 1

}
,

is a Banach space. By u · v we denote the usual dot product in Rd between
u and v.

The following inequality holds for any u ∈ LΦ

(8) ‖u‖LΦ ≤
1

k
{1 + ρΦ(ku)} , for every k > 0.

In fact, ‖u‖LΦ is the infimum for k > 0 of the right hand side in above
expression (see [7, Theorem 10.5] and [6]).

The subspace EΦ = EΦ([0, T ],Rd) is defined as the closure in LΦ of the
subspace L∞([0, T ],Rd) of all Rd-valued essentially bounded functions. It
has shown that EΦ is the only one maximal subspace contained in the Orlicz
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class CΦ, i.e. u ∈ EΦ if and only if ρΦ(λu) <∞ for any λ > 0. The equality
LΦ = EΦ is true if and only if Φ ∈ ∆∞2 .

A generalized version of Hölder’s inequality holds in Orlicz spaces (see [7,
Theorem 9.3]). Namely, if u ∈ LΦ and v ∈ LΨ then u · v ∈ L1 and∫ T

0
v · u dt ≤ ‖u‖LΦ‖v‖LΨ .

If X and Y are Banach spaces such that Y ⊂ X∗, we denote by 〈·, ·〉 :
Y × X → R the bilinear pairing map given by 〈x∗, x〉 = x∗(x). Hölder’s
inequality shows that LΨ ⊂

[
LΦ
]∗, where the pairing 〈v, u〉 is defined by

〈v, u〉 =

∫ T

0
v · u dt,

with u ∈ LΦ and v ∈ LΨ. Unless Φ ∈ ∆∞2 , the relation LΨ =
[
LΦ
]∗ will not

be satisfied. In general, it is true that
[
EΦ
]∗

= LΨ.
We define the Sobolev–Orlicz space W 1LΦ (see [2]) by

W 1LΦ := {u | u is absolutely continuous on [0, T ] and u′ ∈ LΦ}.

W 1LΦ is a Banach space when equipped with the norm

(9) ‖u‖W 1LΦ = ‖u‖LΦ + ‖u′‖LΦ .

And, we introduce the following subset of W 1LΦ

W 1LΦ
T = {u ∈W 1LΦ | u(0) = u(T )}.

We will use repeatedly the decomposition u = u + ũ for a function u ∈
L1([0, T ]) where u = 1

T

∫ T
0 u(t) dt and ũ = u− u.

As usual, if (X, ‖·‖X) is a Banach space and (Y, ‖·‖Y ) is a subspace of X,
we write Y ↪→ X and we say that Y is embedded in X when the restricted
identity map iY : Y → X is bounded. That is, there exists C > 0 such
that ‖y‖X ≤ C‖y‖Y for any y ∈ Y . With this notation, Hölder’s inequality
states that LΨ ↪→

[
LΦ
]∗; and, it is easy to see that for every N -function Φ

we have that L∞ ↪→ LΦ ↪→ L1.
The following simple embedding lemma, whose proof can be found in [1],

will be used several times.

Lemma 2.1. For every u ∈W 1LΦ, ũ ∈ L∞ and

‖u‖L∞ ≤ Φ−1

(
1

T

)
max{1, T}‖u‖W 1LΦ (Sobolev’s inequality).

‖ũ‖L∞ ≤ TΦ−1

(
1

T

)
‖u′‖LΦ (Sobolev–Wirtinger’s inequality).
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3. Main result. We begin with a lemma which establishes the coercivity
of the modular function ρΦ(u) with respect to certain functions of the Orlicz
norm Φ0(‖u‖LΦ). This lemma generalizes [1, Lemma 5.2] in two directions.
Namely, certain power function is replaced by a more general N -function
Φ0 and the ∆2-condition on Ψ is relaxed to ∆∞2 . It is worth noting that the
second improvement is more important than the first one. And, we present
the result here since the lemma introduces a function Φ∗ that will play a
significant role in the statement of our main theorem.

Lemma 3.1. Let Φ,Ψ be complementary N -functions with Ψ ∈ ∆∞2 . Then,
there exists an N -function Φ∗ being Φ∗ ≺ Φ, such that for every N -function
Φ0 that satisfies Φ0 Î Φ∗ and for every k > 0, we have

(10) lim
‖u‖

LΦ→∞

∫ T
0 Φ(|u|) dt

Φ0(k‖u‖LΦ)
=∞.

Reciprocally, if (10) holds for some N -function Φ0, then Ψ ∈ ∆∞2 .

We point out that this lemma can be applied to more cases than [1,
Lemma 5.2]. For example, if Φ(u) = u2, Φ1 and Φ0 are N -functions with
principal parts equal to u2/ log u and u2/(log u)2 respectively, then (10)
holds for Φ0. On the other hand, Φ0(|u|) is not dominated for any power
function |u|α with α < 2.

As in [1] we will consider general Lagrange functions L : [0, T ]×Rd×Rd →
R satisfying the structure conditions

|L(t, x, y)| ≤ a(|x|)
(
b(t) + Φ

(
|y|
λ

+ f(t)

))
,(A1)

|DxL(t, x, y)| ≤ a(|x|)
(
b(t) + Φ

(
|y|
λ

+ f(t)

))
,(A2)

|DyL(t, x, y)| ≤ a(|x|)
(
c(t) + ϕ

(
|y|
λ

+ f(t)

))
,(A3)

where a ∈ C(R+,R+), λ > 0, Φ is an N -function, ϕ is the continuous
derivative of Φ, b ∈ L1

1([0, T ]), c ∈ LΨ
1 ([0, T ]) and f ∈ EΦ

1 ([0, T ]). We
denote by A(a, b, c, λ, f,Φ) the set of all Lagrange functions satisfying (A1),
(A2) and (A3).

In [1] it was shown that if L ∈ A(a, b, c, λ, f,Φ) then there exists the
Gateâux derivative of the integral functional I defined by (2), on the set

EΦ
d (λ) := {u ∈W 1LΦ([0, T ],Rd) | d(u′, EΦ) < λ}.

We observe that the condition (A) on the potential F is equivalent to say
that LΦ,F ∈ A(a, b, 0, 1, 0,Φ).

Unlike what is usual in the literature, we do not assume the lagrangian L
split into two terms, one of them function of y and the other one function of
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(t, x). We only suppose that L is lower bounded by a function of this type.
More precisely, we assume that for every (t, x, y) ∈ R× Rd × Rd

(A4)
L ≥ LΦ,F , with F satisfying (A) and (C),

and Φ being an N -function.

In addition, as usual we suppose that the time integral of F satisfies certain
coercivity condition, see (A6) below. However, all these hypotheses are not
enough. It is also necessary to assume extra conditions on the potential F .
Several hypotheses were tested in the past years. The so-called subconvexity
of F was tried in [16, 11, 18] for semilinear equations and in [17, 14] for p-
laplacian systems. Potentials F satisfying the following inequality

(11) |F (t, x2)− F (t, x1)| ≤ b1(t)(1 + |x2 − x1|µ).

were studied in [1]. Regarding (11), it is interesting to notice that such
inequality is equivalent to say the condition ‖F (t, ·)‖BO ∈ L1([0, T ]), where
‖·‖BO denotes the seminorm defined in [20, p. 125] on the space of functions
of bounded variations.

In [12, 14] the authors dealt with the p-laplacian case with potentials F
such that

|∇F (t, x)| ≤ b1(t)|x|α + b2(t),

where b1, b2 ∈ L1([0, T ]) and α < p. Such potentials F were called sublinear
nonlinearities. In this paper, we are interested in studying this type of
potentials, but with more general bounds on ∇F which include N -functions
instead of power functions; namely, we will consider inequalities like

(A5) |∇F (t, x)| ≤ b1(t)Φ′0(|x|) + b2(t),

with Φ0 a differentiable N -function and b1, b2 ∈ L1([0, T ]).
Next, we give our main result. Here, we will amend an erroneous as-

sumption made at the end of the proof of [1, Theorem 6.2]. There, it was
assumed without discussion that a minimum of I was on the domain of
differentiability of I.

Theorem 3.2. Let Φ be an N -function whose complementary function Ψ
satisfies the ∆∞2 -condition and suppose that Φ∗ is given by Lemma 3.1.
Assume that the lagrangian L ∈ A(a, b, c, λ, f,Φ) satisfies (A4), where the
potential F fulfills (C), (A) and the following conditions:

1. (A5) for some N -function Φ0 such that Φ0 Î Φ∗.
2.

(A6) lim
|x|→∞

∫ T
0 F (t, x) dt

Ψ1(Φ′0(2|x|))
= +∞,

for some N -function Ψ1 with complementary function Φ1 satisfying
Φ0 Î Φ1 Î Φ∗.
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Then the action integral I has a minimum u ∈ W 1LΦ([0, T ],Rd) such
that d(u′, EΦ) ≤ λ. If d(u′, EΦ) < λ, the lagrangian L(t, x, y) is strictly
convex with respect to y ∈ Rd and DyL(0, x, y) = DyL(T, x, y) then u solves
the problem (1).

Remark 1. If Φ ∈ ∆∞2 the condition d(u′, EΦ) ≤ λ is automatically satis-
fied.

4. Proofs. The following result is analogous to some lemmata in W 1,p, see
[17, Lemma 1].

Lemma 4.1. ‖u‖W 1LΦ →∞ if and only if (|u|+ ‖u′‖LΦ)→∞.

Proof. By the decomposition u = u + ũ and some elementary operations,
we get

(12) ‖u‖LΦ = ‖u+ ũ‖LΦ ≤ ‖u‖LΦ + ‖ũ‖LΦ = |u|‖1‖LΦ + ‖ũ‖LΦ .

It is known that L∞ ↪→ LΦ, i.e. there exists C1 = C1(T ) > 0 such that for
any ũ ∈ L∞ we have

‖ũ‖LΦ ≤ C1‖ũ‖L∞ ;

and, applying Sobolev’s inequality, we obtain Wirtinger’s inequality, that is
there exists C2 = C2(T ) > 0 such that

(13) ‖ũ‖LΦ ≤ C2‖u′‖LΦ .

Therefore, from (12), (13) and (9), we get

‖u‖W 1LΦ ≤ C3(|u|+ ‖u′‖LΦ)

where C3 = C3(T ). Finally, as ‖u‖W 1LΦ → ∞ we conclude that (|u| +
‖u′‖LΦ)→∞.

For the converse, we observe that

|u| ≤ 1

T
‖1‖LΨ‖u‖LΦ .

Hence
|u|+ ‖u′‖LΦ ≤ C4(‖u‖LΦ + ‖u′‖LΦ),

and the property under consideration is proved. �

Lemma 4.2. Let Φ be a not necessarily differentiable N -function and let
ϕ be the right continuous derivative of Φ. Then Φ ∈ ∆∞2 (Φ ∈ ∆2) if and
only if ϕ ∈ ∆∞2 (ϕ ∈ ∆2).

Proof. It is a consequence of [8, Theorem 11.7] and [8, Remark 5, p. 87]. �

The following lemma improves the result on the comment at the beginning
of [7, p. 24].
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Lemma 4.3. Let Ψ be an N -function satisfying the ∆∞2 -condition. Then
there exists an N -function Ψ∗ such that Ψ∗ ∈ ∆2, Ψ ≤ Ψ∗ and for every
a > 1 there exists x0 = x0(a) ≥ 0 such that Ψ∗(x) ≤ aΨ(x), for every
x ≥ x0. In particular, every ∆2 near infinity N -function is equivalent to a
∆2 N -function.

Proof. We can assume that Ψ /∈ ∆0
2. Consequently, from Lemma 4.2 we

have that the right continuous derivative ψ of Ψ does not satisfy the ∆0
2-

condition. Therefore, we obtain a sequence of positive numbers xn, n =
1, 2, . . ., such that xn → 0,

(14) 2xn+1 < xn < 2xn and ψ(2xn) > 2ψ(xn).

We define ψ∗ inductively for n on the interval [2xn,+∞) of the following
way. We put ψ∗(x) = ψ(x) when x ∈ [2x1,+∞). Suppose ψ∗ defined on
[2xn,+∞) and we set ψ∗ on [2xn+1, 2xn) by

ψ∗(x) =

{
max

{
ψ(x), ψ

∗(2xn)
2xn

(x− xn) + ψ∗(2xn)
2

}
, if xn ≤ x < 2xn

ψ∗(2xn)
2 , if 2xn+1 ≤ x < xn.

Moreover, we define ψ∗(0) = 0.
Next, we will use induction to prove that

1. ψ∗(xn) = 1
2ψ
∗(2xn),

2. ψ∗ is non-decreasing [2xn,+∞),
3. ψ ≤ ψ∗ in [2xn,+∞).

We suppose n = 1. Then items 2 and 3 are obvious. From (14) we have

ψ(x1) <
1

2
ψ(2x1) =

1

2
ψ∗(2x1),

and this inequality implies 1.
Assume that properties 1–3 hold for n > 1. Clearly ψ∗ is non-decreasing

on each interval [2xn+1, xn) and [xn, 2xn). Since ψ is right continuous and
ψ(xn) < 2−1ψ(2xn) ≤ 2−1ψ∗(2xn), then ψ∗ is continuous at xn. Therefore,
ψ∗ is non-decreasing on [2xn+1, 2xn). Suppose x ∈ [2xn+1, 2xn) and y ≥
2xn. From the definition of ψ∗, the inductive hypothesis, item 3 and item
2, we obtain

ψ∗(x) ≤ max{ψ(2xn), ψ∗(2xn)} = ψ∗(2xn) ≤ ψ∗(y).

This proves item 2 on the interval [2xn+1,+∞). Inequality in item 3 holds
by inductive hypothesis on [2xn,+∞) and it is obvious for x ∈ [xn, 2xn). If
x ∈ [2xn+1, xn), then ψ(x) ≤ ψ(xn) ≤ ψ∗(xn) = ψ∗(x). This proves 3 on
the interval [2xn+1,+∞).

Now, using (14) and the already proved item 3 for n + 1, we deduce
ψ(xn+1) < 2−1ψ(2xn+1) ≤ 2−1ψ∗(2xn+1). Then

ψ∗(xn+1) = max

{
ψ(xn+1),

1

2
ψ∗(2xn+1)

}
=

1

2
ψ∗(2xn+1),
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i.e. we have just proved item 1.
We note that ψ∗(xn+1) = 2−1ψ∗(2xn+1) ≤ 2−1ψ∗(xn). Consequently

ψ∗(x)→ 0 when x→ 0. Therefore ψ∗ is right continuous at 0 and indeed it
is right continuous on [0,+∞). Moreover, since ψ(x) = ψ∗(x) for x ≥ 2x1

being ψ the right continuous derivative of an N -function, ψ∗(x) → +∞
when x→ +∞. In this way,

Ψ∗(x) :=

∫ x

0
ψ∗(t)dt

defines an N -function.
Let’s see that ψ∗ satisfies the ∆2-condition. It is sufficient to prove that

ψ∗ satisfies the ∆0
2-condition. To this end, suppose that x ≤ x1 and take

n ∈ N such that xn+1 ≤ x ≤ xn. Then

ψ∗(2x) ≤ ψ∗(2xn) = 2ψ∗(2xn+1) = 4ψ∗(xn+1) ≤ 4ψ∗(x).

Thus, Ψ∗ ∈ ∆2 and Ψ ≤ Ψ∗.
It remains to show the inequality Ψ∗(x) ≤ aΨ(x), for every a > 1 and

sufficiently large x. We take x0 sufficiently large to have

1

a− 1

∫ 2x1

0
ψ∗(t)− ψ(t)dt < Ψ(x0).

Therefore, if x > max{x0, 2x1} then

Ψ∗(x) = Ψ(x) +

∫ 2x1

0
ψ∗(t)− ψ(t)dt < Ψ(x) + (a− 1)Ψ(x) = aΨ(x).

The last statement of the lemma is a consequence of Ψ(ax) > aΨ(x) when
a > 1. �

The following lemma is essentially known, because it is basically a conse-
quence of the fact that Ψ ∈ ∆∞2 if and only if Ψ ½ Ψ, [10, Proposition 4, p.
20] and [10, Corollary 10, p. 30]. However, we prefer to include an alterna-
tive proof, as we do not see clearly that the results of [10] contemplate the
case of N -functions satisfying the ∆2-condition.

Lemma 4.4. Let Φ,Ψ be complementary functions. The next statements
are equivalent:

1) Ψ ∈ ∆2 (Ψ ∈ ∆∞2 ).
2) There exists an N -function Φ∗ such that

(15) Φ(rs) ≥ Φ∗(r)Φ(s) for every r ≥ 1, s ≥ 0 (r ≥ 1, s ≥ 1).

Remark 2. We want to emphasize that the difference between the conclu-
sions in item 2 of the previous lemma is that (15) holds for s ≥ 0 or s ≥ 1
depending on Ψ ∈ ∆2 or Ψ ∈ ∆∞2 , respectively.
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Proof. In virtue of the comment that precedes the lemma, we only consider
the case Ψ ∈ ∆2.

1)⇒2). As a consequence of the ∆2-condition on Ψ, (6) and (7), we get
for every 1 < ν < αΦ a constant K = Kν > 0 such that

Φ(rs) ≥ KrνΦ(s),

for any 1 < ν < αΦ, s ≥ 0 and r > 1. This proves (15) with Φ∗(r) = krν ,
which is an N -function.

2)⇒1). Next, we follow [10, p. 32, Proposition 13] and [10, p. 29, Propo-
sition 9]. Assume that

Φ∗(r)Φ(s) ≤ Φ(rs) r > 1, s ≥ 0.

Let u = Φ∗(r) ≥ Φ∗(1) and v = Φ(s) ≥ 0. By a well known inequality [10,
p. 13, Proposition 1] and (15), for u ≥ Φ∗(1) and v > 0 we have

uv

Ψ−1(uv)
≤ Φ−1(uv) ≤ Φ∗−1(u)Φ−1(v) ≤ 4uv

Ψ∗−1(u)Ψ−1(v)
,

then

Ψ∗−1(u)Ψ−1(v) ≤ 4Ψ−1(uv).

If we take x = Ψ−1
1 (u) ≥ Ψ−1

1 (Φ∗(1)) and y = Ψ−1(v) ≥ 0, then

Ψ
(xy

4

)
≤ Ψ∗(x)Ψ(y).

Now, taking x ≥ max{8,Ψ∗−1(Φ∗(1))} we get that Ψ ∈ ∆2. �

Remark 3. Note that if Φ∗ satisfies (15) then Φ∗ ≺ Φ.

Proof of Lemma 3.1. First, we suppose that Ψ ∈ ∆2. Let Φ∗ be an N -
function satisfying (15). By the inequality (8), for r > 1 we have∫ T

0
Φ(|u|) dt ≥ Φ∗(r)

∫ T

0
Φ(r−1|u|) dt ≥ Φ∗(r){r−1‖u‖LΦ − 1}.

Now, we choose r =
‖u‖

LΦ

2 ; and, as ‖u‖LΦ →∞ we can assume r > 1. From
[10, Theorem 2 (b)(v), p. 16] and Φ0 Î Φ∗, we get

lim
‖u‖

LΦ→∞

∫ T
0 Φ(|u|) dt

Φ0(k‖u‖LΦ)
≥ lim
‖u‖

LΦ→∞

Φ∗
(
‖u‖

LΦ

2

)
Φ0(k‖u‖LΦ)

=∞.

Now, if Ψ ∈ ∆∞2 but Ψ /∈ ∆2, we use Lemma 4.3. Then, there exists an
N -function Ψ1 such that Ψ1 ∈ ∆2 and Ψ1 ∼ Ψ ≤ Ψ1. Let Φ1 be the comple-
mentary function of Ψ1. Then Φ ∼ Φ1 ≤ Φ (see [7, Theorem 3.1]) and ‖·‖LΦ

and ‖·‖LΦ1 are equivalent norms (see [7, Theorem 13.2 and Theorem 13.3]).
Thus, there exists an N -function Φ∗1 ≺ Φ1 (consequently Φ∗1 ≺ Φ) satisfying
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(10) with the N -functions Φ1 and Φ∗1 instead of Φ and Φ∗, respectively. Let
C > 0 be a constant such that ‖·‖LΦ ≤ C ‖·‖LΦ1 . Then

lim
‖u‖

LΦ→∞

∫ T
0 Φ(|u|) dt

Φ0(k‖u‖LΦ)
≥ lim
‖u‖

LΦ→∞

∫ T
0 Φ1(|u|)dt

Φ0(kC‖u‖LΦ1 )
= +∞.

Finally, if Φ0 is an N -function, then Φ0(x) ≥ α|x| for α small enough and
|x| > 1. Therefore (10) holds for Φ0(x) = |x|, then [1, Lemma 5.2] implies
Ψ ∈ ∆∞2 . �

Definition 4.5. We define the functionals JC,ϕ : LΦ → (−∞,+∞] and
HC,ϕ : Rn → R, where C > 0 and ϕ : [0,+∞)→ [0,+∞), by

JC,ϕ(u) := ρΦ (u)− Cϕ (‖u‖LΦ) ,

and

HC,ϕ(x) :=

∫ T

0
F (t, x)dt− Cϕ(2|x|),

respectively.

Proof of Theorem 3.2. By the decomposition u = u + ũ, Cauchy–
Schwarz’s inequality and (A5), we have∣∣∣∣∫ T

0
F (t, u)− F (t, u) dt

∣∣∣∣ =

∣∣∣∣∫ T

0

∫ 1

0
∇F (t, u+ sũ(t)) · ũ(t) ds dt

∣∣∣∣
≤
∫ T

0

∫ 1

0
b1(t)Φ′0(|u+ sũ(t)|)|ũ(t)| ds dt+

∫ T

0

∫ 1

0
b2(t)|ũ(t)| ds dt

=: I1 + I2.

(16)

First, by Hölder’s and Sobolev–Wirtinger’s inequalities we estimate I2 as
follows

(17) I2 ≤ ‖b2‖L1‖ũ‖L∞ ≤ C1‖u′‖LΦ ,

where C1 = C1(‖b2‖L1 , T ).
Note that, since Φ′0 is an increasing function and Φ′0(x) ≥ 0 for x ≥ 0,

then Φ′0(a+ b) ≤ Φ′0(2a) + Φ′0(2b) for every a, b ≥ 0. In this way, we have

(18) Φ′0(|u+ sũ(t)|) ≤ Φ′0(2|u|) + Φ′0(2‖ũ‖L∞),

for every s ∈ [0, 1]. Now, inequality (18), Hölder’s and Sobolev–Wirtinger’s
inequalities imply that

I1 ≤ Φ′0(2|u|)‖b1‖L1‖ũ‖L∞ + Φ′0(2‖ũ‖L∞)‖b1‖L1‖ũ‖L∞

≤ C2

{
Φ′0(2|u|)‖u′‖LΦ + Φ′0(C3‖u′‖LΦ)‖u′‖LΦ

}
,

(19)

where C2 = C2(T, ‖b1‖L1) and C3 = C3(T ). Next, by Young’s inequality
with complementary functions Φ1 and Ψ1, we obtain

Φ′0(2|u|)‖u′‖LΦ ≤ Ψ1(Φ′0(2|u|)) + Φ1(‖u′‖LΦ).(20)
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We have that any N -function Φ0 satisfies the inequality xΦ′0(x) ≤ Φ0(2x)
(see [10, p. 17]). Moreover, since Φ0 Î Φ1 there exists x0 = x0(Φ0,Φ1, T ) ≥
0 such that Φ0(2C3x) ≤ Φ1(x) for every x ≥ x0. Therefore, Φ0(2C3x) ≤
Φ1(x) + C4 with C4 = Φ0(2x0). The previous observations imply that

(21) Φ′0(C3‖u′‖LΦ)‖u′‖LΦ ≤ C−1
3 (Φ1(‖u′‖LΦ) + C4).

From (19), (20), (21) and (17), we have

I1 + I2 ≤ C5

{
Ψ1(Φ′0(2|u|)) + Φ1(‖u′‖LΦ) + ‖u′‖LΦ + 1

}
,(22)

with C5 depending on Φ0,Φ1, T, ‖b1‖L1 and ‖b2‖L1 .
Finally, using (A4), (16) and (22), we get

I(u) ≥ ρΦ(u′) +

∫ T

0
F (t, u) dt

= ρΦ(u′) +

∫ T

0
[F (t, u)− F (t, u)] dt+

∫ T

0
F (t, u) dt

≥ ρΦ(u′)− C5Φ1(‖u′‖LΦ) +

∫ T

0
F (t, u) dt− C5Ψ1(Φ′0(2|u|))− C5

≥ JC5,Φ1(u′) +HC5,Ψ1◦Φ′0(u)− C5.

Let {un} be a sequence in W 1LΦ with ‖un‖W 1LΦ → ∞ and we have
to prove that I(un) → ∞. On the contrary, suppose that for a subse-
quence, still denoted by un, I(un) is upper bounded, i.e. there exists M > 0
such that |I(un)| ≤ M . As ‖un‖W 1LΦ → ∞, from Lemma 4.1, we have
|un| + ‖u′n‖LΦ → ∞. Passing to a subsequence is necessary, still denoted
un, we can assume that |un| → ∞ or ‖u′n‖LΦ → ∞. Now, Lemma 3.1 im-
plies that the functional JC5,Φ1(u′) is coercive; and, by (A6), the functional
HC5,Ψ1◦Φ′0(u) is also coercive, then JC5,Φ1(u′n)→∞ or HC5,Ψ1◦Φ′0(un)→∞.
From the condition (A) on F , we have that on a bounded set the func-
tional HC5,Ψ1◦Φ′0(un) is lower bounded and also JC5,Φ′0

(u′n) ≥ 0. Therefore,
I(un)→∞ as ‖un‖W 1LΦ →∞ which contradicts the initial assumption on
the behavior of I(un).

Let {un} ⊂ W 1LΦ be a minimizing sequence for the problem
inf{I(u) | u ∈ W 1LΦ}. Since I(un), n = 1, 2, . . ., is upper bounded, the
previous part of the proof shows that {un} is norm bounded. Hence, by
virtue of [1, Corollary 2.2], we can assume, taking a subsequence if neces-
sary, that un converges uniformly to a T -periodic continuous function u. As
{u′n} is a norm bounded sequence in LΦ, there exists a subsequence, again
denoted by u′n, that converges to a function v ∈ LΦ in the weak* topology
of LΦ. From this fact and the uniform convergence of un to u, we obtain
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that∫ T

0
ξ′ · u dt = lim

n→∞

∫ T

0
ξ′ · un dt = − lim

n→∞

∫ T

0
ξ · u′n dt = −

∫ T

0
ξ · v dt,

for every T -periodic function ξ ∈ C∞([0, T ],Rd) ⊂ EΨ. Thus v = u′ a.e.
t ∈ [0, T ] (see [9, p. 6]) and u ∈W 1LΦ([0, T ],Rd).

Now, taking into account the relations
[
L1
]∗

= L∞ ⊂ EΨ and LΦ ⊂ L1,
we have that u′n converges to u′ in the weak topology of L1. Consequently,
from the semicontinuity of I (see [1, Lemma 6.1]) we get

I(u) ≤ lim inf
n→∞

I(un) = inf
v∈W 1LΦ

T

I(v).

Hence u ∈W 1EΦ
T is a minimum of I on W 1LΦ

T .
For the second part of the theorem, assume that u is a minimum of I with

d(u′, EΦ) < λ. Since I is Gâteaux differentiable at u (see [1, Theorem 3.2]),
therefore I ′(u) ∈ (W 1LΦ

T )⊥. Thus,∫ T

0
DyL(t, u(t), u′(t)) · v′(t)dt = −

∫ T

0
DxL(t, u(t), u′(t)) · v(t)dt,

for every v ∈W 1LΦ
T . From [1, Eqn. (26)] we have

DyL(t, u(t), u′(t)) ∈ LΨ([0, T ],Rn) ↪→ L1([0, T ],Rn);

and, from [1, Eqn. (24)], it follows that DxL(t, u(t), u′(t)) ∈ L1([0, T ],Rn).
Consequently, from [9, p. 6] (note that W 1LΦ

T includes the periodic test func-
tions) we obtain the absolutely continuity of DyL(t, u(t), u′(t)) and that the
differential equations in (1) are satisfied. The strict convexity of L(t, x, y)
with respect to y and the T -periodicity with respect to t imply the boundary
conditions in (1) (see [1, Theorem 4.1]). �

5. An example. In this section we develop an application of our main
result so that the reader can appreciate the innovations that brings.

The main novelty of our work is that we obtain existence of minima of I
associated with lagrangian functions L(t, x, y) that do not satisfy a power-
like grow condition on y.

In fact, it is possible to apply Theorem 3.2 to lagrangians L = L(t, x, y)
with exponential grow on the variable y. For example, suppose that

L(t, x, y) = f(y) + F (t, x),

with f : Rn → R differentiable, strictly convex and f(y) ≥ e|y|. We define
for n ≥ 1

Φ(y) = ey −
n−1∑
i=0

yi

i!
.

It is easy to see that Φ : [0,+∞) → [0,+∞) is an N -function. From [8,
Ex. 3, p. 85] we know that αΦ = n. As a consequence of (6) we have
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βΨ = n
n−1 < ∞ and consequently Ψ ∈ ∆2. From (7), for every 1 < p < n

there exists Cp > 0 such that

Φ(rs) ≥ CprpΦ(s), r > 1, s > 0.

Then, the complementary pair (Φ,Ψ) and the N -function Φ∗(r) := rp satisfy
Lemma 3.1 for every 1 < p < n. Now, we fix arbitrary real numbers 1 <
p0 < p1 < p < n and we consider Φi = rpi , i = 0, 1. Then Φ0 Î Φ1 Î Φ∗.
The conditions (A5) and (A6) become

(23) |∇F (t, x)| ≤ b1(t)|x|p0−1 + b2(t), b1, b2 ∈ L1([0, T ]),

and

(24) lim
|x|→∞

∫ T
0 F (t, x) dt

|x|(p0−1)q1
= +∞, q1 = p1/(p1 − 1),

respectively. Since n is an arbitrary positive integer, the pair p0 and p1

of real numbers with 1 < p0 < p1 is also arbitrary. For clarity, assume
that F (t, x) = b(t)|x|σ, for some 1 < σ < ∞ and b ∈ L1([0, T ]). We
note that this F satisfies (A) and (C). Now, we choose any 1 < p0 with
p0 − 1 < σ < p0 and we take p1 with p1 > σ(σ − p0 + 1)−1. Then, (23)
and (24) hold. In conclusion, the action integral I associated with the
Lagrangian L(t, x, y) = f(y) + b(t)|x|σ has minimum for any 1 < σ.
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