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Abstract � This paper proposes a semantically secure construction of pseudo-random permutations using

second-order reversible cellular automata. We show that the proposed construction is equivalent to the Luby-

Racko� model if it is built using non-uniform transition rules, and we prove that the construction is strongly

secure if an adequate number of iterations is performed. Moreover, a corresponding symmetric block cipher

is constructed and analysed experimentally in comparison with popular ciphers. Obtained results approve

robustness and e�cacy of the construction, while achieved performances overcome those of some existing

block ciphers.

Keywords: semantic security, reversible cellular automata, block ciphers, cryptography

(Received: 09.02.2015; Revised: 30.03.2015; Published: 07.05.2015)

1 Introduction

pseudo-random permutations (PRPs) �gure as a central

tools in designing secure cryptographic protocols, espe-

cially those for secret-key block ciphers. The term pseudo-

random permutation, refers in cryptography to a function

that cannot be distinguished from a permutation selected

randomly with a uniform probability from the family of all

permutations de�ned on the function's domain, whenever

using any polynomially computable distinguisher.

Modeling block cipher using PRP's constructions en-

ables a theoretically founded security analysis of such pro-

tocols, since well speci�ed and formalized theory has been

developed during the last decades for construction, valida-

tion and security analysis of PRPs [1, 2, 3]. Most known

and normalized block ciphers are generally built using

such type of functions, especially by the means of the stan-

dardized Luby-Racko� construction proposed initially in

[4] that permits to build strong and secure PRPs using

symmetric iterative structure named Feistel networks [5].

Speci�cally, it has been proved that using four rounds of

the Feistel networks construction are su�cient to build

a strongly secure PRP that remains pseudo-random even

to an adversary who can gets access to its inverse per-

mutation [4]. Such kind of provable security is named

semantic security, and is considered as extremely strong

when it is met. Precisely, if a crypto-system is seman-

tically secure, then an adversary is not able to compute

any information about a plain-text from its corresponding

cipher-text. This may be posited as an adversary, given
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two plain-texts of equal length and their two respective

cipher texts, cannot determine which cipher-text belongs

to which plain-text.

Cellular automata (CAs) have been introduced �rst

by Von Neumann and later by Wolfram [6] as simple

model for physics, biological and computational systems.

The fact that simple CAs underlying rules with elemen-

tary transitions steps can be e�ciently implemented, and

demonstrates complex and random-like behavior, has at-

tracted researchers to use them for cryptographic proto-

cols design. Since the �rst attempt to build a CA-based

stream-cipher by Wolfram [6], several cryptographic vari-

ants have been explored using di�erent classes and types

of CAs. The �rst attempt to build a block cipher using

CAs has been made by Nandi et al. [7] where the au-

thor implemented a crypto-system based on additive CAs

with group properties. In [8], Kari proposed in a crypto-

system with reversible CA, and Zhang presented in [9] a

di�erent method of encryption based on RCAs that has

a larger key space. Another RCA based encryption al-

gorithm is proposed in [10] that satis�es the avalanche

criteria, but trades o� with additional communication

overhead. In [11], a crypto-system (CAC) is proposed,

where non-linearity is achieved by intermixing a�ne CA

with non-a�ne transformations. Relatively recent works

on block ciphers constructions using CAs can be found in

[12, 13, 14, 15, 16].

Many of the proposed CAs-based block ciphers have

been successfully broken [17, 18, 19], and only some of

them have been commendably tested and crypt-analysed

[20]. Unfortunately, no formal theoretic model of such
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constructions has been established, and in the best case,

security analyses have been performed using empirical

and statistical measurements. In previously proposed

works, we have tried to build secure cellular automata

based block ciphers using several techniques and ap-

proaches: we used genetic algorithm to evolve optimal

ciphers with respect to the avalanche criterion in [21],

and we designed an ad-hoc parallel model of block ciphers

for digital images in [22] that was enhanced later in [23].

In contrast to the present work, no theoretic model has

been used to prove security of the mentioned ciphers,

and only experimental analysis has been performed to

evaluate robustness and secrecy the designed solutions.

In the present work, we show that theoretic result

drawn from Feistel networks and Luby-Racko� construc-

tions can be used to prove semantic security of a speci�c

CAs-based PRP construction model. We establish a

conditioned equivalence between Feistel networks and

second-order reversible cellular automaton (RCAs), and

we show that equivalence's conditions are met only when

using non-uniform transition rules. The proposed PRP's

RCAs-based construction is �rstly shown to be seman-

tically secure under the conditions mentioned above,

then a simple block cipher scheme is derived and vali-

dated experimentally with respect to the strict avalanche

criterion. The remaining of the paper is organized as

follows: Section 2 gives preliminaries of pseudo-random

permutations and Luby-Racko� construction. Section

3 introduces the basic CAs elements with the second-

order reversibility mechanism. Section 4 exposes the

RCAs-based proposed PRP's construction with the cor-

responding security conditions. Section 5 illustrates an

application of the proposed model to build a semantically

secure block cipher and gives corresponding experimental

security analysis results. Finally, conclusions are drawn

in Section 6.

2 Pseudo-random permutations

de�nitions and security conditions

In this section we introduce some basic de�nitions

about PRPs, and their corresponding security conditions

and requirements.

De�nition 1. A function de�ned on the set

of all binary blocks of length n into the same set

Φ : {0, 1}n → {0, 1}n is said to be a permutation if and

only if it is a bijection (i.e. Φ−1 exist and is e�ciently

computable). A family of permutations Φk is de�ned by:

Φk : {0, 1}m × {0, 1}n

(k, x)→ y = Φ(k, x),
(1)

Figure 1. Pictorial representation of

the Feistel function Df construction.

is said to be a pseudo-random permutation family if it

verify the following properties [24]:

(1) For any k ∈ {0, 1}m,Φk is a bijection from

{0, 1}n to {0, 1}n,
(2) For any k ∈ {0, 1}m, there exist and e�cient

algorithm to evaluate Φk(x),

(3) For all probabilistic polynomial-time distin-

guishers D : |Pr{DΦk(1n) = 1} − Pr{Df
n(1n) =

1}| < ε(s), where k ∈ {0, 1}n is chosen uni-

formly at random and fn is chosen uniformly at

random from the set of permutations on n-bit

strings.

The last property implies that the output of Φk cannot

be distinguished from a randomly permutation selected

from the set of all permutations on functions domain for

any value of k. Given the output of a PRP and the out-

put of a truly random function, no polynomial algorithm

that can distinguish between the two outputs must exit.

Formally, a PRP is considered secure if the advantage of

any distinguishing algorithm from a truly random permu-

tation is negligible.

A pseudo-random permutation family can then be con-

sidered as a collection of pseudo-random permutations,

where a speci�c one may be chosen using a key. In the

following, we use the term PRP to refer to any pseudo-

random permutation family Φk. The notion of PRP is a

rigorous formalization of the notion of block cipher from

applied cryptography. As mentioned in section 1, the

most known and used way to build secure PRPs is the

standardized Luby-Racko� construction based on Feistel

networks. Related de�nition and security conditions are

presented in the following.

De�nition 2. For a function f : {0, 1}n → {0, 1}n,
the Feistel function Df : {0, 1}2n → {0, 1}2n is de�ned

like the following:

(2) Df (L,R) = (R, f(R)⊕ L),

where L and R are two n-bits blocks from {0, 1}n.

Figure 1 gives a pictorial representation of a Feistel

function construction.
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It is clear from the above de�nition that the function

Df is invertible and hence de�ne a bijection. Formally,

the inverse D−1
f is de�ned by the composition φoDfoφ

when φ(L,R) = (R,L). However, the function Df do not

de�ne a PRP by itself, since L′ = Left(D(L,R)) = R for

any L and R. To achieve the requirement of a PRP using

the Feistel functions model, we should use a composition

of multiple rounds. Using m-rounds Feistel network, the

output (Lm, Rm) is de�nes by the following :

(Lm, Rm) =

Df (Lm−1, Rm−1) =

Df (Df (Lm−2, Rm−2)) =

Df (Df (· · · (Df (L,R)) · · · ) .

(3)

The function Df is iterated m times on the input (L,R)

to give the desired output. This construction leads to

the de�nition of an invertible function D
(m)
f that can be

considered as a PRP if the number of rounds is su�cient.

The number of rounds necessary to ensure the security of

the constructed PRP is given by the following theorem

[4]:

Theorem 1. (Luby-Racko�). Three rounds of the

Feistel construction, each with a round function drawn in-

dependently from a pseudo-random function (PRF) fam-

ily, yields a weak PRP family. Moreover, four rounds yield

a semantically strong PRP family.

We conclude from the above theorem that building se-

mantically strong and secure PRP using Feistel construc-

tion need at least the use of four rounds. Another impor-

tant security condition is that the function f must be a

PRF that is de�ned to be a not necessary invertible PRP.

If instead we use a predictable function that can be distin-

guished from a random one, the resulting construction will

be weak and vulnerable to cryptanalysis techniques. In

standardized block ciphers, pseudo-random functions are

generally built using substitution and permutation boxes

(S-box and P-box).

Using Feistel construction, many secure and normalized

block ciphers have been developed, such as DES, 3DES,

Blow�sh, Misty and many others. Semantic security of

theses algorithms is proofed and guaranteed by the Luby-

Racko� theorem; even if some simpli�ed versions has been

successfully crypt-analysed, due to some weaknesses in

the random behavior of their corresponding round func-

tions (PRFs). In the following sections, we propose a

novel RCA-based PRP construction scheme, and we show

that it is semantically secure by establishing conditioned

equivalence between the proposed construction and the

Feistel networks one.

3 Second-order reversible cellular

automata preliminaries

A cellular automaton consists of a number of cells ar-

ranged in a regular lattice, each cell has its own state that

change in a discrete time step. States of the whole CA's

cells are updated synchronously using a local transition

rule that de�nes each new cell's state using its old state,

and the states of the corresponding neighbors. Neighbors

are speci�c selection of cells relatively chosen with respect

to a given cell's position, and can be de�ned for each cell

using a radius r on the lattice, giving 2r+1 di�erent neigh-

bor including the cell itself. The boundaries cells of the

lattice are concatenated together in a cyclic form to deal

with �nite size automaton. If the same update rule is

used for all the cells then the resulting CA is named uni-

form. Otherwise, if a di�erent transition rule is used each

time the cell's position change, the resulting CA is named

non-uniform.

Unlike standard uniform models of uniform CAs that

apply the same transition rule in each lattice's position,

applying non-uniform transition rules require to change

the rule's value from one lattice position to another ac-

cording to a predetermined conditions (that depends gen-

erally on a supplementary feedback of information). Such

models relax the normal requirement of all nodes having

the same update rule [25], and raises an advanced level

of chaotic behavior with higher sensitivity to initial con-

�guration's alterations.

Formally, when de�ning the state of a cell i at the time

t by qti , its state at time t + 1 (de�ned by qt+1
i ) depends

only on states of corresponding neighborhood at time t,

and is computed by applying a transition rule that de�nes

the way states are updated. If the neighborhood radius

is r, and if only two cell states are de�ned (0 or 1), then

the length of each transition rule is equal to 22r+1 bit,

and the number of possible rules is equal to 222r+1

. The

transition rule of one dimensional binary CAs is generally

coded using the integer value of the corresponding binary

representation, while the di�erent CA's con�gurations are

represented by binary blocks.

Unlike elementary cellular automata, RCAs are spe-

ci�c case of CAs in which every con�guration has only

one unique predecessor. That is, RCAs are constructed

in such a way that the state of each cell prior to an update

can be determined uniquely from the updated states of all

the cells. Several models are known to construct cellular

automata rules that are reversible. The second-order cel-

lular automaton method invented by [26], in which the

update rule combines states from two previous steps of

the automata, permits to turn any one-dimensional bi-

nary rule into a reversible one using the fact that the

state of a cell at time t depends not only on its neighbor-

hood at time t − 1, but also on its state at time t − 2.
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This is achieved by combining the ith cell state at time t

with the state of the same cell in time t− 2 using the xor

operator.

If we de�ne the con�guration of a given CA at each

time step t by Ct, then we can build a second-order RCA

using the following equation:

(4) Ct = F (Ct−1)⊕ Ct−2 ,

where the map F denote the global transition map of the

used basic CA. Such de�ned RCA can then be reversed

trivially using the following equation:

(5) Ct−2 = F (Ct−1)⊕ Ct .

The RCAs de�ned using equations (4) are always re-

versible even if the basic used CA de�ned by the map

F is not, so we can construct as mush RCAs as possible

existing CAs.

Instead of using one initial con�guration like stan-

dard one-dimensional CA, two initial con�gurations are

required to evolve a second-order RCA. Starting from

two con�gurations C0 and C1 we obtain after m time

step two con�gurations Cm and Cm+1. By running the

RCA backward starting from Cm and Cm+1 as initial

con�guration, we recover the two con�gurations C0 and

C1 after exactly m iteration using exactly the same

transition rule. Reversion is performed using the same

transition rule, raising qualitatively the same behaviour

of one-order CAs as pointed by Wolfram [27]. This

makes the use of such de�ned RCAs very appropriate

for crypto-systems building, when security of such RCAs

based crypto-systems is assured by the impossibility to

reconstruct initial con�gurations pair from any given pair

of consecutive con�gurations without the knowledge of

the transition rule used initially.

4 PRPs construction using reversible

cellular automata

In the following, we present the proposed construc-

tions of PRPs using second-order RCA. We establish a

conditioned equivalence between the second-order RCA

scheme and the Feistel construction, then we show that

such equivalence do not hold when using uniform tran-

sition rules. In contrast, we show that a non-uniform

RCA-based model can raises su�cient conditions under

which the construction of semantically secure PRPs be-

comes feasible.

4.1 Equivalence between RCA and Feistel rounds

Let's consider in the following that a second-order RCA

is de�ned by a transition rule T , a global transition map

Ft (exclusively de�ned by T ), and a set of possible con-

�gurations Ci for 0 ≤ i ≤ m, when assuming that each

con�guration is an n-bits block form {0, 1}n. Let's also

consider that (Ci)j denotes the jth bit value of the ith

con�guration Ci (the jth cell state). A single iteration of

such RCA on two consecutive con�gurations Ci and Ci−1

gives the next con�gurations Ci like follows:

(6) Ci = Ft(C
i−1)⊕ Ci−2, i > 1 .

To obtain a new con�guration Ci+1, a new iteration

should be performed using the two con�gurations Ci and

Ci−1:

(7) Ci+1 = Ft(C
i)⊕ Ci−1, i ≥ 1 .

By combining equations (6) and (7), we de�ne the func-

tion Gt permitting to derive two new successive con�gu-

rations from two initial ones like the following:

Gt : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n,

Gt(C
i−2, Ci−1) = (Ci, Ci+1) =

(Ft(C
i−1)⊕ Ci−2, Ft(C

i)⊕ Ci−1) .

(8)

Starting from arbitrary two initial con�gurations C0

and C1, a second-order RCA produces any desired num-

ber of successive con�guration pairs using equation (8).

This equation de�nes entirely two iterations of an RCA

using a �xed transition rule T if the RCA is uniform.

By comparing equation (8) with equation (2) from the

de�nition 2.1, we easily conclude that if the global transi-

tion map Ft is a pseudo-random function, then the func-

tionGt is equivalent to two successive rounds of the Feistel

function DFT applied on two consecutive con�gurations

Ci−2 and Ci−1:

DFT (DFT (Ci−2, Ci−1)) =

DFT (Ci−1, Ft(C
i−1)⊕ Ci−2) =

(Ft(C
i−1)⊕ Ci−2, Ft(Ft(C

i−1 ⊕ Ci−2)⊕ Ci−1) =

Gt(C
i−2, Ci−1) .

(9)

Equation (9) is a proof of the following lemma that

establishes equivalence between second-order RCAs and

Feistel functions:

Lemma 1. Any second-order reversible cellular au-

tomata de�ned by a transition rule T and a global tran-

sition map Ft can be constructed using Feistel functions,

such that two consecutive RCA's iterations are equivalent

to two Feistel rounds, if and only if the global transition

map Ft is a pseudo-random function.
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Figure 2 gives a pictorial illustration of the equivalence

described by the above lemma. Note that L1 and R1 are

temporary con�gurations, used for intermediate compu-

tation.

It result from this equivalence that all obtained security

results on the Feistel construction can be used to deduce

equivalent ones for the RCA's construction. The mains

consequence derived by combining results of lemma 1 with

the Luby-Racko� theorem is formulated by the following

lemma:

Lemma 2. Four iterations of a second-order RCA-

based construction, each with a global transition map Ft

yields a semantically strong PRP family, if and only if Ft

is a pseudo-random function.

The su�cient and necessary condition of equivalence

drawn by the lemma 1 is that the global transition map Ft

be a pseudo-random function for any possible transition

rule T. We show in the following that this condition does

not hold for uniform second-order RCA since the global

transition map Ft is not a PRF in this case.

Let's consider a uniform second-order RCA using

transition rule T with a radius size r, when T is selected

randomly form {0, 1}N and N = 222r+1

. According to

the uniform second-order RCA scheme [25], the global

transition map Ft produces a new con�guration Ci+1

using the transition rule T, and determine each bit (Ci+1
j )

according to its corresponding neighborhood in the con-

�guration Ci. The value of this jth bit is exactly equal

to the bit of rule T at position pj de�ned by the binary

representation of the neighborhood. Since the neighbor-

hood of any selected bit (Ci)j is given by the binary

con�guration (Ci)j−r(Ci)j−r+1 . . . (C
i)j−1(Ci)j(C

i)j+1

. . . (Ci)j+r−1(Ci)j+r the position pj is computed by:

pj = 20.(Ci)j−r + 21.(Ci)j−r+1 + . . .

+2r−1.(Ci)j−1 + 2r.(Ci)j+1 + . . .

+22r+1.(Ci)j+r−1 + 2r.(Ci)j+r .

(10)

It is clear that any given con�guration Ci that has all

bits equals (all zeros or all ones), gives always the same

neighborhood value for any bit's position. So produced

con�guration Ft(C
i) have all bit's values identical when-

ever is the used transition rule T. If we denote by 0n and

1n the two n-bits con�gurations that have all bits posi-

tions at 0 or 1 respectively, the produced con�guration

Ft(C
i) can have only two possible values Ft(C

i) = 0n or

Ft(C
i) = 1n depending on the rule's bit value at the po-

sition computed by the two possible neighborhood 02r+1

or 12r+1. We deduce that the global transition map Ft

cannot be considered as a PRF by itself since Ft(0
n) and

Ft(1
n) can have only two possible values 0n or 1n when-

ever is the transition rule, which is extremely rare to be

the case for a truly random PRF. According to the 2, we

conclude that a uniform RCA-based PRP scheme cannot

be semantically secure. However, we show in the next sec-

tion that a construction using non-uniform RCA permits

to turn the global transition map Ft into a PRF, mak-

ing the PRP's RCA-based model totally equivalent to the

Feistel one, and as a result semantically secure.

4.2 Semantically secure RCA-based PRP

construction

When using non-uniform second-order RCA, the tran-

sition rule can change from one con�guration's bit po-

sition to another. It has been shown in pervious works

[27, 28] that such class of cellular automata raises more

complex and chaotic evolution behavior with respect to

standard uniform model, and are consequently more suit-

able for cryptographic applications. Reversibility of the

non- uniform model is always guaranteed by the second-

order composition principle and only the global transition

map FR is a�ected by the introduced non-uniformity.

Let's consider a second-order RCA de�ned by a set of

n di�erent r-radius transition rule S = {T1, T2, · · · , Tn}
(selected randomly from {0, 1}N such that N = 222r+1

),

with a global transition map FS (exclusively de�ned by

the set S), and a set of possible con�gurations Ci from

{0, 1}n for 0 ≤ i ≤ m.

Using this model, computation of a new con�gura-

tion Ci+1 from two prior ones Ci−1 and Ci performed

similarly using equation (7), while the global tran-

sition map FS operate di�erently from the uniform

model : to compute the jth bit's value (FS(Ci))j cor-

responding to the bit (Ci)j at the jth position of the

con�guration Ci, the global transition map FS apply

the position's corresponding transition rule Tj from S

on the corresponding neighbourhood extracted from the

con�guration Ci that is uniquely de�ned by the bi-

nary sequence (Ci)j−r(Ci)j−r+1 · · · (Ci)j−1(Ci)j(C
i)j+1

· · · (Ci)j+r−1(Ci)j+r. The value of (FS(Ci))j is exactly

equal to the bit extracted from the rule Tj at the neigh-

bourhood's dependent position pj de�ned by equation

(10). So bits of the new con�guration Ci+1 are computed

like the following:

∀ 0 ≤ j ≤ n− 1 :

(Ci)j = (FS(Ci))j ⊕ (Ci−1)j =(Tj)pj
⊕ (Ci−1)j .

(11)

Let's show in the following that such global transition

map FS is a pseudo-random function. By de�nition, a

function is considered as pseudo-random if its output can-

not be distinguishable from a random function. If the

global transition map FS is a PRF, then for any given

produced con�guration FF (Ci), each bit value at each
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Figure 2. Equivalence between RCA's mechanism and Feistel functions :(a) two iterations of RCA;

(b) two Feistel rounds.

position can be either 0 or 1 with same probability 1/2

(which is the de�nition of a randomly chosen binary string

according to a uniform distribution). Hence, we must

show that Pr{(FS(Ci)j)} = 0 = Pr{(FS(Ci)j)} = 1 =
1
2∀ 0 ≤ j ≤ n, for any con�guration Ci. In order to

show that such property is veri�ed, we �rstly show that

for any con�guration Ci, each two bits selected at two

di�erent positions j and j′ are equal with a probability
1
2 : Pr{(FS(Ci)j) = (FS(Ci)j′)} = 1

2∀ 0 ≤ j ≤ n, ∀ 0 ≤
j′ ≤ n and j 6= j′.

When using a uniform model of second-order RCA, the

bit's distribution of (FS(Ci))j re�ects exactly the distri-

bution of the pj values computed from the set of corre-

sponding neighborhoods extracted from Ci. So the prob-

ability Pr{(FS(Ci)j) = (FS(Ci)j′)} for two di�erent po-

sitions j and j′ is equal to the probability Prpj = pj′ since

the same unique rule is always used. As a result, if we

choose a con�guration Ci that has same bit value in all

positions, we get the same neighborhood at each position

j and we obtain the following:

∀ 0 ≤ j ≤ n, 0 ≤ j′ ≤ n and j 6= j′ :

Pr{(FS(Ci)j) = (FS(Ci)j′)} = Pr{pj = pj′} = 1 .

(12)

Equation (12) is the proof that uniform transition maps

are not pseudo-random functions. However, in the case

of non-uniform transition rules, and since a di�erent rule

is used each time the position change, we deduce the fol-

lowing:

∀ 0 ≤ j ≤ n, 0 ≤ j′ ≤ n and j 6= j′ :

Pr{(FS(Ci)j) = (FS(Ci)j′)} =

Pr{(pj = pj′) and ((Tj)pj
= (Tj′)pj′ )} +

Pr{(pj <> pj′) and ((Tj)pj
= (Tj′)pj′ )} =

Pr{(Tj)pj
= (Tj′)pj′} .

(13)

Equation (13) is justi�ed by the fact that (FS(Ci))j and

(FS(Ci))j′ are equal in two case: either the corresponding

neighborhoods from Ci are identical and the two rule Tj

and Tj′ has the same bit value in the position pj and pj′ ,

or the two neighborhoods are di�erent but the two rule

Tj and Tj′ has randomly the same bit value in the two

di�erent positions pj and pj′ respectively. We note that

even if a con�guration Ci has same bit value in all posi-

tions (Ci is equal to 0n or 1n) and then all neighborhoods

are identical (Pr{pj = pj′} = 1), the probability that

(FS(Ci))j and (FS(Ci))j′ be equal is independent form

the neighborhoods values and corresponding positions pj
and pj′ .

Since the rules Tj are selected randomly, the probability

that a cell at any position pj is equal to zero or one is
1
2 :

Pr{(Tj)pj
= 0} = Pr{(Tj)pj

= 1} = 1
2 ∀ 0 ≤ j ≤ n. So

the probability that two di�erent positions pj and pj′ from

two di�erent rules Tj and Tj′ be equal can be computed

like the following:

∀ 0 ≤ j ≤ n , 0 ≤ j′ ≤ n and j 6= j′ :

Pr{(Tj)pj = (Tj′)pj′} = Pr{((Tj)pj = 0) and ((Tj′)pj′ = 0)} +

Pr{{((Tj)pj
= 1) and ((Tj′)pj′ = 1)}} =

(Pr{(Tj)pj = 0} · Pr{(Tj′)pj′ = 0}) +

(Pr{(Tj)pj
= 1} · Pr{(Tj′)pj′ = 1}) ,

P r{(Tj)pj
= (Tj′)pj′} = 1/2 · 1/2 + 1/2 · 1/2 = 1/2 .

(14)

By combining equations (13) and (14), we conclude that

for any given produced con�guration Ci , two random bits

positions are equal with a probability 1/2:

∀ i,∀ 0 ≤ j ≤ n , 0 ≤ j′ ≤ n and j 6= j′ :

Pr{(FS(Ci))j = 0} = Pr{(FS(Ci))j = 1} = 1/2 .
(15)

Let's suppose that ∀ 0 ≤ j ≤ n, Pr{(FS(Ci))j = 0} = α,

and then show that α is equal to 1/2. If we consider the

following:
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Pr{FS(Ci)j = FS(Ci)j′} =

Pr{((FS(Ci)j = 0) and (FS(Ci)j′ = 0)) or

((FS(Ci)j = 1) and (FS(Ci)j′ = 1))} =

Pr{((FS(Ci)j = 0) and (FS(Ci)j′ = 0))} +

Pr{((FS(Ci)j = 1) and

(FS(Ci)j′ = 1))} =

Pr{FS(Ci)j = 0} · Pr{FS(Ci)j′ = 0} +

Pr{FS(Ci)j = 1} · Pr{FS(Ci)j′ = 1} =

α · α+ (1− α) · (1− α) = α2 + (1− α)2 ,

(16)

then, by combining equation (17) and equation (16), we

conclude that:

α2 + (1− α)2 = 1/2⇒
2α2 − 2α+ 1/2 = 0⇒

2(α− 1/2)2 = 0⇒ α = 1/2 .

(17)

As a result, equation (16) is always veri�ed. Conse-

quently, the global transition map FS is a pseudo-random

function. According to equation (16), the output of FS

is indistinguishable from a randomly selected bit string,

even when the con�guration Ci is equal to 0n or 1n.

Now since FS is shown to be a pseudo-random function,

and using results from Lemma 1 and Lemma 2, we con-

clude the following theorem about security of non-uniform

RCA-based PRPs construction model:

Theorem 2. A non-uniform second-order RCA de-

�ned by a set of randomly selected transition rules S =

{T1, T2, . . . , Tn} and a global transition map FS is equiv-

alent to a Feistel construction, such that two iterations of

such RCA are equivalent to two Feistel rounds. A con-

struction with four non-uniform RCA's iterations, each

with a global transition map FS , yields a semantically

strong PRP family.

The above theorem de�nes a novel PRPs construction

scheme using non-uniform RCA, and establishes the cor-

responding security conditions. In the following section,

we propose the construction of a symmetric block cipher

using this construction, which is as a result semantically

secure. Several statistical experiments are also performed

on the proposed scheme to show its robustness and e�-

cacy with respect to some popular ones.

5 Cryptographic application of the

proposed PRP construction

In the following, we use the proposed non-uniform

RCA-based PRP's construction to build a symmetric

block cipher. The cipher uses a 128-bit secret key K

selected randomly from {0, 1}128 to encipher a 128-bit

plain-block PB into a ciphered one CB. Even if only

four iterations are su�cient to achieve semantic security

according to the Theorem 2, we use sixteen successive

iterations (equivalent to sixteen Feistel round) to ensure

further robustness of the designed block cipher.

5.1 Details of the proposed Block cipher

According to the proposed non-uniform RCA-based

PRP's construction, enciphering plain-blocks of size 2n

require a set S of n randomly selected rules to build

the global transition map FS . Furthermore, the global

transition map FS should change from a ciphering it-

eration to another in order to ensure strong security of

the cipher. To achieve the mentioned requirements, a

key scheduling mechanism is used to derive sub-keys for

di�erent iterations (rounds) such that each iteration i for

1 ≤ i ≤ 16 uses a di�erent sub-key Ki. At each iteration,

the rule's set S is constructed from the corresponding

secret sub-key Ki using a pseudo-random numbers gener-

ation scheme that is not necessarily secure, since security

of the proposed block cipher relay only on randomness

distribution of the rules neither on the predictability of

their sequence.

In the present work, we used transition rules with ra-

dius r = 3, so each rule is a 128-bit random block from

{0, 1}128. During the ith iteration, the secret sub-keyKi is

used to produce 64 di�erent transition rule T1, T2, . . . , T64

by the mean of a very simple and fast mechanism: each

rule Tj is equal to a left-cyclic rotation ofKi by an amount

of j position. Such produced rules are randomly dis-

tributed in {0, 1}128 so they meet the security require-

ments of the proposed construction. Note that any other

key expansion scheme can be used to perform rules deriva-

tion process if it ensures a random distribution, and the

only motivation of the used one is speed and simplicity.

The set of sub-keys Ki for 1 ≤ i ≤ 16 can be gener-

ated using any key scheduling mechanism similar to those

used by several block ciphers, and it is su�cient that a

non-linear relation exist between the derived sub-keys. In

the proposed block cipher, the derived sub-keys are gen-

erated with an elementary cellular automaton that use

rule 30 having good random-like behavior according to

the results obtained by of Wolfram [15]. The key K is

used as initial con�guration, and then resulting consecu-

tive con�gurations obtained by applying the rule 30 in a

cycle boundary conditions mode are used as sub-keys Ki.
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Figure 3 illustrate pictorial description of the proposed

block cipher with its di�erent components. The decipher-

ing scheme act exactly like the enciphering one, except

that the sub-keys are used in reverse order: if the sub-

keys K1,K2, . . . ,K16 are used for iterations 1, 2, . . . , 16 of

encryption then the sequence K16,K15. . . . ,K1 is used for

iterations 1, 2, . . . , 16 of decryption.

The proposed block cipher is semantically secure ac-

cording to theoretic results reported above. Moreover, we

performed an experimental analysis in terms of speed and

security. Di�erent experimental results are presented in

what follows.

5.2 Experimental Security analysis and results

A secure block cipher has to ensure certain number

of statistical properties related to its robustness against

common cryptanalysis techniques such as linear and dif-

ferential ones. Non-linearity is one of such required prop-

erties that as randomness, has not a complete unique

de�nition, but can be measured in a number of ways.

We achieve a good approximation of such property by

measuring a very speci�c mathematical property named

avalanche e�ect [29]. This property tries, to some ex-

tent, to re�ect the intuitive idea of high non-linearity:

very small di�erence in the input produces always high

changes in the output, hence an avalanche of changes.

Figure 3. Pictorial description of the

proposed block cipher.

Mathematically, let's consider the block cipher as a

function (that is a pseudo-random permutation) ΨK :

{0, 1}m × {0, 1}n → {0, 1}n with m the length of the key

and n the length of plain-blocks. The ΨK function has

the avalanche e�ect if the following is satis�ed:

∀ K ∈ {0, 1}m, ∀ x, y ∈ {0, 1}n :

H(x, y) = 1⇒ Average(H(ΨK(x),ΨK(y))) = 1/2 ,

(18)

where H denotes the Hamming distance between two n-

bits blocks. According to equation (19), a minimum ran-

dom input change (one single bit) should produces a max-

imum output change (half of the bits), on average. This

de�nition re�ects also the general concept of indepen-

dence between input and output. An ideal ΨK will de-

�ne a perfect random function and then have a perfect

avalanche e�ect. Another more accurate and demanding

non-linearity measurement is the so called strict avalanche

criterion [29] which, in particular, implies the avalanche

e�ect, and that is described mathematically by:

∀ K ∈ {0, 1}m, ∀ x, y ∈ {0, 1}n :

H(x, y) = 1⇒ H(ΨK(x),ΨK(y)) ≈B(1/2, n) ,
(19)

where B(1/2, n) denotes a binomial distribution of param-

eters 1/2 and n. A block cipher de�ned by a function ΨK

satis�es the strict avalanche criterion if the bit-di�erence

between two ciphered blocks corresponding of two plain

blocks that di�er only on one bit follows a binomial dis-

tribution B(1/2, n).

This can be veri�ed by measuring the amount of prox-

imity between theoretic binomial distribution and exper-

imental distribution computed for the block cipher using

a su�ciently large samples set. Such measurement can be

easily performed using χ2 goodness-of-�t tests.

In order to compute the experimental distribution of

H(ΨK(x),ΨK(y)) corresponding to the proposed block ci-

pher, we use a set of 105 randomly generated plain-blocks

Pi with a set of 105 randomly generated secret keyKi. For

each, pair (Pi,Ki), we �rst encipher Pi using Ki, then we

�ip each one of 128 bit of the plain-block to obtain P ′i
and we encipher again to compute the hamming distance

H(ΨK(Pi),ΨK(P ′i )). The set of obtained Hamming dis-

tances for all used samples is used to build an array D of

128 value, such that each value D[i] represents the num-

ber of obtained hamming distances that are equal to i. By

dividing the elements of this array by the total number of

experiment's samples equal to 105 ·105 ·128 = 128·1010, we

obtain �nally the desired experimental distribution. The

chi-square test is performed by computing the χ2 value:

χ2 = Σ128
i=1

(Oi − Ei)
2

Ei
,(20)

where Oi is the obtained experimental value of the dis-

tance and Ei is the theoretic expected one.

Using the probability α = 0.01 as critical threshold,

the hypothesis of equivalence between the two distribu-

tions is accepted if the χ2 value is less than the quantile

χ127,0.01 = 166.99. After several experiments, the com-

puted averaged χ2 value is equal to 0.0023, that is negli-

gible with respect to the quantile value. Hence the null

hypothesis is accepted and the hamming distribution of
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the proposed block cipher is following a binomial distribu-

tion B(1/2, 128). As a result, the block cipher is satisfying

the strict avalanche criterion. Table 1 lists di�erent χ2

values obtained when experimenting some standard pop-

ular 128-bit block ciphers using the procedure described

above.

Figure 4 illustrate a plot of the obtained experimental

distribution compared to the theoretic curve of the bino-

mial B(1/2, 128), and to those of other experimented block

ciphers.

In order to check the sensitivity of the proposed block

cipher to small secret key variations, the experiment pro-

cedure described above is also performed using a set of

randomly selected keys Ki, while distribution of the out-

put's Hamming distances with respect to elementary key-

bits �ipping is computed. Such distribution is expected to

be binomial B(1/2, 128) if the block cipher is highly sensi-

tive to secret key variations. Using the chi-square test, we

show that proposed block cipher satisfy the avalanche cri-

terion with respect to elementary key variations. Results

of keys sensitivity testing are listed in table 1, when �gure

5 illustrates the plot of the corresponding experimental

distribution. Results of Table 1 show that the proposed

cipher provides good variation's sensitivity to both plain-

blocks and secret key. While the strict avalanche crite-

rion is not a su�cient security condition, it is however a

necessary one that ensures robustness against di�erential

and linear cryptanalysis methods. We agree the proposed

approach have to be submitted to further cryptanalysis

techniques, which is the works we are planning for per-

spectives.

Figure 5. Distribution of output's

sensitivity to secret key variations

versus theoretic binomial distribution

B(1/2, 128).

Block
Cipher

Operating
Mode

Block
Size

Key
Size

Speed
(MB/sec)

AES CBC 128 128 109

Cast 256 CTR 128 256 37

Mars CTR 128 128 47

Tow�sh CTR 128 128 26

RC6 CTR 128 2048 101

SHA-CAL2 CTR 160 512 53

Camellia CTR 128 256 37

IDEA CTR 64 128 35

Proposed CBC 128 128 103

Table 2. Ecryption speed perfor-

mance's resutls with comparison to

popular block ciphers [30].

5.3 Speed Analysis and comparison

The proposed construction can be implemented easily

and e�ciently in both hardware and software. Even if the

inherent parallelisme of CAs is more suitable for hard-

ware, we have realised a very fast and compact software

implementation of the proposed block cipher using pure

assembly and MMX instructions sets permitting the use of

128-bit CPU's registers. The simple key mixing and rules

derivation schemes described in section 5.1 are favorable

for a fast and reduced instruction implementation permit-

ting to achieve high speed encryption/decryption rates.

Table 2 summarize obtained performance's results for the

proposed block cipher in comparison with some popular

ones implemented by the Crypto++ 5.6.0 Banchmarks

[30].

It is clear that proposed approach provides very hight

performances with respect to others due to the paral-

lelized nature of CA's and to the optimality of the de-

signed model with respect to assembly MMX instructions.

6 Conclusions

In this work, we propose a PRP's construction model

using reversible second order cellular automata. Using

results from Feistel networks construction, we show that

proposed construction semantically secure if non-uniform

transition rules are used. Based on this construction,

a simple and fast semantically secure block cipher is

proposed and benchmarked with respect to the strict

avalanche criterion. Obtained results show that the

block cipher is highly sensitive to small variations of

both plain blocks and secret key, since corresponding

variations distribution computed using Hamming dis-

tance follow a binomial distribution B(1/2, 128). When

compared to popular ciphers, performances analysis re-

veals that proposed one achieve high and competitive

encryption/decryption rates with equivalent security

requirements. The main contribution of this work is the

establishment of possible theoretic framework for study,
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Proposed AES Cast 256 Square Mars Tow�sh RC6

Sensitivity to
plain-text
variations

χ2 statistic 0.00231 0.0007 0.00425 0.008 0.00356 0.0102 0.00123

Average
Hamming
Distance

0.0017 0.0012 0.0036 0.0021 0.00057 0.00049 0.0008

Sensitivity to
the key
variations

χ2 statistic 0.0017 0.0012 0.0036 0.0021 0.00057 0.00049 0.0008

Average
Hamming
Distance

64.0138 63.991 63.398 63.98 63.399 63.372 64.108

Table 1. Statistical experiments results performed with respect to the strict avalanche criterion.

Figure 4. Distribution of output's sensitivity to plain-text variations: (a) theoretic distribution versus

experimental distribution of the proposed block cipher, (b) experimental distribution of some popular

block ciphers.

analysis and evaluation of CA's based block ciphers, until

now evaluated using only statistical experiments.
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