
doi: 10.17951/a.2017.71.1.41

ANNALES
U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A

L U B L I N – P O L O N I A

VOL. LXXI, NO. 1, 2017 SECTIO A 41–54

DOMINIKA JASIŃSKA
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Abstract. The Markov dynamics of an infinite continuum birth-and-death
system of point particles with age is studied. Each particle is characterized by
its location x ∈ Rd and age ax ≥ 0. The birth and death rates of a particle are
age dependent. The states of the system are described in terms of probability
measures on the corresponding configuration space. The exact solution of the
evolution equation for the correlation functions of first and second orders is
found.

1. Introduction. We describe the Markov evolution of a continuum in-
finite system of particles with an age structure. An infinite continuum
particle system can provide a good model for the evolution of atoms, dust
grains, water droplets and molecules. Such models with an age structure
can describe stellar systems, like galaxies, or large communities of infected
individuals. The most important facts on the approach we follow in this
work can be found in [1, 4, 7, 12]. In this approach, the states of the sys-
tem are probability measures on the corresponding configuration spaces, the
Markov evolution of which is obtained by solving a Fokker–Planck equation.
In contrast to the works just cited, we consider a system with an age struc-
ture, and therefore employ so-called marked configurations. To the best of
our knowledge this is the first attempt in studying infinite systems of this
type. Finite systems of particles with age were studied in [10, 9]. In this
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work, the exact formulas describing the Markov evolution of the first and
second correlation functions are obtained.

2. The mathematical preliminaries. We begin by introducing the basic
concepts and notions.

Definition 2.1. The configuration space Γ is

Γ = {γ ⊂ Rd : |γ ∩A| <∞ for any compact set A ⊂ Rd}.
The set of all finite configurations is

Γ0 =
⋃
n∈N0

{γ ⊂ Rd : |γ| = n}.

In our considerations, each particle is described by its location x ∈ Rd
and age ax ≥ 0, that is, by x̂ = (x, ax). For a γ ∈ Γ, by γ̂ we denote the
marked configuration {x̂ = (x, ax) : x ∈ γ}. In this case, γ is the underlying
configuration for γ̂. By p we denote the corresponding projection, i.e., the
map γ̂ 7→ γ = p(γ̂). This can also be defined in the following way. Set
X̂ = Rd × R+, R+ := [0,+∞). Let p : X̂ → Rd be the projection p(x̂) = x

for x̂ = (x, ax). This map can naturally be extended to subsets of X̂ to give
the projection meant above. That is, for Â ⊂ X̂, p(Â) = {p(x̂) : x̂ ∈ Â}.

Definition 2.2. The space of marked configurations is

Γ̂ = {γ̂ ⊂ X̂ : p(γ̂) ∈ Γ},
where Γ is as in Definition 2.1.

Let f : X̂ → R be a continuous function with compact support with
respect to x and continuous with respect to a. The space Γ̂ is equipped
with the vague topology – the weakest topology that makes continuous the
maps

γ̂ →
∑

x∈pX(γ̂)

f(x̂) ∈ R.

This topology is separably and completely metrizable, see [3]. Then Γ̂ with
the corresponding Borel σ-field B(Γ̂) gets a standard Borel space. The set
of all probability measures on (Γ̂,B(Γ̂)) is denoted by P(Γ̂).

The evolution of the model we consider is described by a Markov genera-
tor L, which acts on observables F : Γ̂→ R, being appropriate measurable
functions. The value of an observable at state µ is given by

< F, µ >=

∫
Γ̂
F (γ̂)dµ(γ̂).

Our generator satisfies the backward Kolmogorov equation

(2.1)
∂

∂t
Ft = LFt.
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As is usual, when dealing with infinite systems one employs correlation
functions, see [1, 4, 6, 7, 12] for more detail. This supposes to pass to
functions defined on the set of finite configurations Γ̂0 := {γ̂ ∈ Γ̂ : |p(γ̂)| <
∞}. Since Γ̂0 is in B(Γ̂), it can be equipped with the induced σ-field B(Γ̂0).

Definition 2.3. The Lebesgue–Poisson measure on (Γ̂0,B(Γ̂0)) is deter-
mined by the expression, see [8],

λ̂σ =

∞∑
n=0

σ(n)

n!

where σ(n)(dx̂1, . . . , dx̂n) = dx̂1 . . . dx̂n, dx̂i := dx1daxi .

Let G ∈ Bbs(Γ̂) be the set of all measurable functions G : Γ̂ → R such
that G(γ̂) = 0 whenever γ = p(γ̂) is not contained in a certain compact Λ
or |γ| > N , where Λ and N ∈ N are specific for this G. It is clear that each
such a function is supported on Γ̂0.

Definition 2.4. Let µ be a probability measure on (Γ̂,B(Γ̂)). If, for some
measurable kµ : Γ̂0 → R and all G ∈ Bbs(Γ̂), the equality∫

Γ̂

∑
ηbγ

G(η̂)dµ(γ̂) =

∫
Γ̂0

G(η̂)kµ(η̂)dλ̂(η̂)(2.2)

holds, then kµ : Γ̂0 → R is called a correlation function for µ. Here
∑

ηbγ
denotes the sum taken over finite sub-configurations of γ.

Now we introduce a function Fθ(γ̂) by the formula

Fθ(γ̂) =
∏
y∈γ

(1 + θ(ŷ)),(2.3)

where θ(x̂) ∈ (−1, 0] is a B(Rd,R+)-measurable bounded function with com-
pact support. For a measure µ ∈ P(Γ̂), the Bogoliubov functional is defined
by

Bµ(θ) =

∫
Γ̂
Fθ(γ̂)µ(dγ̂).(2.4)

In our considerations we employ the measures µ such that Bµ can be con-
tinued to a function of θ ∈ (L1(Rd), L∞(R+)) which is analytic on some
neighborhood of θ = 0. Then (2.4) can be written in the following form,
see [2],

Bµ(θ) = 1 +

∞∑
n=1

1

n!

∫
X̂n

kµ
(n)(x̂1, . . . , x̂n)θ(x̂1) . . . θ(x̂n)dx̂1 . . . dx̂n

=

∫
Γ̂0

kµ(η̂)
∏
x∈η

θ(x̂)λ(dη̂),
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where each kµ
(n) is a symmetric measurable function X̂n → R, called n-th

order correlation function. It can also be defined as a restriction of kµ,
i.e., kµ(n)(x̂1, . . . , x̂n) = kµ(η̂) for η̂ = {x̂1, . . . , x̂n}. In addition to what
was assumed above regarding the measure µ, we also will assume that its
correlation function satisfies:

(i) lim
a+η̂→+∞

kµ(η̂) = 0, a+
η̂ := max

x∈η
ax.

(ii) kµ(n) is in L∞(Rd) with respect to each of x1, . . . , xn and in
C1([0,∞)) ∩ L1([0,∞)) with respect to each of a1, . . . , an. That
is, for each n ∈ N, we have that∫

(R+)n
k0

(n)(x̂1, . . . , x̂n)da1 . . . dan ∈ L∞
((
Rd
)n)

.

Using the Bogoliubov functional, we can get across from computation in Γ̂
to Γ̂0 ∫

Γ̂
(LFθ)(γ̂)µ(dγ̂) =

∫
Γ̂0

(L4kµ)(η̂)
∏
x∈η

θ(x̂)λ(dη̂).(2.5)

Then instead of (2.1) we will consider the Cauchy problem

(2.6)

{
d
dtkt = L∆kt,

kt|t=0 = kµ0 .

We conclude this part by presenting some formulas which will be used in
the sequel: ∏

x∈γ
(1 + θ(x̂)) =

∑
η⊂γ

∏
x∈η

θ(x̂),(2.7)

∑
x∈γ

A(x̂)
∑
η⊂γ\x

B(η̂) =
∑
η⊂γ

∑
x∈η

A(x̂)B(η̂ \ x̂).(2.8)

Lemma 2.5 (Minlos [11]). Let n ∈ N, n ≥ 2, then for all measurable
functions G : Γ̂0 → R, H : Γ̂0 → R it is true that:∫

Γ̂0

∑
x∈γ

H(x̂)G(γ̂ \ x̂)λ̂(dγ̂) =

∫
Γ̂0

∫
Rd
H(x̂)G(γ̂)dxλ̂(dγ̂).(2.9)

3. The equation for the correlation functions. The model which we
consider is described by means of the following Markov generator

(3.1)

(LF )(γ̂) =
∑
x∈γ

∂

∂ax
F (γ̂) +

∑
x∈γ

m(x̂) [F (γ̂ \ x̂)− F (γ̂)]

+

∫
X̂

∑
y∈γ

δ(ax)b(ŷ|x) [F (γ̂ ∪ x̂)− F (γ̂)] dx̂.



A spatial individual-based contact model with age structure 45

The first summand in (3.1) describes the aging, cf. [9]. The second one
describes the mortality with age and location dependent rate m(x̂) ≥ 0,
whereas the third summand corresponds to the birth of a particle. It can also
be interpreted as an infection spreading process in the population. In that
case, γ̂ is the configuration of infected individuals containing information
on their location and the duration of illness. The recovery is described by
the coefficient m(x̂), whereas b(ŷ|x) is the infection rate. In [10, 9], similar
models were studied with the consideration restricted to finite systems. Set

M(η̂) =
∑
x∈η

m(x̂).

Regarding the birth rate we will assume that

(3.2) ∀a≥0 b(y, a|x) ≤ β(x− y),

∫
Rd
β(x)dx =: β <∞.

Furthermore, we assume that b(y, a|x) = 0 whenever a ≤ a0 for some a0 > 0,
and also

ess sup
x∈Rd

∫
Rd

∫ ∞
0

b(y, a|x)dyda := b̄ <∞.

Proposition 3.1. The equation (2.6) with the initial condition kt|t=0 = k0

and the renewal condition

(3.3) kt(η̂ \ x̂ ∪ (x, 0)) =

∫
X̂
b(ŷ|x)kt(η̂ \ x̂ ∪ ŷ)dŷ + kt(η̂ \ x̂)

∑
y∈η\x

b(ŷ|x)

takes the form

(3.4)
∂

∂t
kt(η̂) = −

∑
x∈η

∂

∂ax
kt(η̂)−M(η̂)kt(η̂).

Proof. By means of Lemma 2.5 and (2.8) the operator L given in (3.1) can
be transformed, cf. (2.5), to the following

(L∆kµ)(η̂) = −
∑
x∈η

∂

∂ax
kµ(η̂)−M(η̂)kµ(η̂)(3.5)

+
∑
x∈η

δ(ax)

−kµ(η̂) +

∫
X̂
b(ŷ|x)kµ(η̂ \ x̂ ∪ ŷ)dŷ + kµ(η̂ \ x̂)

∑
y∈η\x

b(ŷ|x)

.
The action of the generator (3.1) on Fθ (2.3) can be written as

LFθ(γ̂) =
∑
x∈γ

∂θ(x̂)

∂ax

∏
y∈γ\x

(1 + θ(ŷ)) +
∑
x∈γ

m(x̂)(1− (1 + θ(x̂)))
∏
y∈γ\x

(1 + θ(ŷ))

+

∫
X̂

∑
x∈γ

b(x̂|ŷ)δ(ay)(1 + θ(ŷ)− 1)
∏
z∈γ

(1 + θ(ẑ))dŷ.
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Now we split this into three parts. The first part is∫
Γ̂
L1Fθ(γ̂)µ(dγ̂) =

∫
Γ̂

∑
x∈γ

∂θ(x̂)

∂ax

∏
y∈γ\x

(1 + θ(ŷ))µ(dγ̂)

=

∫
Γ̂

∑
x∈γ

∂θ(x̂)

∂ax

∑
η⊂γ\x

∏
y∈η

θ(ŷ)µ(dγ̂)

=

∫
Γ̂

∑
η⊂γ

∑
x∈η

∂θ(x̂)

∂ax

∏
y∈η\x

θ(ŷ)µ(dγ̂)

=

∫
Γ̂0

kµ(η̂)
∑
x∈γ

∂θ(x̂)

∂ax

∏
y∈η\x

θ(ŷ)dx̂λ(dη̂)

=

∫
Γ̂0

(∫
X̂
kµ(η̂ ∪ x̂)

∂θ(x̂)

∂ax
dx̂
)∏
y∈η

θ(ŷ)λ(dη̂)

= −
∫

Γ̂0

(∫
X̂
kµ(η̂ ∪ x̂)δ(ax)

+
∂

∂ax
kµ(η̂ ∪ x̂)θ(x̂)dx̂

)∏
y∈η

θ(ŷ)λ(dη̂)

= −
∫

Γ̂0

(∑
x∈η

δ(ax)kµ(η̂) +
∂

∂ax
kµ(η̂)θ(x̂)

)∏
y∈η

θ(ŷ)λ(dη̂).

This result is obtained by using (2.7), (2.8) with A(x) = ∂θ(x̂)
∂ax

, B(η̂) =∏
y∈η θ(ŷ), (2.2) and Minlos’ lemma (2.9). Similarly, we get the next two

parts. The second part∫
Γ̂
L2Fθ(γ̂)µ(dγ̂) =

∫
Γ̂

∑
x∈γ

(
− θ(x̂))m(x̂)

∏
y∈γ\x

(1 + θ(ŷ)
)
µ(dγ̂)

= −
∫

Γ̂

∑
x∈γ

θ(x̂)m(x̂)
∑
η⊂γ\x

∏
y∈η

θ(ŷ)µ(dγ̂)

= −
∫

Γ̂

∑
η⊂γ

∑
x∈η

m(x̂)
∏
y∈η

θ(ŷ)µ(dγ̂)

= −
∫

Γ̂0

∑
x∈η

m(x̂)kµ(η̂)
∏
y∈η

θ(ŷ)λ(dη̂).

The third part∫
Γ̂
L3Fθ(γ̂)µ(dγ̂) =

∫
Γ̂

∫
X̂

∑
x∈γ

b(x̂|ŷ)δ(ay)θ(ŷ)
∏
z∈γ

(1 + θ(ẑ))dŷµ(dγ̂)
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=

∫
Γ̂

∫
X̂

∑
x∈γ

b(x̂|ŷ)δ(ay)θ(ŷ)(1 + θ(x̂)))

×
∏
z∈γ\x

(1 + θ(ẑ))dŷµ(dγ̂)

=

∫
Γ̂

∫
X̂

∑
x∈γ

b(x̂|ŷ)δ(ay)θ(ŷ)(1 + θ(x̂))

×
∑
η⊂γ\x

∏
z∈η

θ(ẑ)dŷµ(dγ̂)

=

∫
Γ̂

∫
X̂

∑
η⊂γ

∑
x∈η

b(x̂|ŷ)δ(ay)(1 + θ(x̂))

×
∏

z∈η\x∪y

θ(ẑ)dŷµ(dγ̂)

=

∫
Γ̂0

∫
X̂
kµ(η̂)

∑
x∈η

b(x̂|ŷ)δ(ay)
∏

z∈η\x∪y

θ(ẑ)dŷλ(dη̂)

+

∫
Γ̂0

∫
X̂
kµ(η̂)

∑
x∈η

b(x̂|ŷ)δ(ay)
∏
z∈η∪y

θ(ẑ)dŷλ(dη̂)

=

∫
Γ̂0

∫
X̂

∑
y∈η

kµ(η̂ ∪ x̂ \ ŷ)b(x̂|ŷ)δ(ay)
∏
z∈η

θ(ẑ)dx̂λ(dη̂)

+

∫
Γ̂0

∫
X̂

∑
y∈η

kµ(η̂ \ ŷ)b(x̂|ŷ)δ(ay)
∏
z∈η

θ(ẑ)dŷλ(dη̂).

Then by (2.5) we obtain (3.5). To cancel the last part of the latter we use
the renewal condition (3.3), cf. [5]. Thereafter, we arrive at (3.4). �

To solve (3.4) we use the method of characteristics by means of which it
can be transformed to the ordinary differential equation.

Set

(3.6) ψτ (η̂) = k
(n)
t−τ (η̂τ ),

where

η̂τ = {(x, ax − τ) : (x, ax) ∈ η̂}, τ = min{ax, t}.

Then
d

dτ
ψτ (η̂) =: ψ̇τ (η̂) = M(η̂τ )ψτ (η̂),

which yields

ψτ (η̂) = ψ0(η̂) exp

(∫ τ

0
M(η̂θ)dθ

)
.
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Then we apply this in (3.6) to get, where aη̂ = min
x∈η

ax

(3.7) kt
(n)(η̂) =

k0
(n)(η̂t) exp

(
−
∫ t

0 M(η̂θ)dθ
)
, t ≤ aη̂

kt−aη̂
(n)(η̂aη̂) exp

(
−
∫ aη̂

0 M(η̂θ)dθ
)
, t > aη̂.

4. Solving the equation. The first line in (3.7) gives the solution of (3.4)
for small t, whereas the second line is still an equation, which we are going
to solve in this section for n = 1, 2.

4.1. The solution for n = 1. For n = 1, the equation in (3.7) turns into
the following

(4.1) kt
(1)(x, a) =

k0
(1)(x, a− t) exp

(
−
∫ t

0 m(x, a− θ)dθ
)
, t ≤ a

kt−a
(1)(x, 0) exp

(
−
∫ a

0 m(x, a− θ)dθ
)
, t > a.

By (3.3) we get

k
(1)
t (x, 0) =

∫
X̂
b(ŷ, x)k

(1)
t (ŷ)dy.

Then by (4.1) we arrive at

(4.2)

k
(1)
t (x, 0) =

∫
Rd

(∫ ∞
0

b(y, ay|x)k
(1)
t (y, ay)day

)
dy

=

∫
Rd

∫ t

0
b(y, ay|x)k

(1)
t−ay(y, 0)

× exp
(
−
∫ ay

0
m(y, ay − θ)dθ

)
daydy

+

∫
Rd

∫ +∞

t
b(y, ay|x)k

(1)
0 (y, ay − t)

× exp
(
−
∫ t

0
m(y, ay − θ

)
dθ)daydy.

The second summand in (4.2) is bounded by

β ess sup
y∈Rd

∫ ∞
0

k
(1)
0 (y, a)da,

uniformly in t and x. Set

ut(x) = k
(1)
t (x, 0).

Now (4.2) can be written in the following form

u = Au+ v,

where

(Au)t(x) =

∫
Rd

∫ t

0
b(y, ay|x)ut−ay(y)e−

∫ ay
0 m(y,ay−θ)dθdaydy,
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vt(x) =

∫
Rd

∫ +∞

t
b(y, ay|x)k

(1)
0 (y, ay − t)e−

∫ t
0 m(y,ay−θ)dθdaydy.

For a C1-function u : R+ → L∞(Rd) and some α ≥ 0, we set

(4.3) ‖u‖α = sup
t≥0

e−αt‖ut‖L∞(Rd).

Let Uα be the Banach space of such functions with norm as in (4.3). Then A
defined above is a bounded linear operator on Uα with the norm satisfying

‖A‖α = β ess sup
y∈Rd

∫ ∞
0

e−αa−
∫ a
0 m(y,θ)dθda.

For some q ∈ (0, 1), we can choose α such that ‖A‖α ≤ q. Then the solution
of the equation above is

u = (I −A)−1v,

which allows us to obtain

(4.4) k
(1)
t (x, 0) = ut(x) = (Bv)t (x) :=

∞∑
n=0

(Anv)t (x).

By means of (4.4) we get in (4.1)

(4.5) kt
(1)(x, a) =


k0

(1)(x, a− t) exp
(
−
∫ t

0 m(x, a− θ)dθ
)
, t ≤ a

∞∑
n=0

(Anv)t−a (x) exp
(
−
∫ a

0 m(x, a− θ)dθ
)
, t > a.

4.2. The solution for n = 2. Here we find kt
(2)(y, ay, x, ax). Since it is

supposed to be symmetric, we find it for ax ≤ ay. By (3.7) we have

(4.6)
kt

(2)(y, ay, x, ax) = k0
(2)(η̂t)

× exp
(
−
∫ t

0
(m(y, ay − θ) +m(x, ax − θ))dθ

)
when t ≤ ax and

(4.7)
kt

(2)(y, ay, x, ax) = kt−ax
(2)(y, ay − ax, x, 0)

× exp
(
−
∫ ax

0
(m(y, ay − θ) +m(x, ax − θ))dθ

)
otherwise.

To find k
(2)
t−ax(y, ay − ax, x, 0) by (3.3) we get

(4.8)
k

(2)
t (y, a, x, 0) =

∫
Rd

∫ +∞

0
b(z, az|x)k

(2)
t (y, a; z, az)dazdz

+ k
(1)
t (y, a)b(y, a|x).
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For t ≤ a, we have in (4.8) the following. By (4.5) for k(1)
t (y, a), and (4.6),

(4.7) for k(2)
t (y, a; z, az), we have

(4.9)

k
(2)
t (y, a, x, 0) = b(y, a|x)k

(1)
0 (y, a− t) exp

(
−
∫ t

0
m(y, a− θ)dθ

)
+

∫
Rd

∫ t

0
b(z, az|x)k

(2)
t−az(y, a− az; z, 0)

× exp
(
−
∫ az

0
(m(z, az) +m(y, ay − θ))dθ

)
dazdz

+

∫
Rd

∫ +∞

t
b(z, az|x)k

(2)
0 (y, a− t; z, az − t)

× exp
(
−
∫ t

0
(m(y, a− θ) +m(z, az − θ))dθ

)
dazdz.

On the other hand, for t > a we rewrite (4.8) as follows

k
(2)
t (y, a, x, 0) = b(y, a|x) (Bv)t−a (y) exp

(
−
∫ a

0
m(y, a− θ)dθ

)
+

∫
Rd

∫ a

0
b(z, az|x)k

(2)
t−az(y, a− az; z, 0)

× exp

(
−
∫ az

0
(m(z, az − θ)) +m(y, a− θ))dθ

)
dazdz

+

∫
Rd

∫ t

a
b(z, az|x)k

(2)
t−a(y, 0; z, az − a)(4.10)

× exp

(
−
∫ a

0
(m(y, a− θ) +m(z, az − θ))dθ

)
dazdz

+

∫
Rd

∫ +∞

t
b(z, az|x)k

(2)
t−a(y, 0; z, az − a)

× exp

(
−
∫ a

0
(m(y, a− θ) +m(z, az − θ))dθ

)
dazdz.

Now we solve (4.9) and (4.10) as a single equation in the space of functions
R+ 3 t 7→ wt ∈ C1(R+) ⊗ L∞((Rd)2) ⊗ L1(R+) continuously differentiable
with respect to t, essentially bounded and measurable with respect to x, y
and integrable with respect to a. By letting

wt(y, a, x) = kt
(2)(y, a, x, 0)

we obtain

wt(y, a, x) = (A2w)t(y, a, x) + ft(y, a, x).(4.11)
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For t ≤ a, define

(A2w)t(y, a, x) =

∫
Rd

∫ t

0
b(z, az|x)wt−az(z, y, a− az)

× exp

(
−
∫ a

0
(m(y, a− θ)) +m(z, az − θ))dθ

)
dazdz,

(4.12)

ft(y, a, x) =

∫
Rd

∫ +∞

t
b(z, az|x)k

(2)
0 (y, a− t, z, az − t)

× exp
(
−
∫ t

0
(m(y, a− θ) +m(z, az − θ))dθ

)
dady

+ kt
(1)(y, a)b(x, y, a),

and for t > a,

(A2w)t(y, a, x) =

∫
Rd

∫ a

0
b(z, az|x)wt−az(z, y, a− az)

× exp
(
−
∫ az

0
(m(y, a− θ)) +m(z, az − θ))dθ

)
dazdz

+

∫
Rd

∫ t

a
b(z, az|x)wt−a(y, z, az − a)

× exp
(
−
∫ a

0
(m(y, a− θ)) +m(z, az − θ))dθ

)
dazdz

+

∫
Rd

∫ ∞
t

b(z, az|x)wt−a(y, z, az − a)

× exp
(
−
∫ a

0
(m(y, a− θ)) +m(z, az − θ))dθ

)
dazdz,

(4.13) ft(y, a, x) = kt
(1)(y, a)b(y, a, x).

Let Wα be a space of functions wt with the norm

‖w‖α = sup
t≥0

e−αt ess sup
(x,y)∈(Rd)2

∫ ∞
0
|wt(y, a, x)|da.

It is clear that∫ ∞
0

(A2w)t(y, a, x)da =

∫ t

0
(A2w)t(y, a, x)da+

∫ ∞
t

(A2w)t(y, a, x)da.

Therefore,∫ ∞
0

(A2w)t(y, a, x)da =

∫ t

0

∫
Rd

∫ a

0
b(z, az|x)wt−az(z, y, a− az)

× exp

(
−
∫ az

0
(m(y, a− θ) +m(z, az − θ))dθ

)
dazdzda
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+

∫ t

0

∫
Rd

∫ t

a
b(z, az|x)wt−a(y, z, az − a)

× exp

(
−
∫ a

0
(m(y, a− θ) +m(z, az − θ))dθ

)
dazdzda

+

∫ t

0

∫
Rd

∫ ∞
t

b(z, az|x)wt−a(y, z, az − a)

× exp

(
−
∫ a

0
(m(y, a− θ) +m(z, az − θ))dθ

)
dazdzda

+

∫ ∞
t

∫
Rd

∫ t

0
b(z, az|x)wt−az(z, y, a− az)

× exp

(
−
∫ a

0
(m(y, a− θ) +m(z, az − θ))dθ

)
dazdzda.

To estimate a value of the previous integrate we use (3.2) and the fact
that e−a < 1, where a > 0. Let α = β

q , for some fixed q < 1, therefore

‖A2w‖α ≤ q‖w‖α.

We can write the solution for (4.11) as

kt(x, 0, y, a) = wt(x, y, a) =

∞∑
n=0

(A2
nf)t(x, y, a).

The solution for k(2)(x, ax, y, ay) takes the form:
for t ≤ ax ≤ ay

k(2)(x, ax, y, ay) = k
(2)
0 (x, ax − t; y, ay − t)

× exp
(
−
∫ t

0
(m(x, ax − θ) +m(y, ay − θ))dθ

)
,

for ax ≤ t

k(2)(x, ax, y, ay) =
( ∞∑
n=0

(A2
nf)t−ax(y, ay − ax, x) + k

(1)
t−ax(y, a)b(y, ay|x)

)
× exp

(
−
∫ ax

0
(m(x, ax − θ) +m(y, ay − θ))dθ

)
.

For ax < t ≤ ay with an appropriate formula for ft (4.12):

(A2f)t(y, a, x) =

∫
Rd

∫ t

0
b(z, az|x)ft−az(z, y, a− az)

× exp

(
−
∫ a

0
(m(y, a− θ)) +m(z, az − θ))dθ

)
dazdz.
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For ax ≤ ay < t, ft like in (4.13):

(A2f)t(y, a, x) =

∫
Rd

∫ a

0
b(z, az|x)ft−az(z, y, a− az)

× exp

(
−
∫ az

0
(m(y, a− θ)) +m(z, az − θ))dθ

)
dazdz

+

∫
Rd

∫ t

a
b(z, az|x)ft−a(y, z, az − a)

× exp

(
−
∫ a

0
(m(y, a− θ)) +m(z, az − θ))dθ)

)
dazdz

+

∫
Rd

∫ ∞
t

b(z, az|x)ft−a(y, z, az − a)

× exp

(
−
∫ a

0
(m(y, a− θ)) +m(z, az − θ))dθ

)
dazdz.

The solution for these two correlation functions was presented to show
how they can look like explicitly and make them easier to imagine. More-
over, we prepare background to further calculations.

If we have the formula for all correlation functions we can come back to
equation (2.1) and prove that the solution for this equation exists and keep
required assumptions.
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