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under the weak dependence assumptions
and its application to copula processes

Abstract. Let: Y =(Yi), where Yi = (Yi,1, ..., Yi,d), i = 1, 2, . . . , be a d-
dimensional, identically distributed, stationary, centered process with uniform

marginals and a joint cdf F , and Fn (x) :=
1

n

∑n
i=1 I (Yi,1 ≤ x1, . . . , Yi,d ≤ xd)

denote the corresponding empirical cdf. In our work, we prove the almost sure
central limit theorem for an empirical process Bn =

√
n (Fn − F ) under some

weak dependence conditions due to Doukhan and Louhichi. Some application
of the established result to copula processes is also presented.

1. Introduction. Since the publication of the celebrated papers by Bro-
samler [2], Lacey and Philipp [19] and Schatte [26]–[27], much attention
has been drawn by the almost sure versions of distributional limit theo-
rems, commonly referred to as the almost sure central limit theorems (AS-
CLTs). The following property is investigated in the research devoted to
the ASCLTs. Namely, suppose that: X1, X2, . . . , Xk, . . . are some r.v.’s,
f1, f2, . . . , fk, . . . denote some real-valued measurable functions, defined on
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R,R2, . . . ,Rk, . . . , respectively; we seek conditions under which the follow-
ing almost sure (a.s.) convergence holds for some nondegenerate cdf G

(1.1) lim
N→∞

1

WN

N∑
n=1

wnI (fn (X1, . . . , Xn) ≤ x) = G (x) a.s.,

for all x ∈ CG, where: (wn) is some sequence of weights, WN =
∑N

n=1wn,
I stands for the indicator function, and CG denotes the set of continuity
points of G.

The subject matter of ASCLTs has gained immense popularity through-
out the past two decades or so, and a vast number of works, where (1.1)
is proved for different kinds of functions fn and various types of random
sequences (Xn) have been published since the early 1990’s. We cite in this
context the articles by: Berkes and Csáki [1], Chen and Lin [3], Cheng
et al. [4], Csáki and Gonchigdanzan [5], Dudziński [9]–[10], Dudziński and
Górka [11], Gonchigdanzan and Rempała [18], Matuła [20], Mielniczuk [21],
Peligrad and Shao [22], Stadtmüller [28], and Zhao et al. [33], among others.
The functions fn included, for different kinds of r.v.’s, e.g.: the partial sums
(see: [1], [9], [20]–[22]), the products of partial sums (see [18]), the maxima
(see: [1], [3]–[5]), the extreme order statistics (see [28]), the maxima of sums
(see: [1], [11]), and – jointly – the maxima and sums as well (see: [10], [33]).
It is worth mentioning that, in some cases, the indicator function I in (1.1)
may be replaced by a larger class of functions, see, e.g., Fazekas and Rychlik
[12]. We say about the functional almost sure central limit theorem then.

The principal purpose of our paper is to prove an empirical ASCLT, which
comprises the case where some normalized empirical process is considered.
We shall introduce the following notations. We denote by Y = (Yi) =
((Yi,1, . . . , Yi,d)), i = 1, 2, . . . , a d-dimensional, identically distributed, sta-
tionary, centered process with uniform marginal cdfs and a joint cdf F and
by Fn, the corresponding empirical cdf, i.e., the function such that, for any
x = (x1, . . . , xd) ∈ [0, 1]d,

(1.2) Fn (x) :=
1

n

n∑
i=1

I (Yi ≤ x) =
1

n

n∑
i=1

I (Yi,1 ≤ x1, . . . , Yi,d ≤ xd) .

Furthermore, we define an empirical process Bn by

(1.3) Bn (x) :=
√
n (Fn (x)− F (x)) .

We also assume that a process (Yi) satisfies the η-weak dependence assump-
tion according to the condition stated in the work by Doukhan and Louhichi
[6]. Before we cite this condition, we shall introduce some additional nota-
tions. Namely, we define the Lipschitz modulus of a real function h on Rd
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as

(1.4) Lip (h) := sup
x 6=y

|h (x)− h (y)|
‖x− y‖1

,

where ‖c‖1 := ‖(c1, . . . , cd)‖1 =
∑d

i=1 |ci|.
In addition, we denote by Λ(1) the set of functions that are bounded by 1

and have finite Lipschitz modulus. Finally, we shall refer to the sequences
of indices i1 ≤ · · · ≤ iu and j1 ≤ · · · ≤ jv as r-distant, if iu ≤ j1 and
j1 − iu = r.

We are now in a position to cite the weak dependence condition, originally
stemming – as has been mentioned – from Doukhan and Louhichi [6].

Definition 1.1. Let η = (ηr)r≥0 be a real, positive sequence decreasing
to zero. We say that a d-dimensional process (ξi)i∈Z is

(
Ψ,Λ(1), η

)
-weakly

dependent, if for any r-distant finite sequences i = (i1, . . . , iu) and j =

(j1, . . . , jv) and any functions h1, h2 in Λ(1), defined on Ru, Rv, respectively,
we have

|Cov (h1 (ξi1 , . . . , ξiu) , h2 (ξj1 , . . . , ξjv))| ≤ Ψ (h1, h2, u, v) ηr.

For the examples of the d-dimensional processes satisfying the cited weak
dependence condition with appropriate Ψ, Λ(1) and η, we refer the reader
to Doukhan et al. [7].

Our goal is to show that, under suitable weak dependence assumptions on
the process Y = (Yi), the following convergence is satisfied in D

(
[0, 1]d , dS

)
– the space of cadlag functions endowed with the Skohorod metrics,

(1.5) lim
N→∞

1

logN

N∑
n=1

1

n
I (Bn (x) ≤ z) = P (B (x) ≤ z) a.s.,

for any x ∈ [0, 1]d and any z ∈ R, where Bn is an empirical process defined
by (1.3) and B is a centered, Gaussian process, such that, for any vectors
v,w ∈ [0, 1]d,

Cov (B (v) ,B (w)) =
∑
i∈N

Cov (Y1 ≤ v,Yi ≤ w) .

History of the empirical processes theory dates back to the 1930’s and
1940’s, when the study of the empirical distribution functions Fn (x) and
the corresponding empirical processes Bn (x) =

√
n (Fn (x)− F (x)) began.

The two basic assertions concerning Fn and Bn are the Glivenko–Cantelli
theorem and the Donsker theorem. The first of the mentioned results states
that if X1, . . . , Xn are i.i.d. real-valued r.v.’s with cdf F , then

‖Fn − F‖∞ = sup
−∞<x<∞

|Fn (x)− F (x)| a.s.→ 0,

where Fn stands for the corresponding empirical df.
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An immediate application of this claim is Kolmogorov’s goodness-of-fit
test. The latter result – the Donsker theorem – states that Bn =⇒ B ≡
U (F ) in D (R, ‖·‖∞), where U denotes a standard Brownian bridge process
on [0,1], i.e., it is a zero-mean Gaussian process with the covariance given
by E(U (s)U (t)) = min (s, t)− st. The convergence =⇒ means that

Eg (Bn)→ Eg (B) and g (Bn)
d→ g (B) ,

for any bounded and continuous function g: D (R, ‖·‖∞) → R, where d→
stands for the convergence in distribution.

In the 1950’s and 1960’s a need for generalizations of both of the cited
theorems has naturally arisen. In particular, it became clear that if a more
general sample space Π (such as, e.g., Rd or some function spaces) is con-
sidered, then the empirical distribution function is not so easy to deal with.
Two basic questions have been stated in this context: (i) for what classes C
of subsets of the space Π or collections G of real-valued functions on Π does
a natural extension of the Glivenko–Cantelli theorem hold?, (ii) for what
classes C of subsets of the space Π or collections G of real-valued functions
on Π does a natural generalization of the Donsker theorem hold? The most
relevant answers to these questions have been given during the 1970’s in
the papers by Vapnik and Chervonenkis [32] and Dudley [8] with significant
contributions in the 1970’s, 1980’s and 1990’s, due to the works by Pollard
[23]–[25], Giné and Zinn [15]–[16], Giné [17], Talagrand [29], Gänssler and
Stute [13] and Gänssler [14], among others. It is especially seen through the
publications of David Pollard that the theory of empirical processes provides
a set of powerful tools allowing to prove principal assertions in the field of
asymptotic statistics. In view of the importance of the theory of modern
empirical processes in statistics, the book of van der Vaart and Wellner [31]
is worthwhile to mention as well. In its third chapter, the usefulness of this
theory in statistical applications related to, i.a., the M-estimators approach,
the Bootstrap methods, the Two-sample problem and Minimax theorems,
has been presented in detail. For a comprehensive overview on the theory
of empirical processes and their applications (e.g., in the research of asymp-
totic normality of M-estimators and in penalized least-squares estimation),
we refer the reader to the work by van de Geer [30].

The remainder of our work is structured as follows. In Section 2, we
precisely state our main result. In Section 3, we prove some lemmas, which
are necessary for the proof of our claim. Section 4 contains this proof,
whereas in Section 5, some application of the established proposition in
terms of copula processes is depicted. Finally, in Section 6, an example of
a sequence satisfying the assumptions of Theorem 2.1 is presented. This
example is given in the form of Theorem 6.1.
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2. Main result. For the functions h1, h2 from Λ(1) – the class of functions
defined on Ru, Rv, respectively, which are bounded by 1 and have finite
Lipschitz modulus – we define the following mappings:

Ψ1 (h1, h2, u, v) := min (u, v) (Lip (h1) + Lip (h2)) ,

Ψ2 (h1, h2, u, v) := min (u, v)Lip (h1)Lip (h2) ,

Ψ3 (h1, h2, u, v) :=
(
u1/2 Lip (h1) + v1/2 Lip (h2)

)
,

Ψ4 (h1, h2, u, v) := (uv)1/2 Lip (h1)Lip (h2) .

Our major assertion is the following ASCLT for some empirical process.

Theorem 2.1. Suppose that Y = (Yi) = ((Yi,1, . . . , Yi,d)), i = 1, 2, . . . , is
an identically distributed, stationary, centered, d-dimensional process, with
uniform marginal distributions and a joint cdf F (thus, Y ′i,js have the same
uniform distribution, for any i ∈ N and j = 1, . . . , d). Let in addition:
Fn be such as in (1.2) and denote an empirical cdf of Y, and Bn be an
empirical process defined by (1.3). Moreover, assume that there exists a
constant C > 0, such that:
(i) Y is

(
Ψ1,Λ

(1), ηY,r
)
-weakly dependent,

or
(ii) Y is

(
Ψ2,Λ

(1), ηY,r
)
-weakly dependent,

or
(iii) Y is

(
Ψ3,Λ

(1), ηY,r
)
-weakly dependent,

or
(iv) Y is

(
Ψ4,Λ

(1), ηY,r
)
-weakly dependent,

with the weak dependence coefficient satisfying ηY,r ≤ C2r−2α

9d for some α >
d+
√

1 + d2. Assume in addition that

(2.1) sup
|j−i|=r

∣∣P (Yi ≤ x,Yj ≤ x
)
− P (Yi ≤ x)P (Yj ≤ x)

∣∣ = O
(
r−1
)

if r →∞. Then, convergence (1.5) holds true in D
(
[0, 1]d , dS

)
.

Observe that all of the functions Ψ1–Ψ4 may be written in the form

Ψ (h1, h2, u, v) = c (u, v)µ (Lip (h1) ,Lip (h2)) ,

where c is some function defined on N2 and µ is a locally bounded function
on R2

+.
Furthermore, it is easy to check that Ψ1–Ψ4 may be bounded by

Ψ (h1, h2, u, v) = (u+ v)s (Lip (h1) + Lip (h2))
t ,

for some s > 0 and some t ∈ [0, 2], since:

Ψ1 (h1, h2, u, v) ≤ (u+ v) (Lip (h1) + Lip (h2)) ,

Ψ2 (h1, h2, u, v) ≤ (u+ v) (Lip (h1) + Lip (h2))
2 ,
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Ψ3 (h1, h2, u, v) ≤ (u+ v)1/2 (Lip (h1) + Lip (h2)) ,

Ψ4 (h1, h2, u, v) ≤ (u+ v) (Lip (h1) + Lip (h2))
2 .

Therefore, if Y is either
(
Ψ1,Λ

(1), ηY,r
)

or
(
Ψ2,Λ

(1), ηY,r
)

or
(
Ψ3,Λ

(1), ηY,r
)

or
(
Ψ4,Λ

(1), ηY,r
)
-weakly dependent, then it is also

(
Ψ5,Λ

(1), ηY,r
)
-weakly

dependent with

Ψ5(h1, h2, u, v) = (u+ v) max
(
Lip(h1) + Lip(h2), (Lip(h1) + Lip(h2))

2
)
.

This fact allows, e.g., to prove the weak convergence of the corresponding
sequence of

(
Ψ5,Λ

(1), ηY,r
)
-weakly dependent processes (see, e.g., Proposi-

tion 1 in Doukhan and Louhichi [6]).
In addition, it is seen from Lemma 10 in [6] that some classes of Markov

chains form the sequences of
(
Ψ6,Λ

(1), θr
)
-weakly dependent sequences with

Ψ6 satisfying

Ψ6 (h1, h2, u, v) ≤ 2 min (uLip (h1) , v Lip (h2))

≤ uLip (h1) + v Lip (h2)

≤ (u+ v) (Lip (h1) + Lip (h2))

≤ Ψ5 (h1, h2, u, v) ,

and hence, these Markov chains are
(
Ψ5,Λ

(1), θr
)
-weakly dependent as well.

In the subsequent section, we state and prove two lemmas, which are
needed for the proof of Theorem 2.1.

3. Auxiliary results. The following lemma will be used in the proof of
our main result.

Lemma 3.1. Under the notations and assumptions of Theorem 2.1, we
have for any x ∈ [0, 1]d and any Lipschitz and bounded by 1 function g

(3.1) |Cov (g (Bk (x)) , g (Bn (x)))| = O

(
1

k3/2
+

(
k

n

)1/2
)
,

if k →∞, provided that k < n.

Proof. Let Y = (Yi) = ((Yi,1, . . . , Yi,d)) be a d-dimensional, identically dis-
tributed, stationary, centered process with uniform marginal cdfs, a common
joint cdf F and the corresponding empirical cdf Fn (i.e., F , Fn are such that
F (x) := P (Yi,1 ≤ x1, . . . , Yi,d ≤ xd), for any i ∈ N, where x = (x1, . . . , xd) ∈
Rd, and Fn is given by (1.2)). Due to a definition of an empirical process
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Bn in (1.3), we have, for any x ∈ Rd,

Bn (x) =
√
n (Fn (x)− F (x)) =

√
n

(
1

n

n∑
i=1

I (Yi ≤ x)− F (x)

)

=
√
n

(
1

n

n∑
i=1

{I (Yi ≤ x)− P (Yi ≤ x)}

)

=
1√
n

n∑
i=1

{I (Yi ≤ x)− P (Yi ≤ x)}

=
1√
n

n∑
i=1

{I (Yi ≤ x)− F (x)}

=
Sn (x)√

n
:=

Sn√
n
,

where

Sn = Sn (x) :=
n∑
i=1

{I (Yi ≤ x)− P (Yi ≤ x)} =
n∑
i=1

{I (Yi ≤ x)− F (x)} .

For each k ∈ N, we shall introduce the following notation

Z (fk, (1, . . . , k) ,x) :=
Sk√
k

=
1√
k

k∑
i=1

{I (Yi ≤ x)− P (Yi ≤ x)}(3.2)

=
1√
k

k∑
i=1

{I (Yi ≤ x)− F (x)} = fk (I (Y1 ≤ x) , . . . , I (Yk ≤ x)) ,

where

fk (z1 (x) , . . . , zk (x)) :=
1√
k

k∑
i=1

(zi (x)− F (x)) .

Furthermore, we define the term Z (fn, (2k + 1, . . . , 2k + n) ,x) by

Z (fn, (2k + 1, . . . , 2k + n) ,x) :=
S2k+n − S2k√

n
(3.3)

=
1√
n

2k+n∑
i=2k+1

{I (Yi ≤ x)− F (x)}

= fn (I (Y2k+1 ≤ x) , . . . , I (Y2k+n ≤ x)) ,

where

fn (z1 (x) , . . . , zn (x)) :=
1√
n

n∑
i=1

(zi (x)− F (x)) .
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Put: si (x) = si, ti (x) = ti, i = 1, . . . , l, s = (s1, . . . , sl), t = (t1, . . . , tl).
We have, for any l ∈ N,

|fl (s1, . . . , sl)− fl (t1, . . . , tl)| =

∣∣∣∣∣ 1√
l

l∑
i=1

(si − ti)

∣∣∣∣∣ ≤ 1√
l

l∑
i=1

|si − ti|

=
1√
l
‖s− t‖1 .

This and a definition of the Lipschitz modulus in (1.4) yield

(3.4) Lip (fl) ≤
1√
l
.

Our aim now is to give a bound for the covariance Cov(g(Bk(x)), g(Bn(x))),
where g is any Lipschitz function bounded by 1. We assume first that Y
is
(
Ψ1,Λ

(1), ηY,r
)
-weakly dependent with ηY,r = O (r−α) for some α > d +√

1 + d2, which corresponds to the case (i) in the statement of Theorem 2.1.
As, due to the derivation at the beginning of the current proof, Bn (x) =
Sn/
√
n, where Sn = Sn (x) =

∑n
i=1 {I (Yi ≤ x)− F (x)}, we get

(3.5) |Cov (g (Bk (x)) , g (Bn (x)))| =
∣∣∣∣Cov(g( Sk√k

)
, g

(
Sn√
n

))∣∣∣∣.
Observe that∣∣∣∣Cov(g( Sk√k

)
, g

(
Sn√
n

))∣∣∣∣ ≤ ∣∣∣∣Cov (g( Sk√k
)
, g

(
S2k+n − S2k√

n

))∣∣∣∣
+

∣∣∣∣Eg( Sk√k
)(

g

(
Sn√
n

)
− g

(
S2k+n − S2k√

n

))∣∣∣∣
+

∣∣∣∣Eg( Sk√k
)
E
(
g

(
Sn√
n

)
− g
(
S2k+n − S2k√

n

))∣∣∣∣
=: A1 +A2 +A3.(3.6)

Due to the stationarity of Y, we immediately obtain

(3.7) A3 = 0.

Let us now estimate the component A1 in (3.6). In view of (3.2)–(3.3) and
the definitions of Z and fk in (3.2), we have∣∣∣∣Cov (g( Sk√k

)
, g

(
S2k+n − S2k√

n

))∣∣∣∣
= |Cov(g(fk(I(Y1≤x), ...,I(Yk≤x))), g(fn(I(Y2k+1≤x), ...,I(Y2k+n≤x))))|
= |Cov(Z(g ◦ fk, (1, ..., k),x), Z(g ◦ fn, (2k + 1, ..., 2k + n),x))|.

Since (Yi) is a d-dimensional,
(
Ψ1,Λ

(1), ηY,r
)
-weakly dependent process

with a dependence coefficient ηY,r satisfying ηY,r = O (r−α) for some α >
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d+
√

1 + d2, then by the proof of Lemma 2.1 in Doukhan et al. [7] and the
fact that g ◦ fl ∈ Λ(1), we obtain∣∣∣∣Cov (g( Sk√k

)
, g

(
S2k+n − S2k√

n

))∣∣∣∣(3.8)

= |Cov (Z (g ◦ fk, (1, . . . , k) ,x) , Z (g ◦ fn, (2k + 1, . . . , 2k + n) ,x))|
≤ {min (k, n)Lip (g ◦ fk) + min (k, n)Lip (g ◦ fn)} ηk,

where ηk = 3 (ηY,rd)1/2 which – by an assumption on ηY,r in the statement
of Theorem 2.1 – implies that ηk ≤ Cr−α for some α > d +

√
1 + d2 and

some C > 0.
Additionally, in view of (3.4) and the fact that g is Lipschitz with some

Lipschitz coefficient L, we get

Lip (g ◦ fl) = sup
x 6=y

|(g ◦ fl) (x)− (g ◦ fl) (y)|
‖x− y‖1

≤ sup
x 6=y

L |fl (x)− fl (y)|
‖x− y‖1

≤ L sup
x 6=y

|fl (x)− fl (y)|
‖x− y‖1

= L · Lip (fl) ≤
L√
l
.

This, the fact that k < n and derivation (3.8) imply∣∣∣∣Cov (g( Sk√k
)
, g

(
S2k+n − S2k√

n

))∣∣∣∣
≤ CL

(
min (k, n)

1√
k

+ min (k, n)
1√
n

)
1

kα

= O
(

1

kα−1/2

)
if k →∞.

Thus, since α > d+
√

1 + d2 > 2, we may write that

(3.9)

∣∣∣∣Cov (g( Sk√k
)
, g

(
S2k+n − S2k√

n

))∣∣∣∣
= O

(
1

k3/2

)
if k →∞,

provided that the assumption in (i) is satisfied, i.e., Y is
(
Ψ1,Λ

(1), ηY,r
)
-

weakly dependent with ηY,r = O (r−α) for some α > d+
√

1 + d2.
By the similar reasoning as in the estimation of the expression∣∣∣∣Cov (g( Sk√k

)
, g

(
S2k+n − S2k√

n

))∣∣∣∣ ,
in the case (i), it is easy to verify that in the case (ii), i.e., when Y is(
Ψ2,Λ

(1), ηY,r
)
-weakly dependent with ηY,r = O (r−α) for some α > d +
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√
1 + d2 > 2, we have

(3.10)

∣∣∣∣Cov (g( Sk√k
)
, g

(
S2k+n − S2k√

n

))∣∣∣∣
≤ CLmin (k, n)

1√
k

1√
n

1

kα

= O
(

1
√
nkα−1/2

)
if k →∞

= O
(

1
√
nk3/2

)
if k →∞

= O
(

1

k2

)
if k →∞,

in the case (iii), i.e., when Y is
(
Ψ3,Λ

(1), ηY,r
)
-weakly dependent with ηY,r =

O (r−α) for some α > d+
√

1 + d2 > 2, we obtain

(3.11)

∣∣∣∣Cov (g( Sk√k
)
, g

(
S2k+n − S2k√

n

))∣∣∣∣
≤ CL

(
k1/2

1√
k

+ n1/2
1√
n

)
1

kα

= O
(

1

kα

)
if k →∞

= O
(

1

k2

)
if k →∞,

in the case (iv), i.e., when Y is
(
Ψ4,Λ

(1), ηY,r
)
-weakly dependent with ηY,r =

O (r−α) for some α > d+
√

1 + d2 > 2, we get

(3.12)

∣∣∣∣Cov (g( Sk√k
)
, g

(
S2k+n − S2k√

n

))∣∣∣∣
≤ CL (kn)1/2

1√
kn

1

kα

= O
(

1

kα

)
if k →∞

= O
(

1

k2

)
if k →∞.

By (3.9)–(3.12), we have the following estimate for A1 in (3.6)

(3.13) A1 = O
(

1

k3/2

)
if k →∞.
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Thus, it remains to give the bound for the penultimate component in (3.6).
Since g is a bounded by 1 and Lipschitz function, we obtain

A2 =

∣∣∣∣Eg( Sk√k
)(

g

(
Sn√
n

)
− g

(
S2k+n − S2k√

n

))∣∣∣∣
≤ E

∣∣∣∣g( Sn√n
)
− g

(
S2k+n − S2k√

n

)∣∣∣∣
≤ LE

∣∣∣∣ Sn√n − S2k+n − S2k√
n

∣∣∣∣ = LE
∣∣∣∣S2k+n − Sn√

n
− S2k√

n

∣∣∣∣ .
This and the stationarity of Y imply

(3.14) A2 ≤ L
E |S2k|√

n
≤ L

√
E (Sk)

2

√
n

.

Furthermore, observe that assumption (2.1) is equivalent to the following
relation

Cr,2 := sup
|j−i|=r

|Cov (I (Yi ≤ x)− F (x) , I (Yj ≤ x)− F (x))|

= O
(
r−1
)

if r →∞,

and the requirements of Theorem 1 in Doukhan and Louhichi [6] are fulfilled
with (Xn) = (I (Yn ≤ x)− F (x)), q = 2 and Cr,q = Cr,2. Consequently, by
virtue of the mentioned theorem, we get that there exists a positive constant
M , not depending on k, such that

(3.15) E (Sk)
2 ≤Mk.

The relations in (3.14)–(3.15) yield

(3.16) A2 = O

((
k

n

)1/2
)

if k →∞.

Thus, a desired relation in (3.1) follows from (3.5)–(3.7), (3.13) and (3.16).
�

The following claim will also be employed in the proof of Theorem 2.1.

Lemma 3.2. Under the notations (in particular for Bn and B) and as-
sumptions of Theorem 2.1, we have

(3.17) Bn
D→ B in D

(
[0, 1]d , dS

)
, if n→∞,

where D→ denotes the convergence in distribution.

Proof. Let: f , g be the functions in Λ(1), defined on Ru, Rv, respectively,
i = (i1, . . . , iu), j = (j1, . . . , jv) be the sequences of natural indices, and
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s = (s1, . . . , sd), t = (t1, . . . , td) stand for the elements in [0, 1]d. With
reference to a d-dimensional process Y, we define:

Z (f, i, s) := f (I (Yi1 ≤ s) , . . . , I (Yiu ≤ s)) ,

Z (g, j, t) := g (I (Yj1 ≤ t) , . . . , I (Yjv ≤ t)) .

By Lemma 2.1 in Doukhan et al. [7], we have that if Y satisfies at least
one of the weak dependence conditions (i)–(iv) from Theorem 2.1, then the
following property is satisfied

(3.18) |Cov (Z (f, i, s) , Z (g, j, t))| ≤ (uLip (f) + v Lip (g)) ηr,

where ηr = 3 (ηY,rd)1/2.
Recall that the condition ηY,r ≤ C2r−2α

9d , for some α > d+
√

1 + d2, implies
ηr ≤ Cr−α for some α > d+

√
1 + d2. This and the relation in (3.18) imply

that all the conditions of Theorem 1 in Doukhan et al. [7] are fulfilled and
the convergence in (3.17) straightforwardly follows from this assertion. �

We are now in a position to prove our main assertion. As has already
been mentioned, the results stated as Lemmas 3.1–3.2 are intensively used
in its proof.

4. Proof of the main result. The objective of this section is to present
the proof of Theorem 2.1.

Proof. First, we will show that the following convergence holds true

(4.1) lim
N→∞

1

logN

N∑
n=1

1

n
{I (Bn (x) ≤ z)− EI (Bn (x) ≤ z)} = 0 a.s.

in D
(

[0, 1]d , dS

)
, for any x ∈ [0, 1]d and any z ∈ R.

By a well-known principle in the theory of the pointwise central limit
theorem (see, e.g., Lacey and Philipp [19] and Berkes and Csáki [1]), in
order to prove (4.1), it is enough to show that

(4.2) lim
N→∞

1

logN

N∑
n=1

1

n
{g (I (Bn (x) ≤ z))− Eg (I (Bn (x) ≤ z))} = 0 a.s.,

for any Lipschitz function g bounded by 1.
By virtue of Lemma 3.1 in Csáki and Gonchigdanzan [5], in order to prove

the convergence in (4.2), it is sufficient to show that

(4.3) Var

(
N∑
n=1

1

n
g (I (Bn (x) ≤ z))

)
= O

(
(logN)2

(log logN)1+ε

)
if N →∞,

for some ε > 0.
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Observe that

Var

(
N∑
n=1

1

n
g (I (Bn (x) ≤ z))

)
≤

N∑
n=1

1

n2
Var (g (I (Bn (x) ≤ z)))

+ 2
∑

1≤k<n≤N

1

kn
|Cov (g (I (Bk (x) ≤ z)) , g (I (Bn (x) ≤ z)))|

=:
∑

1
+
∑

2
.(4.4)

Clearly,

(4.5)
∑

1
<∞.

Thus, it remains to estimate the component
∑

2 in (4.4). In view of Lem-
ma 3.1, we have for k < n

|Cov (g (I (Bk (x) ≤ z)) , g (I (Bn (x) ≤ z)))| = O

(
1

k3/2
+

(
k

n

)1/2
)
,

if k →∞. Therefore, we obtain

∑
2

= O

 ∑
1≤k<n≤N

1

kn

1

k3/2
+

∑
1≤k<n≤N

1

kn

(
k

n

)1/2


= O

(
N−1∑
k=1

1

k5/2

N∑
n=k+1

1

n
+
N−1∑
k=1

1

k1/2

N∑
n=k+1

1

n3/2

)

= O

(
N−1∑
k=1

1

k5/2

N∑
n=k+1

1

n
+

N−1∑
k=1

1

k

)
,

where the last relation follows from the fact that
∑N

n=k+1

1

n1+γ
≤ 1

γ

1

kγ
, for

any γ > 0.
Hence, we get

(4.6)
∑

2
= O (logN) if N →∞.

In view of (4.4)–(4.6), we have

Var

(
N∑
n=1

1

n
g (I (Bn (x) ≤ z))

)
= O (logN) if N →∞.

Thus, the relations in (4.3) and (4.2) are fulfilled and consequently, (4.1)
holds true.

Finally, the convergence in (4.1), Lemma 3.2 and a regularity property of
logarithmic mean imply the result stated in Theorem 2.1. �
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In the last part of our work, we give some applications of our main result,
which refer to copula processes.

5. Application to copula processes. Let (Y) = (Yi) be such that

Yi =
(
F̃1 (Xi,1) , . . . , F̃d (Xi,d)

)
, where F̃1, . . . , F̃d denote the marginal cdfs

of Xi,1, . . . Xi,d, respectively, i = 1, 2, . . . . Clearly, we have

(5.1)

F (u) := P (Yi ≤ u)

= P
(
F̃1 (Xi,1) ≤ u1, . . . , F̃d (Xi,d) ≤ ud

)
= P

(
Xi,1 ≤ F̃−11 (u1) , . . . , Xi,d ≤ F̃−1d (ud)

)
= F̃

(
F̃−11 (u1) , . . . , F̃

−1
d (ud)

)
= C (u1, . . . , ud) = C (u) ,

where F̃ is the joint cdf of (Xi,1, . . . , Xi,d) and C denotes the corresponding
copula.

Furthermore, we obtain that

(5.2)

Fn (u) :=
1

n

n∑
i=1

I (Yi ≤ u)

=
1

n

n∑
i=1

I
(
F̃1 (Xi,1) ≤ u1, . . . , F̃d (Xi,d) ≤ ud

)
=

1

n

n∑
i=1

I
(
Xi,1 ≤ F̃−11 (u1) , . . . , Xi,d ≤ F̃−1d (ud)

)
= F̃n

(
F̃−11 (u1) , . . . , F̃

−1
d (ud)

)
,

where

F̃n (x) :=
1

n

n∑
i=1

I (Xi ≤ x) =
1

n

n∑
i=1

I (Xi,1 ≤ x1, . . . , Xi,d ≤ xd) .

In addition, we get

(5.3) Cn (u) := Cn (u1, . . . , ud) = F̃n

(
F̃−1n,1 (u1) , . . . , F̃

−1
n,d (ud)

)
,

where

F̃n,j (xj) :=
1

n

n∑
i=1

I (Xi,j ≤ xj) .
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It follows from the Glivenko–Cantelli theorem that

sup
u∈[0,1]d

|Fn (u)− Cn (u)|(5.4)

= sup
u∈[0,1]d

∣∣∣F̃n (F̃−11 (u1), . . . , F̃
−1
d (ud)

)
− F̃n

(
F̃−1n,1(u1), . . . , F̃

−1
n,d(ud)

)∣∣∣ a.s.→ 0,

provided that n→∞.
Let: F , C, Fn, Cn be such as in (5.1)–(5.3), respectively. Put

Bn (u) :=
√
n (Fn (u)− F (u)) .

By (5.1)–(5.3), we may rewrite Bn (u) as follows

(5.5)
Bn (u) =

√
n (Fn (u)− F (u)) =

√
n (Fn (u)− C (u))

=
√
n (Fn (u)− Cn (u)) +

√
n (Cn (u)− C (u)) .

By Theorem 2 in Doukhan et al. [7], we have that if a copula C has contin-
uous first partial derivatives, then

(5.6)
√
n (Cn − C)

D→ G in D
(

[0, 1]d , dS

)
, if n→∞,

where the Gaussian limit G has continuous sample paths of the form

G (u) = B (u)−
d∑
j=1

∂C

∂uj
(u)B (vj) ,

with vj ∈ [0, 1]d standing for the vector having – except for the jth coordi-
nate – all the coordinates equal to uj .

Combining (5.4)–(5.6), we obtain

Bn (u)
D→ G in D

(
[0, 1]d , dS

)
, if n→∞,

and hence, the conclusion identical with that of Lemma 3.2 holds true.
Therefore, if the process Y = (Yi) = ((Yi,1, . . . , Yi,d)), i = 1, 2, . . . , satisfies
one of the weak dependence assumptions from Theorem 2.1, it follows from
Lemmas 3.1–3.2 and the proof of Theorem 2.1 that

lim
N→∞

1

logN

N∑
n=1

1

n
I (Bn (x) ≤ z) = P (B (x) ≤ z) a.s.,

where Bn is defined such as in (5.5).

6. An example of a sequence satisfying the assumptions of Theo-
rem 2.1. Below, we provide an example of a sequence, which satisfies the
assumptions of our main result. Let us formulate the following assertion.
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Theorem 6.1. Suppose that Y = (Yi) = ((Yi,1, . . . , Yi,d)), i = 1, 2, . . . is
an identically distributed, stationary, centered, d-dimensional process, with
uniform marginal distributions and a joint cdf F (thus, Y ′i,js have the same
uniform distribution, for any i ∈ N and j = 1, . . . , d). Let in addition Fn be
such as in (1.2) and denote an empirical cdf of Y, and Bn be an empirical
process defined by (1.3). Furthermore, assume that:

(6.1) lim
n→∞

σn,j√
n

= σ for any j = 1, . . . , d,

(6.2) max
1≤j≤d

E (Sn,j − ESn,j)2+δ = O
(
n1+δ/2

)
,

as n → ∞, for some δ > 0, where: Sn,j := Y1,j + Y2,j + · · · + Yn,j, σn,j :=√
D2 (Sn,j)

2, and that (ζn) forms a sequence of i.i.d. r.v.’s, such that for
any j = 1, . . . , d, the distribution of Y1,j is independent of (ζn) and that,
there exists a measurable function G satisfying the following conditions:

(6.3) Yn+1,j = G (Yn,j , . . . , Yn−d+1,j , ζn) for any j = 1, . . . , d,

and

(6.4) ‖G (0, ζ)‖m := (E |G (0, ζ)|m)1/m <∞,

(6.5)
‖G (x, ζ)−G (y, ζ)‖m := (E |G (x, ζ)−G (y, ζ)|m)1/m

≤ βm |x− y|m ,
for some 0 ≤ β < 1 and m ≥ 1.

Finally, let E |Y1| := E |Y1,j |, for any j = 1, . . . , d, satisfy, for some
positive constant C,

(6.6) βrE |Y1| ≤
C2r−2α

18d
for some α > d+

√
1 + d2 and β as in (6.5).

Then, (1.5) holds true for Y in D
(
[0, 1]d , dS

)
.

Proof. It is easily seen from Lemma 10 in Doukhan and Louhichi [6] and
Subsection 2.2.1 in Doukhan et al. [7] that if the conditions in (6.3)–(6.5) are
fulfilled, then a d-dimensional process Y is (Ψ5,Λ, η̃Y,r)-weakly dependent,
where:

Ψ5 (h1, h2, u, v) := 2 min (u ‖h1‖∞ Lip (h1) , v ‖h2‖∞ Lip (h2)) ,

Λ :=

∞⋃
n=1

Λn, where Λn := {h : Rn → R : Lip (h) <∞} ,

η̃Y,r = βrE |Y1| , where β, E |Y1| satisfy (6.5)–(6.6), respectively.

Since Λ(1) – the class of functions that are bounded by 1 and have finite
Lipschitz modulus – is a subclass of Λ, we immediately get that Y is also
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(
Ψ5,Λ

(1), ηY,r
)
-weakly dependent. On the other hand, let us notice that if

h1, h2 ∈ Λ(1), then: ‖h1‖∞ <∞, ‖h2‖∞ <∞, and

Ψ5 (h1, h2, u, v) ≤ 2 min (u, v) (Lip (h1) + Lip (h2)) =: Ψ̃ (h1, h2, u, v) ,

which means that Y is
(
Ψ̃,Λ(1), η̃Y,r

)
-weakly dependent as well. Conse-

quently, it follows from the definition of the
(
Ψ̃,Λ(1), η̃Y,r

)
-weak dependence

that if Y is
(
Ψ̃,Λ(1), η̃Y,r

)
-weakly dependent with

Ψ̃ (h1, h2, u, v) = 2 min (u, v) (Lip (h1) + Lip (h2)) ,

then it is also
(
Ψ,Λ(1), ηY,r

)
-weakly dependent with:

(6.7) Ψ (h1, h2, u, v) :=
Ψ̃ (h1, h2, u, v)

2
= min (u, v) (Lip (h1) + Lip (h2)) ,

(6.8) ηY,r := 2η̃Y,r = 2βrE |Y1| .

As Y is
(
Ψ,Λ(1), ηY,r

)
-weakly dependent with Ψ, ηY,r such as in (6.7)–(6.8),

respectively, and (6.6) holds, we obtain that all the necessary assumptions
of Theorem 2.1, in particular the constraint that ηY,r ≤ C2r−2α

9d , for some
constant C > 0 and some α > d +

√
1 + d2, are fulfilled. Thus, in view

of the mentioned Theorem 2.1, a d-dimensional process in the statement of
Theorem 6.1 satisfies the relation in (1.5). �
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