
AI XV, 2 (2015) 7 - 13 ANNALES UMCS INFORMATICA DOI: 10.1515/umcsinfo-2015-0005

Transforming Source Code to Mathematical Relations for Performance

Evaluation

Habib Izadkhah1∗

1Department of Computer Science,

Faculty of Mathematical Sciences, University of Tabriz

Tabriz, Iran

Abstract � Assessing software quality attributes (such as performance, reliability, and security) from source

code is of the utmost importance. The performance of a software system can be improved by its parallel

and distributed execution. The aim of the parallel and distributed execution is to speed up by providing the

maximum possible concurrency in executing the distributed segments. It is a well known fact that distributing

a program cannot be always caused speeding up the execution of it; in some cases, this distribution can have

negative e�ects on the running time of the program. Therefore, before distributing a source code, it should be

speci�ed whether its distribution could cause maximum possible concurrency or not. The existing methods

and tools cannot achieve this aim from the source code. In this paper, we propose a mathematical relationship

for object oriented programs that statically analyze the program by verifying the type of synchronous and

asynchronous calls inside the source code. Then, we model the invocations of the software methods by

Discrete Time Markov Chains (DTMC). Using the properties of DTMC and the proposed mathematical

relationship, we will determine whether or not the source code can be distributed on homogeneous processors.

The experimental results showed that we can specify whether the program is distributable or not, before

deploying it on the distributed systems.

Keywords: Distributed Software Systems, Source Code, Speed-up, Discrete Time Markov Chains

(Received: 18.05.2015; Revised: 21.07.2015; Published: 24.09.2015)

1 Introduction

The need for high speed computation in large-scale sci-

enti�c applications for analyzing complex scienti�c prob-

lems is very high, so that the common computers would

not be able to satisfy it. Therefore, nowadays, using the

distributed systems and processing power of numerous

processors or cores to reach the favorable speed is known

as a fact [1]. Yet, as a fact, creating a large scale dis-

tributed program is always more di�cult than creating

a non-distributed program with the same functionality,

as the creation of a distributed system can change into a

tedious and error-prone task.

Since the computational programs have many compu-

tations, so its execution requires more time. Therefore, if

a program does not have the ability to distribute, there

will be a lot of waste time. The most important time of a

distributed program is invocation or communication time

of their methods. These calls spend the most execution

time. Certainly, by distributing a program, if two classes

of it can be distributed on two di�erent machines, the in-

vocations between those classes will turn into the remote

calls. As reference [2] speci�es, in some cases, the program

∗izadkhah@tabrizu.ac.ir

distribution can have negative e�ects on the running time

of the program. When there are many calls between two

methods, the network tra�c increases and as a result, ef-

�ciency of the distributed program will be lower than the

initial sequential program. So, regarding that construct-

ing the distributed program from the source code is com-

plex and time consuming, it is better to predict whether

the source code is distributable or not, before distributing

a program on the machines. None of the existing methods

and tools can to achieve this goal from source code.

1.1 The Problem and the Claim

The overall problem addressed in this paper is to spec-

ify whether the source code has the potential for paral-

lelization on homogeneous processors; i.e., in case of dis-

tribution, whether it brings the maximum concurrency

compared to the sequential mode. We claim that it is

possible to provide a solution to the mentioned problem

by doing the following tasks:

(1) Modeling software's method invocations by

Markov chains as (described in section III) as :

• Markov chains nodes represent methods

and edges between nodes represent calls

between methods,

7

AI XV, 2 (2015) 7 - 13 ANNALES UMCS INFORMATICA DOI: 10.1515/umcsinfo-2015-0005

• weight of the edges in Markov chains, shows

the number of calls between the methods.

(2) Determine the maximum potential of dis-

tributability of each method (described in

section III)

(3) Determine the expected performance of the

source code from obtained Markov chain (de-

scribed in section III)

(4) ompute the speedup. Speedup is de�ned as the

execution time of a sequential program divided

by the execution time of a parallel program

that computes the same result. In particular,

Speedup = Ts/Tp where Ts the sequential time

and Tp is the expected performance.

1.2 The Paper Outline

The other sections of the paper are organized as fol-

lows: A literature review on the researches conducted by

others is discussed in section II. In section III, we propose

a mathematical relation of time estimation by which the

potential for distribution of the source code can be spec-

i�ed. Case study is discussed in sections IV. At the end,

section V deals with conclusions and future works.

2 Related Work and Background

The complicated computational applications cannot be

executed in an acceptable time on the computation ma-

chine, so they should be divided into small tasks. We can

use distributed or multiprocessors systems for executing

of these tasks. Nowadays, most distributed and multi-

processor tools use scheduling methods for distribution.

The aim of scheduling is execution of a program on several

processors such that the time of execution of the whole

program will be minimal, considering the time of tasks

and communication time between the processors [3]. The

scheduling methods can be divided into two groups; in-

cluding those which can assurance the quality of service,

and those which cannot. The former scheduling systems

are preferred to the latter ones. CONDOR [4], SGE [5],

PBS [6] and LSF [7] can be referred to as some of the

most popular and widely used scheduling systems. These

scheduling systems do not guarantee the service quality.

These tools perform the scheduling only at the job level

and not at applications'. Unlike the above systems, there

are some which observe the service quality in schedul-

ing. Such systems observe Job Characteristics, Planning

in Scheduling, Rescheduling and Scheduling Optimization

in their scheduling. AppleS [8], GrADS [9] and Nimrod/G

[10] are among the most famous systems of this kind.

Moreover, none of the aforementioned schedulers can pre-

dict whether an o�ered program has the potential to be-

come parallelized, or whether speedup can be achieved in

case of parallelization. Also, a tool called DAGC is pre-

sented to �nd the optimal architecture distribution [11].

DAGC uses clustering method for �nding optimal archi-

tecture distribution. The tool uses a mathematical rela-

tion to measure the quality of the obtained clusters. The

main problem in mathematical relation used in this tool

and such tools is described above it does not have the abil-

ity to determine whether a program has the capability of

being parallel or not. In the previous work [12], we pro-

posed an analytical model for determining distributability

of a speci�c method. However, our method in the pre-

vious work cannot determine overall distributability of a

program; also, the e�ectiveness of each method is not con-

sidered in the distribution of it. In this research, we want

to determine the overall distributability of a program us-

ing DTMC considering the e�ectiveness of each method.

2.1 Overview of Discrete Time Markov Chains

In this section, we discuss Discrete Time Markov

Chains (DTMCs), which we use to model the source

code's invocations [13]. A DTMC is described by its

states and transition probabilities between the states;

where we indicate the transition probabilities between

the states as one-step transition probability matrix. The

one-step transition probability is the probability that the

process, when in state i at time n, will next transition to

state j at time n+ 1. We write:

(1) Pij(n) = P (Xn+1 = j |Xn = i) .

Note that all the elements in a row of P add up to 1 and

each of the Pi,j 's lie in the range [0, 1]. For our purpose,

we use absorbing DTMC. One DTMC is called absorb-

ing if at least one state has no outgoing transition. Each

DTMC with several �nal states can be converted into an

absorbing DTMC. It is performed by adding a �nal state

to DTMC. Next, a transition is drawn to the added ab-

sorbing state from all the �nal states available in DTMC.

We can partition the transition probability matrix of an

absorbing DTMC as:

(2) P =

[
1 0

C Q

]
.

If the DTMC has n states with m absorbing states, Q

would be a (n−m)× (n−m) sub-stochastic matrix (with

at least one row sum < 1) describing the probabilities of

transition only between transient states, 1 being a m×m
identity matrix, 0 would be an n×(n×m) matrix of zeros,

and C would be an (n − m) × m matrix describing the

probabilities of transition between transient states and

absorbing state. The (i, j)-th entry of Qk denotes the

probability of arriving to state sj after exactly k steps,

8

AI XV, 2 (2015) 7 - 13 ANNALES UMCS INFORMATICA DOI: 10.1515/umcsinfo-2015-0005

starting from state si. Hence the inverse matrix (I−Q)−1

exists. This is called the fundamental matrix F :

(3) F = (I −Q)−1 = I +Q+Q2 +Q3 + · · ·
∞∑
l=0

Q1 .

Let Xi,j represent the number of visits to state j start-

ing from the state i before process is absorbed. It can

be shown that the expected number of visits to state j

with starting from state i (i.e, E[Xi,j]), before entering

an absorbing state is given by the (i, j)-th entry of the

fundamental matrix F [14, 15]. So

(4) E[Xi,j] = mi,j ,

mi,j is the (i, j)-th entry of the fundamental matrix F .

The variance of the expected number of visits could also

be computed using the fundamental matrix. Let σi,j de-

note the variance of the number of visits to the state j

starting from state i. De�ne FD = [mdi,j] such that:

(5) mdi,j =

{
mi,j if i = j

0 otherwise .

In other words, FD represents a diagonal matrix with

the diagonal entries the same as that of F . If we de�ne

F2 = [m2
i,j], we have:

(6) σ2 = F (2FD − I)− F2 .

Hence:

(7) V ar[Xi,j] = σ2
i,j .

3 Predicting Performance Of A Source

Code

In this section we describe our approach for modeling a

software system that method invocations are represented

by an absorbing DTMC; such that DTMC states repre-

sent the software methods, and the transitions between

states represent transfer of control from one method to

another. We assume that the system consists of n meth-

ods, and has a single initial state denoted by 1, and a

single absorbing or exit state denoted by n. Consider

Fig. 1. Numbers on edges indicate the probability of

movement from one method to another method. In this

paper the probability to go from method x to method y

is computed as [number of method call from x to y / to-

tal number of out method call of x (i.e. fan out)]. The

method invocations of the source code are given by the

one-step transition probability matrix P .

Figure 1. Modelling method invoca-

tions for a sample program with DTMC

Equation (8) shows the one-step transition probability

matrix P for Figure 1.

(8) P =



0 0.5 0.5 0 0 0 0

0 0.25 0 0.25 0.25 0 0.25

0 0 0 0 0.5 0.5 0

0 0 0 0 0 0 1

0 0 0 0.5 0 0 0.5

0 0 0 0 0 0 1

0 0 0 0 0 0 1


.

Let PDi denotes the potential of distributability of

method i that indicated by node i in the DTMC. Dur-

ing a single execution, the performance of the software,

denoted by the random variable P is given by:

(9) P =

n∏
i

PD
X1,i

i .

where X1,i denotes the number of visits to the transient

state i starting from the state 1. Therefore, the expected

performance of a software system is as follows:

(10) E[P] = E

[
n∏
i

PD
X1,i

i

]
=

n∏
i

E

[
PD

X1,i

i

]
.

Thus to obtain the expected performance of the source

code, we need to obtain E
[
PD

X1,i

i

]
, which is the ex-

pected potential of distributability of method i for a single

run of the software. Using the Taylor series expansion,

E
[
PD

X1,i

i

]
in relation 10 can be written as relation 11.

(11)

E
[
PD

X1,i

i

]
= PD

E[X1,i]
i +

1

2
(PD

E[X1,i]
i)(logPDi)

2V arPDi .

Let E[X1,i] = m1,i and V ar[Xi,j] = σ2
i,j , relation (11)

may be written as:

9

AI XV, 2 (2015) 7 - 13 ANNALES UMCS INFORMATICA DOI: 10.1515/umcsinfo-2015-0005

(12)

E
[
PD

X1,i

i

]
= PD

m1,i

i +
1

2
(PD

m1,i

i)(logPDi)
2σ21, i .

m1,i is the expected number of visits to state i and σ2
1,i

is the variance of the number of visits to state i. m1,i and

σ2
1,i can be obtained from DTMC analysis. Relation (10)

can thus be written as:

(13)

E[P] =

[
n∏
i

(PD
m1,i

i +
1

2
(PD

m1,i

i)(logPDi)
2σ2

1,i)

]
.

3.1 Computing Potential Of Distributability Of

Method i

In this section, we are going to determine Potential of

Distributability (PD) of each method to determine over-

all performance (i.e., P) of a program. For achieve this

aim, we determine PDi, to measure the values of di�erent

distributions for method i. Invocation (or call) between

methods are two types of asynchronies and sequential.

If by distributing a program, two methods of the pro-

gram distribute in two di�erent machines, calls between

those methods will turn into asynchronies; and in sequen-

tial call, two methods of the program are placed on the

same machine. Considering of communication time, our

method considers two asynchronies and sequential mode

for each call; to determine which mode (sequential or par-

allel) can reach a maximum speed up.

To estimate the speed-up, the execution time of all in-

structions should be estimated. The execution time of all

instructions, except the nested calls, can be computed by

the existing methods [16-17]. The existing methods can-

not be applied easily to calculate the execution time of

nested calls because the execution time of a caller method

is depending on the fact that the calls inside it are carried.

out in a sequential or asynchronous manner. For exam-

ple, consider Listing 1. In the Listing 1, in the time t1,

the current method (caller method) will continue to work

in a non-stop manner until reaching the use point of the

results of a callee method. We call these points' synchro-

nization points [18] and is shown by S. So, one method

continues to work after calling a method from a remote

locations (other distributed segments) and waits for a call

response only when requires that response. As shown in

Listing 1, the level of concurrency in executing the caller

and the callee methods depends on the time interval be-

tween the call point and use point of the call results. The

problem is the estimation of this interval time. As shown

in Listing 1, there may be other calls between the call

point and use point and the execution of these calls can

be either synchronous or asynchronous.

Listing 1. Several nested calls

Method m () {

Some statements // t0

Call R

Some statements // t1

Use R // S

Some statements // t2

}

Method R () {

Some statements // t3

Call P

Some statements // t4

Use P // S

Some statements // t5

}

Method P () {

Some statements // t6

}

3.1.1 Estimated execution time for sequential mode

In Listing 1, considering methods m, R and P , if all of

them executed sequentially (or synchronously), the esti-

mated execution time will be calculated as follows:

(14) PDsequential
m = t0 + t3 + t6 + t4 + t5 + t1 + t2 .

We can write above relation for Listing 1 in the re-

cursive form and expand it for the nested call with any

depth.

(15) PDsequential
m = t0 + PDsequential

R + t1 + t2 .

(16) PDsequential
R = t3 + PDsequential

P + t4 + t5 .

(17) PDsequential
P = t6 .

Generally, for the sequential call, estimated execution

time relation, is as relation:

(18) PDsequential
m =

∑
ti + PDsequential

R .

3.1.2 Estimated execution time for asynchronous

mode

Now we calculate the estimated execution time when

methods are executed parallel (or asynchronously). See

again Listing 1. If methods m, R and P are executed

10

AI XV, 2 (2015) 7 - 13 ANNALES UMCS INFORMATICA DOI: 10.1515/umcsinfo-2015-0005

asynchronously, the estimated execution time will be cal-

culated as follows:

PDasynch
m = t0 + t1 + Iinit+

max(PDasynch
R − t1 + Ct + Iinit, 0)

+t2 .

(19)

PDasynch
R = t3 + t4 + Tinit+

max(PDasynch
P − t4 + Ct + Iinit, 0) + t5 .

(20)

(21) PDasynch
P = t6 .

Ct is the communication time and Iinit shows the prepara-

tion time for doing remote call. Generally, the estimated

time relation for the parallel (or asynchronous) is calcu-

lated as follows:

PDasynch
m =

∑
ti +

∑
Iiniti+

max(PDasynch
R − ti + Ct + Iinit, 0) .

(22)

3.1.3 Determining the Potential of Distribution

Considering the relations (18) and (22), the general

mathematical form of a PD relation is written as follows:

PDm =
∑

ti +
∑

ai ∗ PDIi +
∑

(1− ai)× (Iiniti+

max((PDIi + Ct)− ti + Iinit, 0)) .

(23)

In the above relation, depending on the call to be syn-

chronous or asynchronous, the value of ai is considered as

1 and 0, respectively. The goal is to determine ai, so that

this minimizes PDm . In the relation (23), the commu-

nication time is Ct and ti is the estimated time between

the callee point of Ii and the synchronization point of Si

(use point).

For example, to obtain PD for Listing 1, we need to

combine the estimated times for the asynchronous (re-

lation 22) and sequential execution (relations 15-17) as

follows:

PDm = t0 + a1 ∗ PDR + t1+

(1− a1)× (Iinit +max(PDR − t1 + Ct + Iinit, 0)) + t2 ,

PDR = t3 + a2 ∗ PDP + t4+

(1− a2)× (Iinit +max(PDP − t4 + Ct + Iinit, 0)) + t5 ,

GTEP = t6 .

(24)

In relation 24, the aim is to determine a1 and a2 in a

way to minimize PDm, PDR and PDP .

Listing 2. A sample program code

Class A {

Public void m () {

// some statements T1

B b=new B();

int r1 = b. m();

print (r1); //S1

C c=new C();

int r2= c. n();

D d=new D();

int r3= d.p();

// some statements T2

if (r2==1) {...} //S2

//some statements T3

F f=new F();

int r4= f.g();

If(r1>r2 && r1 >r3 && r1>r4)

{...} // S3 and S4

// some statements T4

}

} // class

Class B extends A{

static int m() {

// some statements T5

}

} // Class

Class C extends A{

static int n() {

// some statements T6

}

} // Class

Class D {

int p() {

D d=new D();

int r=d.p();

Print (r); //S5

F f=new F();

int r1= f.g();

If(r>r1) {...} // S6

}

} // Class

Class F {

// some statements T7

} // Class

Considering the program code in the Listring 2, PDA.m

can be written as (25).

11

AI XV, 2 (2015) 7 - 13 ANNALES UMCS INFORMATICA DOI: 10.1515/umcsinfo-2015-0005

PD(A.m) = T1 + a1 ∗ PD(B.m) + (1− a1) ∗ T (S1) + a2 ∗ PD(C.n) + a3 ∗ PD(D.p) + T2 + (1− a2) ∗ T (S2)+

T3 + a4 ∗ PD(F.g) + (1− a3) ∗ T (S3) + (1− a4) ∗ T (S4) + T4 ,

PD(B.m) = T5, PD(C.n) = T6, PD(D.p) = a5 ∗ PD(D.p) + (1− a5) ∗ T (S5) + a6 ∗ PD(F.g) + (1− a6) ∗ T (S6) ,

PD(F.g) = T7 ,

T (S1) = max(PD(B.m) + 2tc1 , 0) ,

T (S2) = max(T2 + a3 ∗ PD(D.p) + 2tc , 0) ,

T (S3) = max((PD(F.g) + 2tc4) + T3 + ((1− a2) ∗ T (S2) + T2), 0) ,

T (S4) = max((PD(F.g) + 2tc1 , 0) ,

T (S5) = max((PD(D.p) + 2tc1 , 0) ,

T (S6) = max((PD(F.g) + 2tc1 , 0) .

(25)

Sequential Time
(seconds)

Expected Distributed
Time (seconds) Speed-up

380 261 1.455

Table 1. Distributed execution times,

sequential execution times and speed-up

for Listing 2

The aim of PD relations in (25) is to determine a1, a2,

a3, a4 and a5 in a way to minimize PD(A.m), PD(B.m),

PD(C.n), PD(D.p) and PD(F.g). We use the Dantzig's

simplex algorithm [20] to determine the binary values of

ai (for synchronous call the value of ai is considered as 1

and for asynchronous calls, the value of ai is considered

as 0). Simplex method is a popular algorithm for linear

programming. Then, after determining PD for methods

m, n, p and g, we make DTMC for the program of Listing

2 and then we compute the potential of distributability

(using relation 24) for each method and then of course we

will determine expected performance (relation 12). Also,

the sequential execution time of the program is calculated

as well. Finally, the speedup is calculated by dividing the

sequential time to the expected performance. For rela-

tions (25) , the communication overhead is considered as

1 second and T1, T2, T3, T4 and T5 (execution time of

non-call statements) are considered as 40, 35, 45, 50 and

20 seconds. Table 1 shows the expected distributed po-

tential (using relation 13), sequential, and speed-up exe-

cution times for Listing 2. Since speed-up is bigger than

one, this indicates that the program is capable of parallel

execution; i.e., the parallel execution of the program is

faster than the sequential execution of the program.

4 Evaluation Result

In this section, we evaluate the performance of the pro-

posed method. We want to determine when the speed-up

achieved by our method is greater than one; the actual ex-

ecution will speed up. For achieve this goal, we use jDis-

tributor [2] tool. jDistributor is a tool for automatic dis-

tribution of the sequential program on the homogeneous

distributed systems using the Java Symphony middleware

[19]. The algorithm used in the jDistributor is a hierar-

chical clustering method and its goal is to �nd an appro-

priate clustering for distribution. We use the well-known

travelling salesman problem (TSP) for evaluating of the

proposed method. We compute PDsequence and PDasyn

from source code. We then predict from PD relation, the

estimated time of the parallel and sequential execution

for di�erent graph nodes and then calculate speed-up by

them. Afterwards, we distribute the TSP on the network

including three computers by use of the jDistributor tool

and then we calculate the parallel and sequential execu-

tions time. The results are shown in Table 2.

5 Conclusion

In this paper, we introduced a new approach to spec-

ify whether the source code is distributable or not, before

the distribution. For achieve this goal, by considering

asynchronous and sequential calls, a mathematical rela-

tionship was proposed to measure di�erent distributions

values from the same program code. Then, we model the

software's method invocations by Discrete Time Markov

Chains (DTMC). DTMC and its properties and proposed

mathematical relationship can determine whether or not

the source code distribution capabilities on homogeneous

processors.

12

AI XV, 2 (2015) 7 - 13 ANNALES UMCS INFORMATICA DOI: 10.1515/umcsinfo-2015-0005

Graph No. Estimated Execution Time Actual Execution Time
(Using jDistributor tool [2])

Nodes Edges
Sequential Time
(using relation 18)

Expected Distributed
Time (using relations

13 and 23)
Speed-up

Sequential Time
(millisecond)

Distributed Time
(millisecond) Speed-up

20 30 405 4375 0.092 589 7717 0.076

30 50 801 4932 0.162 1281 8310 0.154

60 100 2230 5401 0.412 3442 8503 0.404

80 180 7569 7220 1.048 13314 12809 1.039

100 310 19341 10002 1.933 21773 16731 1.301

130 420 35987 20075 1.792 43517 30722 1.416

170 686 59811 28676 2.085 82973 40362 2.055

Table 2. Comparison of estimated execution time using PD relation with its actual execution time

5.1 Future Work

We plan to extend and improve this work as follows:

Our aim is to propose an algorithm, which attempts to

improve the speed-up as much as possible in the distribu-

tion environments by reordering instructions at the com-

pilation time. Therefore, it attempts will be made to in-

crease distance between the caller points to its use point

using the techniques known as instructions scheduling, for

increase concurrent time of caller and callee methods as

much as possible.

References

[1] J. AL-Jaroodi, N. Mahamad, H. Jiang, D. Swanson, �JOPI:

a Java object passing interface�, Concurrency Comput. Pract.

Exp., Volume 17, pp. 775�795, 2005.

[2] S. Parsa, and V. Khalilpoor, �Automatic Distribution of Sequen-

tial Code Using JavaSymphony Middleware�, SOFSEM 2006,

LNCS 3831, pp. 440 � 450, 2006.

[3] L. S. Georgios, and D. K. Helen, �Scheduling multiple task

graphs in heterogeneous distributed real-time systems by ex-

ploiting schedule holes with bin packing techniques�, Simulation

Modelling Practice and Theory, Volume 19, Issue 1, pp. 540-552,

2011.

[4] D. Thain, T. Tannenbaum, and M. Livny, �Distributed Com-

puting in Practice: The Condor Experience�, Concurrency and

Computation: Practice and Experience, Volume 17, No. 2-4, pp.

323-356, 2005.

[5] W. Gentzsch, �Sun Grid Engine: towards creating a compute

power grid Cluster�, Proceedings. First IEEE/ACM Interna-

tional Symposium on Cluster Computing and the Grid, pp. 35

� 36, 2001.

[6] B. Nitzberg, J. M. Schopf, J. P. Jones, �PBS Pro: Grid com-

puting and scheduling attributes Grid resource management�,

pp. 183 � 190, 2004, Kluwer Academic Publishers Norwell, MA,

USA.

[7] S. Zhou, J. Wang, X. Zheng, P. Delisle, �Utopia: A Load Shar-

ing Facility for Large, Heterogeneous Distributed Computer Sys-

tems�, Software�Practice & Experience Volume 23 Issue 12, pp.

1305 � 1336, 1993.

[8] F. Berman, �Adaptive computing on the Grid using AppLeS,

Parallel and Distributed Systems�, IEEE Transactions on, Vol-

ume 14 , Issue 4 pp. 369 � 382, 2003.

[9] F. Berman, �New grid scheduling and rescheduling methods in

the GrADS project�, International Journal of Parallel Program-

ming - Special issue: The next generation software program

archive, Volume 33, Issue 2, pp. 209 � 229, 2005.

[10] Oriented Grid and Utility Computing (Wiley Series on Parallel

and Distributed Computing), Editors Rajkumar Buyya and Kris

Bubendorfer, ISBN-13: 978-0470287682.

[11] O. Bushehrian, �Automatic actor-based program partitioning�,

Journal of Zhejiang University-SCIENCE C (Computers & Elec-

tronics), 11(1), pp 45-55, 2010. [doi: 10.1631/jzus.C0910096]

[12] A. Isazadeh, J. Karimpour, I. Elgedawy, H. Izadkhah, �An An-

alytical Model for Source Code Distributability Veri�cation�,

Springer Journal of Zhejiang University-SCIENCE C, Vol. 15,

Issue 2, pp 126-138, 2014.

[13] A. Isazadeh, I. Elgedawy, J. Karimpour, H. Izadkhah, �An Ana-

lytical Security Model for Existing Software Systems�, to appear

in Applied Mathematics & Information Science, Vol. 8, Issue 2,

pp 691-702, 2014.

[14] U. N. Bhat, �Elements of Applied Stochastic Processes�, second

ed. John Wiley & Sons, Inc, 1984.

[15] K. S. Trivedi, �Probability and Statistics with Reliability,

Queuing and Computer Science Applications�, John Wiley and

Sons, 2001.

[16] M. Schoeberl, �A time predictable Java processor�, Proc. Conf.

Design, Automation and Test in Europe, Germany, pp. 800�805,

2006

[17] C. A. Healy, M. Sjodin, D. B. Whalley, �Bounding loop iter-

ations for timing analysis�, Proc. IEEE Real-Time Technology

and Applications Symp., pp. 12�21, 1998.

[18] R. Maani, S. Parsa, �An Algorithm to Improve Parallelism in

Distributes Systems Using Asynchronous Calls�, 7th Int. Conf.

on Parallel Processing and Applied Math, p.312-317, 2007.

[19] T. Fahringer, A. Jugravu, �JavaSymphony: new directives to

control and synchronize locality, parallelism, and load balanc-

ing for cluster and GRID-computing�, Proc. Joint ACM Java

Grande � ISCOPE 2002 Conf., Seattle, Washington.

[20] P. A. Jensen and J. F. Bard, �Operations Research Models and

Methods�, published by John Wiley and Sons, 2003.

13

