ANNALES

UNIVERSITATIS MARIAE CURIE-SKもODOWSKA LUBLIN - POLONIA

General Lebesgue integral inequalities of Jensen and Ostrowski type for differentiable functions whose derivatives in absolute value are h-convex and applications

Abstract

Some inequalities related to Jensen and Ostrowski inequalities for general Lebesgue integral of differentiable functions whose derivatives in absolute value are h-convex are obtained. Applications for f-divergence measure are provided as well.

1. Introduction. Let $(\Omega, \mathcal{A}, \mu)$ be a measurable space consisting of a set Ω, a σ-algebra \mathcal{A} of parts of Ω and a countably additive and positive measure μ on \mathcal{A} with values in $\mathbb{R} \cup\{\infty\}$. Assume, for simplicity, that $\int_{\Omega} d \mu=1$. Consider the Lebesgue space

$$
L(\Omega, \mu):=\left\{f: \Omega \rightarrow \mathbb{R} \mid f \text { is } \mu \text {-measurable and } \int_{\Omega}|f(t)| d \mu(t)<\infty\right\} .
$$

For simplicity of notation we write everywhere in the sequel $\int_{\Omega} w d \mu$ instead of $\int_{\Omega} w(t) d \mu(t)$.

In order to provide a reverse of the celebrated Jensen's integral inequality for convex functions, S. S. Dragomir obtained in 2002 [37] the following result:

[^0]Theorem 1. Let $\Phi:[m, M] \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable convex function on (m, M) and $f: \Omega \rightarrow[m, M]$ so that $\Phi \circ f, f, \Phi^{\prime} \circ f,\left(\Phi^{\prime} \circ f\right) \cdot f \in L(\Omega, \mu)$. Then we have the inequality:

$$
\begin{align*}
0 & \leq \int_{\Omega} \Phi \circ f d \mu-\Phi\left(\int_{\Omega} f d \mu\right) \\
& \leq \int_{\Omega} f \cdot\left(\Phi^{\prime} \circ f\right) d \mu-\int_{\Omega} \Phi^{\prime} \circ f d \mu \int_{\Omega} f d \mu \tag{1.1}\\
& \leq \frac{1}{2}\left[\Phi^{\prime}(M)-\Phi^{\prime}(m)\right] \int_{\Omega}\left|f-\int_{\Omega} f d \mu\right| d \mu
\end{align*}
$$

In the case of discrete measure, we have:
Corollary 1. Let $\Phi:[m, M] \rightarrow \mathbb{R}$ be a differentiable convex function on (m, M). If $x_{i} \in[m, M]$ and $w_{i} \geq 0(i=1, \ldots, n)$ with $W_{n}:=\sum_{i=1}^{n} w_{i}=1$, then one has the counterpart of Jensen's weighted discrete inequality:

$$
\begin{aligned}
0 & \leq \sum_{i=1}^{n} w_{i} \Phi\left(x_{i}\right)-\Phi\left(\sum_{i=1}^{n} w_{i} x_{i}\right) \\
& \leq \sum_{i=1}^{n} w_{i} \Phi^{\prime}\left(x_{i}\right) x_{i}-\sum_{i=1}^{n} w_{i} \Phi^{\prime}\left(x_{i}\right) \sum_{i=1}^{n} w_{i} x_{i} \\
& \leq \frac{1}{2}\left[\Phi^{\prime}(M)-\Phi^{\prime}(m)\right] \sum_{i=1}^{n} w_{i}\left|x_{i}-\sum_{j=1}^{n} w_{j} x_{j}\right|
\end{aligned}
$$

Remark 1. We notice that the inequality between the first and the second term in (1.2) was proved in 1994 by Dragomir \& Ionescu, see [49].

If $f, g: \Omega \rightarrow \mathbb{R}$ are μ-measurable functions and $f, g, f g \in L(\Omega, \mu)$, then we may consider the Čebyšev functional

$$
\begin{equation*}
T(f, g):=\int_{\Omega} f g d \mu-\int_{\Omega} f d \mu \int_{\Omega} g d \mu \tag{1.3}
\end{equation*}
$$

The following result is known in the literature as the Grüss inequality

$$
\begin{equation*}
|T(f, g)| \leq \frac{1}{4}(\Gamma-\gamma)(\Delta-\delta) \tag{1.4}
\end{equation*}
$$

provided

$$
\begin{equation*}
-\infty<\gamma \leq f(t) \leq \Gamma<\infty, \quad-\infty<\delta \leq g(t) \leq \Delta<\infty \tag{1.5}
\end{equation*}
$$

for μ-a.e. $t \in \Omega$.
The constant $\frac{1}{4}$ is sharp in the sense that it cannot be replaced by a smaller quantity.

If we assume that $-\infty<\gamma \leq f(t) \leq \Gamma<\infty$ for μ-a.e. $t \in \Omega$, then by the Grüss inequality for $g=f$ and by the Schwarz's integral inequality, we
have

$$
\begin{equation*}
\int_{\Omega}\left|f-\int_{\Omega} f d \mu\right| d \mu \leq\left[\int_{\Omega} f^{2} d \mu-\left(\int_{\Omega} f d \mu\right)^{2}\right]^{\frac{1}{2}} \leq \frac{1}{2}(\Gamma-\gamma) \tag{1.6}
\end{equation*}
$$

On making use of the results (1.1) and (1.6), we can state the following string of reverse inequalities

$$
\begin{align*}
0 & \leq \int_{\Omega} \Phi \circ f d \mu-\Phi\left(\int_{\Omega} f d \mu\right) \\
& \leq \int_{\Omega} f \cdot\left(\Phi^{\prime} \circ f\right) d \mu-\int_{\Omega} \Phi^{\prime} \circ f d \mu \int_{\Omega} f d \mu \\
& \leq \frac{1}{2}\left[\Phi^{\prime}(M)-\Phi^{\prime}(m)\right] \int_{\Omega}\left|f-\int_{\Omega} f d \mu\right| d \mu \tag{1.7}\\
& \leq \frac{1}{2}\left[\Phi^{\prime}(M)-\Phi^{\prime}(m)\right]\left[\int_{\Omega} f^{2} d \mu-\left(\int_{\Omega} f d \mu\right)^{2}\right]^{\frac{1}{2}} \\
& \leq \frac{1}{4}\left[\Phi^{\prime}(M)-\Phi^{\prime}(m)\right](M-m),
\end{align*}
$$

provided that $\Phi:[m, M] \subset \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable convex function on (m, M) and $f: \Omega \rightarrow[m, M]$ so that $\Phi \circ f, f, \Phi^{\prime} \circ f, f \cdot\left(\Phi^{\prime} \circ f\right) \in L(\Omega, \mu)$, with $\int_{\Omega} d \mu=1$.

The following reverse of the Jensen's inequality also holds [41].
Theorem 2. Let $\Phi: I \rightarrow \mathbb{R}$ be a continuous convex function on the interval of real numbers I and $m, M \in \mathbb{R}, m<M$ with $[m, M] \subset I$, where $\stackrel{\circ}{I}$ is the interior of I. If $f: \Omega \rightarrow \mathbb{R}$ is μ-measurable, satisfies the bounds

$$
-\infty<m \leq f(t) \leq M<\infty \text { for } \mu \text {-a.e. } t \in \Omega
$$

and such that $f, \Phi \circ f \in L(\Omega, \mu)$, then

$$
\begin{align*}
0 & \leq \int_{\Omega} \Phi \circ f d \mu-\Phi\left(\int_{\Omega} f d \mu\right) \\
& \leq\left(M-\int_{\Omega} f d \mu\right)\left(\int_{\Omega} f d \mu-m\right) \frac{\Phi_{-}^{\prime}(M)-\Phi_{+}^{\prime}(m)}{M-m} \tag{1.8}\\
& \leq \frac{1}{4}(M-m)\left[\Phi_{-}^{\prime}(M)-\Phi_{+}^{\prime}(m)\right]
\end{align*}
$$

where Φ_{-}^{\prime} is the left and Φ_{+}^{\prime} is the right derivative of the convex function Φ.
For other reverse of Jensen inequality and applications to divergence measures see [41].

In 1938, A. Ostrowski [80], proved the following inequality concerning the distance between the integral mean $\frac{1}{b-a} \int_{a}^{b} \Phi(t) d t$ and the value $\Phi(x)$, $x \in[a, b]$.

For various results related to Ostrowski's inequality see [13]-[16], [23][60], [64] and the references therein.
Theorem 3. Let $\Phi:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b) such that $\Phi^{\prime}:(a, b) \rightarrow \mathbb{R}$ is bounded on (a, b), i.e., $\left\|\Phi^{\prime}\right\|_{\infty}:=$ $\sup _{t \in(a, b)}\left|\Phi^{\prime}(t)\right|<\infty$. Then

$$
\begin{equation*}
\left|\Phi(x)-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq\left[\frac{1}{4}+\left(\frac{x-\frac{a+b}{2}}{b-a}\right)^{2}\right]\left\|\Phi^{\prime}\right\|_{\infty}(b-a) \tag{1.9}
\end{equation*}
$$

for all $x \in[a, b]$ and the constant $\frac{1}{4}$ is the best possible.
Now, for $\gamma, \Gamma \in \mathbb{C}$ and $[a, b]$ an interval of real numbers, define the sets of complex-valued functions [45]:

$$
\begin{aligned}
& \bar{U}_{[a, b]}(\gamma, \Gamma) \\
& :=\{f:[a, b] \rightarrow \mathbb{C} \mid \operatorname{Re}[(\Gamma-f(t))(\overline{f(t)}-\bar{\gamma})] \geq 0 \text { for a.e. } t \in[a, b]\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \bar{\Delta}_{[a, b]}(\gamma, \Gamma) \\
& :=\left\{f: \left.[a, b] \rightarrow \mathbb{C}| | f(t)-\frac{\gamma+\Gamma}{2}\left|\leq \frac{1}{2}\right| \Gamma-\gamma \right\rvert\, \text { for a.e. } t \in[a, b]\right\} .
\end{aligned}
$$

The following representation result may be stated [45].
Proposition 1. For any $\gamma, \Gamma \in \mathbb{C}, \gamma \neq \Gamma$, we have that $\bar{U}_{[a, b]}(\gamma, \Gamma)$ and $\bar{\Delta}_{[a, b]}(\gamma, \Gamma)$ are nonempty, convex and closed sets and

$$
\begin{equation*}
\bar{U}_{[a, b]}(\gamma, \Gamma)=\bar{\Delta}_{[a, b]}(\gamma, \Gamma) \tag{1.10}
\end{equation*}
$$

On making use of the complex numbers field properties we can also state that:

Corollary 2. For any $\gamma, \Gamma \in \mathbb{C}, \gamma \neq \Gamma$, we have

$$
\begin{align*}
\bar{U}_{[a, b]}(\gamma, \Gamma)=\{f & :[a, b] \rightarrow \mathbb{C} \mid(\operatorname{Re} \Gamma-\operatorname{Re} f(t))(\operatorname{Re} f(t)-\operatorname{Re} \gamma) \\
& +(\operatorname{Im} \Gamma-\operatorname{Im} f(t))(\operatorname{Im} f(t)-\operatorname{Im} \gamma) \geq 0 \tag{1.11}\\
& \text { for a.e. } t \in[a, b]\} .
\end{align*}
$$

Now, if we assume that $\operatorname{Re}(\Gamma) \geq \operatorname{Re}(\gamma)$ and $\operatorname{Im}(\Gamma) \geq \operatorname{Im}(\gamma)$, then we can define the following set of functions as well:

$$
\begin{array}{r}
\bar{S}_{[a, b]}(\gamma, \Gamma):=\{f:[a, b] \rightarrow \mathbb{C} \mid \operatorname{Re}(\Gamma) \geq \operatorname{Re} f(t) \geq \operatorname{Re}(\gamma) \text { and } \tag{1.12}\\
\operatorname{Im}(\Gamma) \geq \operatorname{Im} f(t) \geq \operatorname{Im}(\gamma) \text { for a.e. } t \in[a, b]\}
\end{array}
$$

One can easily observe that $\bar{S}_{[a, b]}(\gamma, \Gamma)$ is closed, convex and

$$
\begin{equation*}
\emptyset \neq \bar{S}_{[a, b]}(\gamma, \Gamma) \subseteq \bar{U}_{[a, b]}(\gamma, \Gamma) \tag{1.13}
\end{equation*}
$$

The following result holds [45].
Theorem 4. Let $\Phi: I \rightarrow \mathbb{C}$ be an absolutely continuous function on $[a, b] \subset$ $\stackrel{\circ}{I}$, the interior of I. For some $\gamma, \Gamma \in \mathbb{C}, \gamma \neq \Gamma$, assume that $\Phi^{\prime} \in \bar{U}_{[a, b]}(\gamma, \Gamma)$ $\left(=\bar{\Delta}_{[a, b]}(\gamma, \Gamma)\right)$. If $g: \Omega \rightarrow[a, b]$ is Lebesgue μ-measurable on Ω and such that $\Phi \circ g, g \in L(\Omega, \mu)$, then we have the inequality

$$
\begin{gather*}
\left|\int_{\Omega} \Phi \circ g d \mu-\Phi(x)-\frac{\gamma+\Gamma}{2}\left(\int_{\Omega} g d \mu-x\right)\right| \tag{1.14}\\
\quad \leq \frac{1}{2}|\Gamma-\gamma| \int_{\Omega}|g-x| d \mu
\end{gather*}
$$

for any $x \in[a, b]$.
In particular, we have

$$
\begin{aligned}
& \left|\int_{\Omega} \Phi \circ g d \mu-\Phi\left(\frac{a+b}{2}\right)-\frac{\gamma+\Gamma}{2}\left(\int_{\Omega} g d \mu-\frac{a+b}{2}\right)\right| \\
& \quad \leq \frac{1}{2}|\Gamma-\gamma| \int_{\Omega}\left|g-\frac{a+b}{2}\right| d \mu \\
& \quad \leq \frac{1}{4}(b-a)|\Gamma-\gamma|
\end{aligned}
$$

and

$$
\begin{align*}
& \left|\int_{\Omega} \Phi \circ g d \mu-\Phi\left(\int_{\Omega} g d \mu\right)\right| \leq \frac{1}{2}|\Gamma-\gamma| \int_{\Omega}\left|g-\int_{\Omega} g d \mu\right| d \mu \\
& \quad \leq \frac{1}{2}|\Gamma-\gamma|\left(\int_{\Omega} g^{2} d \mu-\left(\int_{\Omega} g d \mu\right)^{2}\right)^{1 / 2} \tag{1.16}\\
& \quad \leq \frac{1}{4}(b-a)|\Gamma-\gamma|
\end{align*}
$$

Motivated by the above results, in this paper we provide more upper bounds for the quantity

$$
\left|\int_{\Omega} \Phi \circ g d \mu-\Phi(x)\right|, x \in[a, b]
$$

under various assumptions on the absolutely continuous function Φ, which in the particular case of $x=\int_{\Omega} g d \mu$ provides some results connected with Jensen's inequality while in the general case provides some generalizations of Ostrowski's inequality. Applications for divergence measures are provided as well.

2. Preliminary Facts.

2.1. Some Identities. The following result holds [45].

Lemma 1. Let $\Phi: I \rightarrow \mathbb{C}$ be an absolutely continuous function on $[a, b] \subset \check{I}$, the interior of I. If $g: \Omega \rightarrow[a, b]$ is Lebesgue μ-measurable on Ω and such that $\Phi \circ g, g \in L(\Omega, \mu)$, then we have the equality

$$
\begin{align*}
& \int_{\Omega} \Phi \circ g d \mu-\Phi(x)-\lambda\left(\int_{\Omega} g d \mu-x\right) \\
& =\int_{\Omega}\left[(g-x) \int_{0}^{1}\left(\Phi^{\prime}((1-s) x+s g)-\lambda\right) d s\right] d \mu \tag{2.1}
\end{align*}
$$

for any $\lambda \in \mathbb{C}$ and $x \in[a, b]$.
In particular, we have

$$
\begin{equation*}
\int_{\Omega} \Phi \circ g d \mu-\Phi(x)=\int_{\Omega}\left[(g-x) \int_{0}^{1} \Phi^{\prime}((1-s) x+s g) d s\right] d \mu \tag{2.2}
\end{equation*}
$$

for any $x \in[a, b]$.
Remark 2. With the assumptions of Lemma 1 we have

$$
\begin{align*}
& \int_{\Omega} \Phi \circ g d \mu-\Phi\left(\frac{a+b}{2}\right) \\
& =\int_{\Omega}\left[\left(g-\frac{a+b}{2}\right) \int_{0}^{1} \Phi^{\prime}\left((1-s) \frac{a+b}{2}+s g\right) d s\right] d \mu \tag{2.3}
\end{align*}
$$

Corollary 3. With the assumptions of Lemma 1 we have

$$
\begin{align*}
& \int_{\Omega} \Phi \circ g d \mu-\Phi\left(\int_{\Omega} g d \mu\right) \tag{2.4}\\
& =\int_{\Omega}\left[\left(g-\int_{\Omega} g d \mu\right) \int_{0}^{1} \Phi^{\prime}\left((1-s) \int_{\Omega} g d \mu+s g\right) d s\right] d \mu
\end{align*}
$$

Proof. We observe that since $g: \Omega \rightarrow[a, b]$ and $\int_{\Omega} d \mu=1$, then $\int_{\Omega} g d \mu \in$ [a, b] and by taking $x=\int_{\Omega} g d \mu$ in (2.2) we get (2.4).
Corollary 4. With the assumptions of Lemma 1 we have

$$
\begin{align*}
& \int_{\Omega} \Phi \circ g d \mu-\frac{1}{b-a} \int_{a}^{b} \Phi(x) d x-\lambda\left(\int_{\Omega} g d \mu-\frac{a+b}{2}\right) \tag{2.5}\\
& =\int_{\Omega}\left\{\frac{1}{b-a} \int_{a}^{b}\left[(g-x) \int_{0}^{1}\left(\Phi^{\prime}((1-s) x+s g)-\lambda\right) d s\right] d x\right\} d \mu
\end{align*}
$$

Proof. Follows by integrating the identity (2.1) over $x \in[a, b]$, dividing by $b-a>0$ and using Fubini's theorem.

Corollary 5. Let $\Phi: I \rightarrow \mathbb{C}$ be an absolutely continuous functions on $[a, b] \subset \stackrel{\circ}{I}$, the interior of I. If $g, h: \Omega \rightarrow[a, b]$ are Lebesgue μ-measurable on Ω and such that $\Phi \circ g$, $\Phi \circ h, g, h \in L(\Omega, \mu)$, then we have the equality

$$
\begin{align*}
& \int_{\Omega} \Phi \circ g d \mu-\int_{\Omega} \Phi \circ h d \mu-\lambda\left(\int_{\Omega} g d \mu-\int_{\Omega} h d \mu\right) \\
& =\int_{\Omega} \int_{\Omega}\left[(g(t)-h(\tau)) \int_{0}^{1}\left(\Phi^{\prime}((1-s) h(\tau)+s g(t))-\lambda\right) d s\right] d \mu(t) d \mu(\tau) \tag{2.6}
\end{align*}
$$

for any $\lambda \in \mathbb{C}$ and $x \in[a, b]$.
In particular, we have

$$
\begin{align*}
& \int_{\Omega} \Phi \circ g d \mu-\int_{\Omega} \Phi \circ h d \mu \tag{2.7}\\
& =\int_{\Omega} \int_{\Omega}\left[(g(t)-h(\tau)) \int_{0}^{1} \Phi^{\prime}((1-s) h(\tau)+s g(t)) d s\right] d \mu(t) d \mu(\tau)
\end{align*}
$$

for any $x \in[a, b]$.
Remark 3. The above inequality (2.6) can be extended for two measures as follows

$$
\begin{align*}
& \int_{\Omega_{1}} \Phi \circ g d \mu_{1}-\int_{\Omega_{2}} \Phi \circ h d \mu_{2}-\lambda\left(\int_{\Omega_{1}} g d \mu_{1}-\int_{\Omega_{2}} h d \mu_{2}\right) \tag{2.8}\\
& =\int_{\Omega_{1}} \int_{\Omega_{2}}\left[(g(t)-h(\tau)) \int_{0}^{1}\left(\Phi^{\prime}((1-s) h(\tau)+s g(t))-\lambda\right) d s\right] d \mu_{1}(t) d \mu_{2}(\tau)
\end{align*}
$$

for any $\lambda \in \mathbb{C}$ and $x \in[a, b]$ and provided that $\Phi \circ g, g \in L\left(\Omega_{1}, \mu_{1}\right)$ while $\Phi \circ h, h \in L\left(\Omega_{2}, \mu_{2}\right)$.

Remark 4. If $w \geq 0 \mu$-almost everywhere (μ-a.e.) on Ω with $\int_{\Omega} w d \mu>0$, then by replacing $d \mu$ with $\frac{w d \mu}{\int_{\Omega} w d \mu}$ in (2.1) we have the weighted equality

$$
\begin{align*}
& \frac{1}{\int_{\Omega} w d \mu} \int_{\Omega} w(\Phi \circ g) d \mu-\Phi(x)-\lambda\left(\frac{1}{\int_{\Omega} w d \mu} \int_{\Omega} w g d \mu-x\right) \tag{2.9}\\
& =\frac{1}{\int_{\Omega} w d \mu} \int_{\Omega} w \cdot\left[(g-x) \int_{0}^{1}\left(\Phi^{\prime}((1-s) x+s g)-\lambda\right) d s\right] d \mu
\end{align*}
$$

for any $\lambda \in \mathbb{C}$ and $x \in[a, b]$, provided $\Phi \circ g, g \in L_{w}(\Omega, \mu)$ where

$$
L_{w}(\Omega, \mu):=\left\{g\left|\int_{\Omega} w\right| g \mid d \mu<\infty\right\} .
$$

The other equalities have similar weighted versions. However, the details are omitted.
2.2. \boldsymbol{h}-convex functions. We recall here some concepts of convexity that are well known in the literature.

Let I be an interval in \mathbb{R}.
Definition 1 ([61]). We say that $\Phi: I \rightarrow \mathbb{R}$ is a Godunova-Levin function or that Φ belongs to the class $Q(I)$ if Φ is nonnegative and for all $x, y \in I$ and $t \in(0,1)$ we have

$$
\begin{equation*}
\Phi(t x+(1-t) y) \leq \frac{1}{t} \Phi(x)+\frac{1}{1-t} \Phi(y) . \tag{2.10}
\end{equation*}
$$

Some further properties of this class of functions can be found in [50], [51], [53], [79], [83] and [85]. Among others, its has been noted that nonnegative monotone and nonnegative convex functions belong to this class of functions.

The above concept can be extended for functions $\Phi: C \subseteq X \rightarrow[0, \infty)$ where C is a convex subset of the real or complex linear space X and the inequality (2.10) is satisfied for any vectors $x, y \in C$ and $t \in(0,1)$. If the function $\Phi: C \subseteq X \rightarrow \mathbb{R}$ is nonnegative and convex, then it is of Godunova-Levin type.

Definition 2 ([53]). We say that a function $\Phi: I \rightarrow \mathbb{R}$ belongs to the class $P(I)$ if it is nonnegative and for all $x, y \in I$ and $t \in[0,1]$ we have

$$
\begin{equation*}
\Phi(t x+(1-t) y) \leq \Phi(x)+\Phi(y) \tag{2.11}
\end{equation*}
$$

Obviously $Q(I)$ contains $P(I)$ and for applications it is important to note that also $P(I)$ contains all nonnegative monotone, convex and quasi-convex functions, i.e. functions satisfying

$$
\begin{equation*}
\Phi(t x+(1-t) y) \leq \max \{\Phi(x), \Phi(y)\} \tag{2.12}
\end{equation*}
$$

for all $x, y \in I$ and $t \in[0,1]$.
For some results on P-functions see [53] and [81] while for quasi-convex functions, the reader can consult [52].

If $\Phi: C \subseteq X \rightarrow[0, \infty)$, where C is a convex subset of the real or complex linear space X, then we say that it is of P-type (or quasi-convex) if the inequality (2.11) (or (2.12)) holds true for $x, y \in C$ and $t \in[0,1]$.
Definition 3 ([10]). Let s be a real number, $s \in(0,1]$. A function Φ : $[0, \infty) \rightarrow[0, \infty)$ is said to be s-convex (in the second sense) or Breckner s-convex if

$$
\Phi(t x+(1-t) y) \leq t^{s} \Phi(x)+(1-t)^{s} \Phi(y)
$$

for all $x, y \in[0, \infty)$ and $t \in[0,1]$.
For some properties of this class of functions see [2], [3], [10], [11], [47], [48], [63], [73] and [91].

In order to unify the above concepts for functions of real variable, S. Varošanec introduced the concept of h-convex functions as follows.

Assume that I and J are intervals in $\mathbb{R},(0,1) \subseteq J$ and functions h and Φ are real nonnegative functions defined in J and I, respectively.

Definition $4([101])$. Let $h: J \rightarrow[0, \infty)$ with h not identical to 0 . We say that $\Phi: I \rightarrow[0, \infty)$ is an h-convex function if for all $x, y \in I$ we have

$$
\begin{equation*}
\Phi(t x+(1-t) y) \leq h(t) \Phi(x)+h(1-t) \Phi(y) \tag{2.13}
\end{equation*}
$$

for all $t \in(0,1)$.
For some results concerning this class of functions see [101], [9], [76], [90], [89] and [99].

We can introduce now another class of functions.
Definition 5. We say that the function $\Phi: I \rightarrow[0, \infty) \rightarrow[0, \infty)$ is of s-Godunova-Levin type, with $s \in[0,1]$, if

$$
\begin{equation*}
\Phi(t x+(1-t) y) \leq \frac{1}{t^{s}} \Phi(x)+\frac{1}{(1-t)^{s}} \Phi(y) \tag{2.14}
\end{equation*}
$$

for all $t \in(0,1)$ and $x, y \in C$.
We observe that for $s=0$ we obtain the class of P-functions while for $s=$ 1 we obtain the class of Godunova-Levin functions. If we denote by $Q_{s}(C)$ the class of s-Godunova-Levin functions defined on C, then we obviously have

$$
P(C)=Q_{0}(C) \subseteq Q_{s_{1}}(C) \subseteq Q_{s_{2}}(C) \subseteq Q_{1}(C)=Q(C)
$$

for $0 \leq s_{1} \leq s_{2} \leq 1$.
For different inequalities related to these classes of functions, see [2]-[5], [9], [13]-[59], [72]-[76] and [81]-[99].
3. Inequalities for $\left|\Phi^{\prime}\right|$ being h-convex, quasi-convex or log-convex. We use the notations

$$
\|k\|_{\Omega, p}:=\left\{\begin{array}{l}
\left(\int_{\Omega}|k(t)|^{p} d \mu(t)\right)^{1 / p}<\infty \\
\text { if } p \geq 1, k \in L_{p}(\Omega, \mu) \\
{\operatorname{ess} \sup _{t \in \Omega}|k(t)|<\infty}^{\text {if } p=\infty, k \in L_{\infty}(\Omega, \mu)}
\end{array}\right.
$$

and

$$
\|\Phi\|_{[0,1], p}:=\left\{\begin{array}{c}
\left(\int_{0}^{1}|\Phi(s)|^{p} d s\right)^{1 / p}<\infty \\
\text { if } p \geq 1, \Phi \in L_{p}(0,1) \\
\\
\operatorname{ess}^{2} \sup _{s \in[0,1]}|\Phi(s)|<\infty \\
\text { if } p=\infty, \Phi \in L_{\infty}(0,1)
\end{array}\right.
$$

The following result holds.
Theorem 5. Let $\Phi: I \rightarrow \mathbb{C}$ be a differentiable function on $\stackrel{\circ}{I}$, the interior of I and such that $\left|\Phi^{\prime}\right|$ is h-convex on the interval $[a, b] \subset \stackrel{\circ}{I}$. If $g: \Omega \rightarrow[a, b]$ is Lebesgue μ-measurable on Ω and such that $\Phi \circ g, g \in L(\Omega, \mu)$, then we have the inequality

$$
\begin{align*}
& \left|\int_{\Omega} \Phi \circ g d \mu-\Phi(x)\right| \\
& \leq \int_{0}^{1} h(s) d s\left\{\begin{array}{l}
\|g-x\|_{\Omega, \infty}\left[\left|\Phi^{\prime}(x)\right|+\left\|\Phi^{\prime} \circ g\right\|_{\Omega, 1}\right] \\
\text { if } \Phi^{\prime} \circ g \in L(\Omega, \mu) ; \\
\|g-x\|_{\Omega, p}\left\|\left|\Phi^{\prime}(x)\right|+\left|\Phi^{\prime} \circ g\right|\right\|_{\Omega, q}, \\
\text { if } \Phi^{\prime} \circ g \in L_{q}(\Omega, \mu), p>1, \frac{1}{p}+\frac{1}{q}=1 ; \\
\|g-x\|_{\Omega, 1}\left[\left|\Phi^{\prime}(x)\right|+\left\|\Phi^{\prime} \circ g\right\|_{\Omega, \infty}\right] \\
\text { if } \Phi^{\prime} \circ g \in L_{\infty}(\Omega, \mu)
\end{array}\right. \tag{3.1}
\end{align*}
$$

for any $x \in[a, b]$.
In particular, we have

$$
\begin{align*}
& \left|\int_{\Omega} \Phi \circ g d \mu-\Phi\left(\int_{\Omega} g d \mu\right)\right| \\
& \leq \int_{0}^{1} h(s) d s\left\{\begin{array}{l}
\left\|g-\int_{\Omega} g d \mu\right\|_{\Omega, \infty}\left[\left|\Phi^{\prime}\left(\int_{\Omega} g d \mu\right)\right|+\left\|\Phi^{\prime} \circ g\right\|_{\Omega, 1}\right] \\
\text { if } \Phi^{\prime} \circ g \in L(\Omega, \mu) ; \\
\left\|g-\int_{\Omega} g d \mu\right\|_{\Omega, p}\left\|\left|\Phi^{\prime}\left(\int_{\Omega} g d \mu\right)\right|+\left|\Phi^{\prime} \circ g\right|\right\|_{\Omega, q} \\
\text { if } \Phi^{\prime} \circ g \in L_{q}(\Omega, \mu), p>1, \frac{1}{p}+\frac{1}{q}=1 ; \\
\left\|g-\int_{\Omega} g d \mu\right\|_{\Omega, 1}\left[\left|\Phi^{\prime}\left(\int_{\Omega} g d \mu\right)\right|+\left\|\Phi^{\prime} \circ g\right\|_{\Omega, \infty}\right] \\
\text { if } \Phi^{\prime} \circ g \in L_{\infty}(\Omega, \mu)
\end{array}\right. \tag{3.2}
\end{align*}
$$

and

$$
\begin{aligned}
& \left|\int_{\Omega} \Phi \circ g d \mu-\Phi\left(\frac{a+b}{2}\right)\right| \\
& \leq \int_{0}^{1} h(s) d s\left\{\begin{array}{c}
\left\|g-\frac{a+b}{2}\right\|_{\Omega, \infty}\left[\left|\Phi^{\prime}\left(\frac{a+b}{2}\right)\right|+\left\|\Phi^{\prime} \circ g\right\|_{\Omega, 1}\right], \\
\text { if } \Phi^{\prime} \circ g \in L(\Omega, \mu) ; \\
\left\|g-\frac{a+b}{2}\right\|_{\Omega, p}\left\|\left|\Phi^{\prime}\left(\frac{a+b}{2}\right)\right|+\left|\Phi^{\prime} \circ g\right|\right\|_{\Omega, q}, \\
\text { if } \Phi^{\prime} \circ g \in L_{q}(\Omega, \mu), p>1, \frac{1}{p}+\frac{1}{q}=1 ; \\
\left\|g-\frac{a+b}{2}\right\|_{\Omega, 1}\left[\left|\Phi^{\prime}\left(\frac{a+b}{2}\right)\right|+\left\|\Phi^{\prime} \circ g\right\|_{\Omega, \infty}\right] \\
\text { if } \Phi^{\prime} \circ g \in L_{\infty}(\Omega, \mu)
\end{array}\right. \\
& \leq \frac{1}{2}(b-a) \int_{0}^{1} h(s) d s\left\{\begin{array}{l}
\left.\left|\Phi^{\prime}\left(\frac{a+b}{2}\right)\right|+\left\|\Phi^{\prime} \circ g\right\|_{\Omega, 1}\right] \\
\left\|\left|\Phi^{\prime}\left(\frac{a+b}{2}\right)\right|+\left|\Phi^{\prime} \circ g\right|\right\|_{\Omega, q}, \\
i f p>1, \frac{1}{p}+\frac{1}{q}=1 ; \\
{\left[\left|\Phi^{\prime}\left(\frac{a+b}{2}\right)\right|+\left\|\Phi^{\prime} \circ g\right\|_{\Omega, \infty}\right]}
\end{array}\right.
\end{aligned}
$$

Proof. We have from (2.2) that

$$
\begin{equation*}
\left|\int_{\Omega} \Phi \circ g d \mu-\Phi(x)\right| \leq \int_{\Omega}|g-x|\left|\int_{0}^{1} \Phi^{\prime}((1-s) x+s g) d s\right| d \mu \tag{3.4}
\end{equation*}
$$

for any $x \in[a, b]$.
Utilising Hölder's inequality for the μ-measurable functions $F, G: \Omega \rightarrow \mathbb{C}$,

$$
\left|\int_{\Omega} F G d \mu\right| \leq\left(\int_{\Omega}|F|^{p} d \mu\right)^{1 / p}\left(\int_{\Omega}|G|^{q} d \mu\right)^{1 / q}
$$

$p>1, \frac{1}{p}+\frac{1}{q}=1$, and

$$
\left|\int_{\Omega} F G d \mu\right| \leq \underset{t \in \Omega}{\operatorname{esssup}}|F(t)| \int_{\Omega}|G| d \mu,
$$

we have

$$
\begin{align*}
B & :=\int_{\Omega}|g-x|\left|\int_{0}^{1} \Phi^{\prime}((1-s) x+s g) d s\right| d \mu \\
& \leq\left\{\begin{array}{l}
\underset{t \in \Omega}{\operatorname{ess} \sup }|g(t)-x| \int_{\Omega}\left|\int_{0}^{1} \Phi^{\prime}((1-s) x+s g) d s\right| d \mu \\
\left(\int_{\Omega}|g-x|^{p} d \mu\right)^{1 / p}\left(\int_{\Omega}\left|\int_{0}^{1} \Phi^{\prime}((1-s) x+s g) d s\right|^{q} d \mu\right)^{1 / q} \\
\operatorname{if} p>1, \frac{1}{p}+\frac{1}{q}=1 ; \\
\int_{\Omega}|g-x| d \mu \underset{t \in \Omega}{\operatorname{ess} \sup }\left|\int_{0}^{1} \Phi^{\prime}((1-s) x+s g) d s\right|
\end{array}\right. \tag{3.5}
\end{align*}
$$

for any $x \in[a, b]$.
Since $\left|\Phi^{\prime}\right|$ is h-convex on the interval $[a, b]$, then we have for any $t \in \Omega$ that

$$
\begin{aligned}
&\left|\int_{0}^{1} \Phi^{\prime}((1-s) x+s g(t)) d s\right| \leq \int_{0}^{1}\left|\Phi^{\prime}((1-s) x+s g(t))\right| d s \\
& \leq\left|\Phi^{\prime}(x)\right| \int_{0}^{1} h(1-s) d s+\left|\Phi^{\prime}(g(t))\right| \int_{0}^{1} h(s) d s \\
&=\left[\left|\Phi^{\prime}(x)\right|+\left|\Phi^{\prime}(g(t))\right|\right] \int_{0}^{1} h(s) d s
\end{aligned}
$$

for any $x \in[a, b]$.
This implies that

$$
\begin{align*}
\int_{\Omega} \mid \int_{0}^{1} \Phi^{\prime}(& (1-s) x+s g) d s \mid d \mu \tag{3.6}\\
& \leq \int_{0}^{1} h(s) d s\left[\left|\Phi^{\prime}(x)\right|+\int_{\Omega}\left|\Phi^{\prime} \circ g\right| d \mu\right]
\end{align*}
$$

for any $x \in[a, b]$.
We have for any $t \in \Omega$ that

$$
\begin{aligned}
\left|\int_{0}^{1} \Phi^{\prime}((1-s) x+s g(t)) d s\right|^{q} & \leq\left[\int_{0}^{1}\left|\Phi^{\prime}((1-s) x+s g(t))\right| d s\right]^{q} \\
& \leq\left[\left[\left|\Phi^{\prime}(x)\right|+\left|\Phi^{\prime}(g(t))\right|\right] \int_{0}^{1} h(s) d s\right]^{q} \\
& =\left[\int_{0}^{1} h(s) d s\right]^{q}\left[\left|\Phi^{\prime}(x)\right|+\left|\Phi^{\prime}(g(t))\right|^{q}\right.
\end{aligned}
$$

for any $x \in[a, b]$.

This implies

$$
\begin{align*}
& \left(\int_{\Omega}\left|\int_{0}^{1} \Phi^{\prime}((1-s) x+s g) d s\right|^{q} d \mu\right)^{1 / q} \\
& \quad \leq \int_{0}^{1} h(s) d s\left[\int_{\Omega}\left[\left|\Phi^{\prime}(x)\right|+\left|\Phi^{\prime}(g(t))\right|\right]^{q} d \mu\right]^{1 / q} \tag{3.7}\\
& \quad=\int_{0}^{1} h(s) d s\left[\int_{\Omega}\left[\left|\Phi^{\prime}(x)\right|+\left|\Phi^{\prime} \circ g\right|\right]^{q} d \mu\right]^{1 / q}
\end{align*}
$$

Also

$$
\begin{align*}
\underset{t \in \Omega}{\operatorname{ess} \sup } & \left|\int_{0}^{1} \Phi^{\prime}((1-s) x+s g) d s\right| \\
& \leq\left[\left|\Phi^{\prime}(x)\right|+\underset{t \in \Omega}{\operatorname{ess} \sup }\left|\Phi^{\prime}(g(t))\right|\right] \int_{0}^{1} h(s) d s \tag{3.8}\\
& =\left[\left|\Phi^{\prime}(x)\right|+\underset{t \in \Omega}{\operatorname{ess} \sup }\left|\Phi^{\prime} \circ g\right|\right] \int_{0}^{1} h(s) d s
\end{align*}
$$

for any $x \in[a, b]$.
Making use of (3.6)-(3.8), we get the desired result (3.1).
Remark 5. With the assumptions of Theorem 5 and if $\left|\Phi^{\prime}\right|$ is convex on the interval $[a, b]$, then $\int_{0}^{1} h(s) d s=\frac{1}{2}$ and the inequalities (3.1)-(3.3) hold with $\frac{1}{2}$ instead of $\int_{0}^{1} h(s) d s$. If $\left|\Phi^{\prime}\right|$ is of s-Godunova-Levin type, with $s \in[0,1)$ on the interval $[a, b]$, then $\int_{0}^{1} \frac{1}{t^{s}} d t=\frac{1}{1-s}$ and the inequalities (3.1)-(3.3) hold with $\frac{1}{1-s}$ instead of $\int_{0}^{1} h(s) d s$.

Following [52], we say that for an interval $I \subseteq \mathbb{R}$, the mapping $h: I \rightarrow \mathbb{R}$ is quasi-monotone on I if it is either monotone on $I=[c, d]$ or monotone nonincreasing on a proper subinterval $\left[c, c^{\prime}\right] \subset I$ and monotone nondecreasing on $\left[c^{\prime}, d\right]$.

The class $Q M(I)$ of quasi-monotone functions on I provides an immediate characterization of quasi-convex functions [52].

Proposition 2. Suppose $I \subseteq \mathbb{R}$. Then the following statements are equivalent for a function $h: I \rightarrow \mathbb{R}$:
(a) $h \in Q M(I)$;
(b) on any subinterval of I, h achieves its supremum at an end point;
(c) h is quasi-convex.

As examples of quasi-convex functions we may consider the class of monotonic functions on an interval I for the class of convex functions on that interval.

Theorem 6. Let $\Phi: I \rightarrow \mathbb{C}$ be a differentiable function on $\stackrel{\circ}{I}$, the interior of I and such that $\left|\Phi^{\prime}\right|$ is quasi-convex on the interval $[a, b] \subset \stackrel{\circ}{I}$. If $g: \Omega \rightarrow$ $[a, b]$ is Lebesgue μ-measurable on Ω and such that $\Phi \circ g, g \in L(\Omega, \mu)$ and $\Phi^{\prime} \circ g \in L_{\infty}(\Omega, \mu)$, then we have the inequality

$$
\begin{align*}
\left|\int_{\Omega} \Phi \circ g d \mu-\Phi(x)\right| & \leq \int_{\Omega}|g-x| \max \left\{\left|\Phi^{\prime}(x)\right|,\left|\Phi^{\prime} \circ g\right|\right\} d \mu \tag{3.9}\\
& \leq \max \left\{\left|\Phi^{\prime}(x)\right|,\left\|\Phi^{\prime} \circ g\right\|_{\Omega, \infty}\right\}\|g-x\|_{\Omega, 1}
\end{align*}
$$

for any $x \in[a, b]$.
In particular, we have

$$
\begin{align*}
& \left|\int_{\Omega} \Phi \circ g d \mu-\Phi\left(\int_{\Omega} g d \mu\right)\right| \\
& \leq \int_{\Omega}\left|g-\int_{\Omega} g d \mu\right| \max \left\{\left|\Phi^{\prime}\left(\int_{\Omega} g d \mu\right)\right|,\left|\Phi^{\prime} \circ g\right|\right\} d \mu \tag{3.10}\\
& \leq \max \left\{\left|\Phi^{\prime}(x)\right|,\left\|\Phi^{\prime} \circ g\right\|_{\Omega, \infty}\right\}\left\|g-\int_{\Omega} g d \mu\right\|_{\Omega, 1}
\end{align*}
$$

and

$$
\begin{align*}
& \left|\int_{\Omega} \Phi \circ g d \mu-\Phi\left(\frac{a+b}{2}\right)\right| \\
& \leq \int_{\Omega}\left|g-\frac{a+b}{2}\right| \max \left\{\left|\Phi^{\prime}\left(\frac{a+b}{2}\right)\right|,\left|\Phi^{\prime} \circ g\right|\right\} d \mu \tag{3.11}\\
& \leq \max \left\{\left|\Phi^{\prime}\left(\frac{a+b}{2}\right)\right|,\left\|\Phi^{\prime} \circ g\right\|_{\Omega, \infty}\right\}\left\|g-\frac{a+b}{2}\right\|_{\Omega, 1} .
\end{align*}
$$

Proof. From (3.4) we have

$$
\begin{align*}
\left|\int_{\Omega} \Phi \circ g d \mu-\Phi(x)\right| & \leq \int_{\Omega}|g-x|\left(\int_{0}^{1}\left|\Phi^{\prime}((1-s) x+s g)\right| d s\right) d \mu \tag{3.12}\\
& \leq \int_{\Omega}|g-x| \max \left\{\left|\Phi^{\prime}(x)\right|,\left|\Phi^{\prime} \circ g\right|\right\} d \mu
\end{align*}
$$

for any $x \in[a, b]$.
Observe that

$$
\left|\left(\Phi^{\prime} \circ g\right)(t)\right| \leq\left\|\Phi^{\prime} \circ g\right\|_{\Omega, \infty} \text { for almost every } t \in \Omega
$$

and then

$$
\begin{align*}
& \int_{\Omega}|g-x| \max \left\{\left|\Phi^{\prime}(x)\right|,\left|\Phi^{\prime} \circ g\right|\right\} d \mu \\
& \leq \int_{\Omega}|g-x| \max \left\{\left|\Phi^{\prime}(x)\right|,\left\|\Phi^{\prime} \circ g\right\|_{\Omega, \infty}\right\} d \mu \tag{3.13}\\
& =\max \left\{\left|\Phi^{\prime}(x)\right|,\left\|\Phi^{\prime} \circ g\right\|_{\Omega, \infty}\right\} \int_{\Omega}|g-x| d \mu
\end{align*}
$$

for any $x \in[a, b]$.
Using (3.12) and (3.13), we get the desired result (3.9).
In what follows, I will denote an interval of real numbers. A function $f: I \rightarrow(0, \infty)$ is said to be log-convex or multiplicatively convex if $\log f$ is convex, or, equivalently, if for any $x, y \in I$ and $t \in[0,1]$ one has the inequality

$$
\begin{equation*}
f(t x+(1-t) y) \leq[f(x)]^{t}[f(y)]^{1-t} \tag{3.14}
\end{equation*}
$$

We note that if f and g are convex and g is increasing, then $g \circ f$ is convex, moreover, since $f=\exp [\log f]$, it follows that a log-convex function is convex, but the converse may not necessarily be true. This follows directly from (3.14) since, by the arithmetic-geometric mean inequality we have

$$
\begin{equation*}
[f(x)]^{t}[f(y)]^{1-t} \leq t f(x)+(1-t) f(y) \tag{3.15}
\end{equation*}
$$

for all $x, y \in I$ and $t \in[0,1]$.
Theorem 7. Let $\Phi: I \rightarrow \mathbb{C}$ be a differentiable function on $\stackrel{\circ}{I}$, the interior of I and such that $\left|\Phi^{\prime}\right|$ is log-convex on the interval $[a, b] \subset \stackrel{\circ}{I}$. If $g: \Omega \rightarrow[a, b]$ is Lebesgue μ-measurable on Ω and such that $\Phi \circ g, \Phi^{\prime} \circ g, g \in L(\Omega, \mu)$ then we have the inequality

$$
\begin{align*}
& \left|\int_{\Omega} \Phi \circ g d \mu-\Phi(x)\right| \\
& \leq \int_{\Omega}|g-x| L\left(\left|\Phi^{\prime} \circ g\right|,\left|\Phi^{\prime}(x)\right|\right) d \mu \\
& \leq \frac{1}{2}\left[\left|\Phi^{\prime}(x)\right| \int_{\Omega}|g-x| d \mu+\int_{\Omega}|g-x|\left|\Phi^{\prime} \circ g\right| d \mu\right] \tag{3.16}\\
& \left(\leq \frac{1}{2}\left[\left|\Phi^{\prime}(x)\right|+\left\|\Phi^{\prime} \circ g\right\|_{\Omega, \infty}\right]\|g-x\|_{\Omega, 1} \quad \text { if } \Phi^{\prime} \circ g \in L_{\infty}(\Omega, \mu)\right)
\end{align*}
$$

for any $x \in[a, b]$, where $L(\cdot, \cdot)$ is the logarithmic mean, namely for $\alpha, \beta>0$

$$
L(\alpha, \beta):= \begin{cases}\frac{\alpha-\beta}{\ln \alpha-\ln \beta}, & \alpha \neq \beta \\ \alpha, & \alpha=\beta\end{cases}
$$

In particular, we have

$$
\begin{align*}
& \left|\int_{\Omega} \Phi \circ g d \mu-\Phi\left(\int_{\Omega} g d \mu\right)\right| \\
& \leq \int_{\Omega}\left|g-\int_{\Omega} g d \mu\right| L\left(\left|\Phi^{\prime} \circ g\right|,\left|\Phi^{\prime}\left(\int_{\Omega} g d \mu\right)\right|\right) d \mu \\
& \leq \frac{1}{2}\left[\left|\Phi^{\prime}\left(\int_{\Omega} g d \mu\right)\right| \int_{\Omega}\left|g-\int_{\Omega} g d \mu\right| d \mu+\int_{\Omega}\left|g-\int_{\Omega} g d \mu\right|\left|\Phi^{\prime} \circ g\right| d \mu\right] \tag{3.17}\\
& \left(\leq \frac{1}{2}\left[\left|\Phi^{\prime}\left(\int_{\Omega} g d \mu\right)\right|+\left\|\Phi^{\prime} \circ g\right\|_{\Omega, \infty}\right]| | g-\int_{\Omega} g d \mu \|_{\Omega, 1}\right. \\
& \left.\quad \text { if } \Phi^{\prime} \circ g \in L_{\infty}(\Omega, \mu)\right)
\end{align*}
$$

and

$$
\begin{align*}
& \left|\int_{\Omega} \Phi \circ g d \mu-\Phi\left(\frac{a+b}{2}\right)\right| \\
& \leq \int_{\Omega}\left|g-\frac{a+b}{2}\right| L\left(\left|\Phi^{\prime} \circ g\right|,\left|\Phi^{\prime}\left(\frac{a+b}{2}\right)\right|\right) d \mu \\
& \leq \frac{1}{2}\left[\left|\Phi^{\prime}\left(\frac{a+b}{2}\right)\right| \int_{\Omega}\left|g-\frac{a+b}{2}\right| d \mu+\int_{\Omega}\left|g-\frac{a+b}{2}\right|\left|\Phi^{\prime} \circ g\right| d \mu\right] \tag{3.18}\\
& \left(\left.\leq \frac{1}{2}\left[\left|\Phi^{\prime}\left(\frac{a+b}{2}\right)\right|+\left\|\Phi^{\prime} \circ g\right\|_{\Omega, \infty}\right] \right\rvert\, g-\frac{a+b}{2} \|_{\Omega, 1}\right. \\
& \left.\quad \text { if } \Phi^{\prime} \circ g \in L_{\infty}(\Omega, \mu)\right) .
\end{align*}
$$

Proof. From (3.4) we have

$$
\begin{align*}
\left|\int_{\Omega} \Phi \circ g d \mu-\Phi(x)\right| & \leq \int_{\Omega}|g-x|\left(\int_{0}^{1}\left|\Phi^{\prime}((1-s) x+s g)\right| d s\right) d \mu \tag{3.19}\\
& \leq \int_{\Omega}|g-x|\left(\int_{0}^{1}\left|\Phi^{\prime}(x)\right|^{1-s}\left|\Phi^{\prime} \circ g\right|^{s} d s\right) d \mu
\end{align*}
$$

for any $x \in[a, b]$.
Since, for any $C>0$, one has

$$
\int_{0}^{1} C^{\lambda} d \lambda=\frac{C-1}{\ln C}
$$

then for any $t \in \Omega$ we have

$$
\begin{align*}
\int_{0}^{1}\left|\Phi^{\prime}(x)\right|^{1-s} & \left|\Phi^{\prime}(g(t))\right|^{s} d s=\left|\Phi^{\prime}(x)\right| \int_{0}^{1}\left|\frac{\Phi^{\prime}(g(t))}{\Phi^{\prime}(x)}\right|^{s} d s \\
& =\left|\Phi^{\prime}(x)\right| \frac{\left|\frac{\Phi^{\prime}(g(t))}{\Phi^{\prime}(x)}\right|-1}{\ln \left|\frac{\Phi^{\prime}(g(t))}{\Phi^{\prime}(x)}\right|} \tag{3.20}\\
& =\frac{\left|\Phi^{\prime}(g(t))\right|-\left|\Phi^{\prime}(x)\right|}{\ln \left|\Phi^{\prime}(g(t))\right|-\ln \left|\Phi^{\prime}(x)\right|} \\
& =L\left(\left|\Phi^{\prime}(g(t))\right|,\left|\Phi^{\prime}(x)\right|\right),
\end{align*}
$$

for any $x \in[a, b]$.
Making use of (3.19) and (3.20), we get the first inequality in (3.16).
The second inequality in (3.16) follows by the fact that

$$
L(\alpha, \beta) \leq \frac{\alpha+\beta}{2} \text { for any } \alpha, \beta>0
$$

The last inequality in (3.16) is obvious.

4. Inequalities for $\left|\Phi^{\prime}\right|^{q}$ being h-convex or log-convex.

We have:
Theorem 8. Let $\Phi: I \rightarrow \mathbb{C}$ be a differentiable function on $\stackrel{\circ}{I}$, the interior of I and such that for $p>1, q>1$ with $\frac{1}{p}+\frac{1}{q}=1,\left|\Phi^{\prime}\right|^{q}$ is h-convex on the interval $[a, b] \subset \stackrel{\circ}{I}$.

If $g: \Omega \rightarrow[a, b]$ is Lebesgue μ-measurable on Ω and such that $\Phi \circ g$, $g \in L(\Omega, \mu)$ and $\Phi^{\prime} \circ g \in L_{q}(\Omega, \mu)$, then we have the inequality

$$
\begin{align*}
& \left|\int_{\Omega} \Phi \circ g d \mu-\Phi(x)\right| \\
& \quad \leq\left(\int_{0}^{1} h(s) d s\right)^{1 / q}\|g-x\|_{\Omega, p}\left(\left|\Phi^{\prime}(x)\right|^{q}+\int_{\Omega}\left|\Phi^{\prime} \circ g\right|^{q} d \mu\right)^{1 / q} \tag{4.1}\\
& \quad \leq\left(\int_{0}^{1} h(s) d s\right)^{1 / q}\|g-x\|_{\Omega, p}\left(\left|\Phi^{\prime}(x)\right|+\left\|\Phi^{\prime} \circ g\right\|_{\Omega, q}\right)
\end{align*}
$$

for any $x \in[a, b]$.

In particular, we have

$$
\begin{aligned}
& \left|\int_{\Omega} \Phi \circ g d \mu-\Phi\left(\int_{\Omega} g d \mu\right)\right| \\
& \quad \leq\left(\int_{0}^{1} h(s) d s\right)^{1 / q} \\
& \quad \times\left\|g-\int_{\Omega} g d \mu\right\|_{\Omega, p}\left(\left|\Phi^{\prime}\left(\int_{\Omega} g d \mu\right)\right|^{q}+\int_{\Omega}\left|\Phi^{\prime} \circ g\right|^{q} d \mu\right)^{1 / q} \\
& \quad \leq\left(\int_{0}^{1} h(s) d s\right)^{1 / q} \\
& \quad \times\left\|g-\int_{\Omega} g d \mu\right\|_{\Omega, p}\left(\left|\Phi^{\prime}\left(\int_{\Omega} g d \mu\right)\right|+\left\|\Phi^{\prime} \circ g\right\|_{\Omega, q}\right)
\end{aligned}
$$

and

$$
\begin{align*}
& \left|\int_{\Omega} \Phi \circ g d \mu-\Phi\left(\frac{a+b}{2}\right)\right| \\
& \quad \leq\left(\int_{0}^{1} h(s) d s\right)^{1 / q} \\
& \quad \times\left\|g-\frac{a+b}{2}\right\|_{\Omega, p}\left(\left|\Phi^{\prime}\left(\frac{a+b}{2}\right)\right|^{q}+\int_{\Omega}\left|\Phi^{\prime} \circ g\right|^{q} d \mu\right)^{1 / q} \tag{4.3}\\
& \leq \\
& \quad\left(\int_{0}^{1} h(s) d s\right)^{1 / q} \\
& \quad \times\left\|g-\frac{a+b}{2}\right\|_{\Omega, p}\left(\left|\Phi^{\prime}\left(\frac{a+b}{2}\right)\right|+\left\|\Phi^{\prime} \circ g\right\|_{\Omega, q}\right)
\end{align*}
$$

Proof. From the proof of Theorem 5 we have

$$
\begin{align*}
& \left|\int_{\Omega} \Phi \circ g d \mu-\Phi(x)\right| \\
& \leq \int_{\Omega}|g-x|\left|\int_{0}^{1} \Phi^{\prime}((1-s) x+s g) d s\right| d \mu \\
& \leq\left(\int_{\Omega}|g-x|^{p} d \mu\right)^{1 / p}\left(\int_{\Omega}\left|\int_{0}^{1} \Phi^{\prime}((1-s) x+s g) d s\right|^{q} d \mu\right)^{1 / q} \tag{4.4}\\
& \leq\left(\int_{\Omega}|g-x|^{p} d \mu\right)^{1 / p}\left(\int_{\Omega}\left(\int_{0}^{1}\left|\Phi^{\prime}((1-s) x+s g)\right|^{q} d s\right) d \mu\right)^{1 / q}
\end{align*}
$$

for $p>1, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $x \in[a, b]$.

Since $\left|\Phi^{\prime}\right|^{q}$ is h-convex on the interval $[a, b]$, then

$$
\begin{aligned}
& \int_{0}^{1}\left|\Phi^{\prime}((1-s) x+s g(t))\right|^{q} d s \\
& \quad \leq\left|\Phi^{\prime}(x)\right|^{q} \int_{0}^{1} h(1-s) d s+\left|\Phi^{\prime}(g(t))\right|^{q} \int_{0}^{1} h(s) d s \\
& \quad=\left[\left|\Phi^{\prime}(x)\right|^{q}+\left|\Phi^{\prime}(g(t))\right|^{q}\right] \int_{0}^{1} h(s) d s
\end{aligned}
$$

for any $x \in[a, b]$ and $t \in \Omega$.
Therefore

$$
\begin{align*}
& \left(\int_{\Omega}\left(\int_{0}^{1}\left|\Phi^{\prime}((1-s) x+s g)\right|^{q} d s\right) d \mu\right)^{1 / q} \\
& \quad \leq\left(\int_{\Omega}\left(\left[\left|\Phi^{\prime}(x)\right|^{q}+\left|\Phi^{\prime}(g(t))\right|^{q}\right] \int_{0}^{1} h(s) d s\right) d \mu\right)^{1 / q} \tag{4.5}\\
& \quad=\left(\int_{0}^{1} h(s) d s\right)^{1 / q}\left(\left|\Phi^{\prime}(x)\right|^{q}+\int_{\Omega}\left|\Phi^{\prime} \circ g\right|^{q} d \mu\right)^{1 / q}
\end{align*}
$$

for any $x \in[a, b]$.
This proves the first inequality in (4.1).
Now, we observe that the following elementary inequality holds:

$$
\begin{equation*}
(\alpha+\beta)^{r} \geq(\leq) \alpha^{r}+\beta^{r} \tag{4.6}
\end{equation*}
$$

for any $\alpha, \beta \geq 0$ and $r \geq 1(0<r<1)$.
Indeed, if we consider the function $f_{r}:[0, \infty) \rightarrow \mathbb{R}, f_{r}(t)=(t+1)^{r}-t^{r}$ we have $f_{r}^{\prime}(t)=r\left[(t+1)^{r-1}-t^{r-1}\right]$. Observe that for $r>1$ and $t>0$ we have that $f_{r}^{\prime}(t)>0$ showing that f_{r} is strictly increasing on the interval $[0, \infty)$. Now for $t=\frac{\alpha}{\beta}(\beta>0, \alpha \geq 0)$ we have $f_{r}(t)>f_{r}(0)$ giving that $\left(\frac{\alpha}{\beta}+1\right)^{r}-\left(\frac{\alpha}{\beta}\right)^{r}>1$, i.e., the desired inequality (4.6).

For $r \in(0,1)$ we have that f_{r} is strictly decreasing on $[0, \infty)$ which proves the second case in (4.6).

Making use of (4.6) for $r=1 / q \in(0,1)$, we have

$$
\left(\left|\Phi^{\prime}(x)\right|^{q}+\int_{\Omega}\left|\Phi^{\prime} \circ g\right|^{q} d \mu\right)^{1 / q} \leq\left|\Phi^{\prime}(x)\right|+\left(\int_{\Omega}\left|\Phi^{\prime} \circ g\right|^{q} d \mu\right)^{1 / q}
$$

and then we get the second part of (4.1).

Finally, we have:
Theorem 9. Let $\Phi: I \rightarrow \mathbb{C}$ be a differentiable function on $\stackrel{\circ}{I}$, the interior of I and such that for $p>1, q>1$ with $\frac{1}{p}+\frac{1}{q}=1,\left|\Phi^{\prime}\right|^{q}$ is log-convex on the interval $[a, b] \subset \stackrel{\circ}{I}$. If $g: \Omega \rightarrow[a, b]$ is Lebesgue μ-measurable on Ω and such that $\Phi \circ g, g \in L(\Omega, \mu)$ and $\Phi^{\prime} \circ g \in L_{q}(\Omega, \mu)$, then we have the inequality

$$
\begin{align*}
& \left|\int_{\Omega} \Phi \circ g d \mu-\Phi(x)\right| \\
& \quad \leq\|g-x\|_{\Omega, p}\left(\int_{\Omega} L\left(\left|\Phi^{\prime} \circ g\right|^{q},\left|\Phi^{\prime}(x)\right|^{q}\right) d \mu\right)^{1 / q} \tag{4.7}\\
& \quad \leq \frac{1}{2^{1 / q}}\|g-x\|_{\Omega, p}\left[\left|\Phi^{\prime}(x)\right|^{q}+\int_{\Omega}\left|\Phi^{\prime} \circ g\right|^{q} d \mu\right]^{1 / q} \\
& \quad \leq \frac{1}{2^{1 / q}}\|g-x\|_{\Omega, p}\left[\left|\Phi^{\prime}(x)\right|+\left\|\Phi^{\prime} \circ g\right\|_{\Omega, q}\right]
\end{align*}
$$

for any $x \in[a, b]$.
In particular, we have

$$
\begin{aligned}
& \left|\int_{\Omega} \Phi \circ g d \mu-\Phi\left(\int_{\Omega} g d \mu\right)\right| \\
& \quad \leq\left\|g-\int_{\Omega} g d \mu\right\|_{\Omega, p}\left(\int_{\Omega} L\left(\left|\Phi^{\prime} \circ g\right|^{q},\left|\Phi^{\prime}\left(\int_{\Omega} g d \mu\right)\right|^{q}\right) d \mu\right)^{1 / q} \\
& \quad \leq \frac{1}{2^{1 / q}}\left\|g-\int_{\Omega} g d \mu\right\|_{\Omega, p}\left[\left|\Phi^{\prime}\left(\int_{\Omega} g d \mu\right)\right|^{q}+\int_{\Omega}\left|\Phi^{\prime} \circ g\right|^{q} d \mu\right]^{1 / q} \\
& \quad \leq \frac{1}{2^{1 / q}}\left\|g-\int_{\Omega} g d \mu\right\|_{\Omega, p}\left[\left|\Phi^{\prime}\left(\int_{\Omega} g d \mu\right)\right|+\left\|\Phi^{\prime} \circ g\right\|_{\Omega, q}\right]
\end{aligned}
$$

and

$$
\begin{align*}
& \left|\int_{\Omega} \Phi \circ g d \mu-\Phi\left(\frac{a+b}{2}\right)\right| \\
& \quad \leq\left\|g-\frac{a+b}{2}\right\|_{\Omega, p}\left(\int_{\Omega} L\left(\left|\Phi^{\prime} \circ g\right|^{q},\left|\Phi^{\prime}\left(\frac{a+b}{2}\right)\right|^{q}\right) d \mu\right)^{1 / q} \\
& \quad \leq \frac{1}{2^{1 / q}}\left\|g-\frac{a+b}{2}\right\|_{\Omega, p}\left[\left|\Phi^{\prime}\left(\frac{a+b}{2}\right)\right|^{q}+\int_{\Omega}\left|\Phi^{\prime} \circ g\right|^{q} d \mu\right]^{1 / q} \tag{4.9}\\
& \quad \leq \frac{1}{2^{1 / q}}\left\|g-\frac{a+b}{2}\right\|_{\Omega, p}\left[\left|\Phi^{\prime}\left(\frac{a+b}{2}\right)\right|+\left\|\Phi^{\prime} \circ g\right\|_{\Omega, q}\right] .
\end{align*}
$$

Proof. Since $\left|\Phi^{\prime}\right|^{q}$ is log-convex on the interval $[a, b]$, then

$$
\begin{aligned}
\int_{0}^{1} \mid \Phi^{\prime}((1-s) x & +s g(t))\left.\right|^{q} d s \leq \int_{0}^{1}\left|\Phi^{\prime}(x)\right|^{q(1-s)}|g(t)|^{s q} d s \\
& =\left|\Phi^{\prime}(x)\right|^{q} \int_{0}^{1}\left|\frac{g(t)}{\Phi^{\prime}(x)}\right|^{s q} d s \\
& =L\left(\left|\Phi^{\prime}(g(t))\right|^{q},\left|\Phi^{\prime}(x)\right|^{q}\right)
\end{aligned}
$$

for any $x \in[a, b]$ and $t \in \Omega$.
Then

$$
\begin{aligned}
& \left(\int_{\Omega}\left(\int_{0}^{1}\left|\Phi^{\prime}((1-s) x+s g)\right|^{q} d s\right) d \mu\right)^{1 / q} \\
& \quad \leq\left(\int_{\Omega} L\left(\left|\Phi^{\prime} \circ g\right|^{q},\left|\Phi^{\prime}(x)\right|^{q}\right) d \mu\right)^{1 / q}
\end{aligned}
$$

and by (4.4) we get the first inequality in (4.7).
Since, in general

$$
L(\alpha, \beta) \leq \frac{\alpha+\beta}{2} \text { for any } \alpha, \beta>0
$$

then

$$
\begin{aligned}
\int_{\Omega} L\left(\left|\Phi^{\prime} \circ g\right|^{q},\left|\Phi^{\prime}(x)\right|^{q}\right) d \mu & \leq \frac{1}{2} \int_{\Omega}\left[\left|\Phi^{\prime} \circ g\right|^{q}+\left|\Phi^{\prime}(x)\right|^{q}\right] d \mu \\
& =\frac{1}{2}\left[\left|\Phi^{\prime}(x)\right|^{q}+\int_{\Omega}\left|\Phi^{\prime} \circ g\right|^{q} d \mu\right]
\end{aligned}
$$

and we get the second inequality in (4.7).
The last part is obvious.
5. Applications for \boldsymbol{f}-divergence. One of the important issues in many applications of probability theory is finding an appropriate measure of distance (or difference or discrimination) between two probability distributions. A number of divergence measures for this purpose have been proposed and extensively studied by Jeffreys [67], Kullback and Leibler [74], Rényi [87], Havrda and Charvat [65], Kapur [70], Sharma and Mittal [92], Burbea and Rao [12], Rao [86], Lin [75], Csiszár [20], Ali and Silvey [1], Vajda [100], Shioya and Da-Te [94] and others (see for example [77] and the references therein).

These measures have been applied in a variety of fields such as: anthropology [86], genetics [77], finance, economics, and political science [93], [96], [97], biology [84], the analysis of contingency tables [62], approximation of probability distributions [18], [71], signal processing [68], [69] and pattern recognition [7], [17]. A number of these measures of distance are specific cases of Csiszár f-divergence and so further exploration of this concept will
have a flow on effect to other measures of distance and to areas in which they are applied.

Assume that a set Ω and the σ-finite measure μ are given. Consider the set of all probability densities on μ to be

$$
\mathcal{P}:=\left\{p \mid p: \Omega \rightarrow \mathbb{R}, p(t) \geq 0, \int_{\Omega} p(t) d \mu(t)=1\right\}
$$

The Kullback-Leibler divergence [74] is well known among the information divergences. It is defined as:

$$
\begin{equation*}
D_{K L}(p, q):=\int_{\Omega} p(t) \ln \left[\frac{p(t)}{q(t)}\right] d \mu(t), \quad p, q \in \mathcal{P} \tag{5.1}
\end{equation*}
$$

where \ln is to base e.
In information theory and statistics, various divergences are applied in addition to the Kullback-Leibler divergence. These are: variation distance D_{v}, Hellinger distance $D_{H}[66], \chi^{2}$-divergence $D_{\chi^{2}}, \alpha$-divergence D_{α}, Bhattacharyya distance $D_{B}[8]$, Harmonic distance $D_{H a}$, Jeffrey's distance D_{J} [67], triangular discrimination D_{Δ} [98], etc... They are defined as follows:

$$
\begin{gather*}
D_{v}(p, q):=\int_{\Omega}|p(t)-q(t)| d \mu(t), p, q \in \mathcal{P} ; \tag{5.2}\\
D_{H}(p, q):=\int_{\Omega}|\sqrt{p(t)}-\sqrt{q(t)}| d \mu(t), p, q \in \mathcal{P} ; \\
D_{\chi^{u}}(p, q):=\int_{\Omega} p(t)\left[\left(\frac{q(t)}{p(t)}\right)^{r}-1\right] d \mu(t), u \geq 2, p, q \in \mathcal{P} ; \\
D_{\alpha}(p, q):=\frac{4}{1-\alpha^{2}}\left[1-\int_{\Omega}[p(t)]^{\frac{1-\alpha}{2}}[q(t)]^{\frac{1+\alpha}{2}} d \mu(t)\right], p, q \in \mathcal{P} ; \\
D_{B}(p, q):=\int_{\Omega} \sqrt{p(t) q(t)} d \mu(t), \quad p, q \in \mathcal{P} ; \\
D_{H a}(p, q):=\int_{\Omega} \frac{2 p(t) q(t)}{p(t)+q(t)} d \mu(t), \quad p, q \in \mathcal{P} ; \\
D_{J}(p, q):=\int_{\Omega}[p(t)-q(t)] \ln \left[\frac{p(t)}{q(t)}\right] d \mu(t), \quad p, q \in \mathcal{P} ; \\
D_{\Delta}(p, q):=\int_{\Omega} \frac{[p(t)-q(t)]^{2}}{p(t)+q(t)} d \mu(t), \quad p, q \in \mathcal{P} . \tag{5.9}
\end{gather*}
$$

For other divergence measures, see the paper [70] by Kapur or the online book [95] by Taneja.

Csiszár f-divergence is defined as follows [21]:

$$
\begin{equation*}
I_{f}(p, q):=\int_{\Omega} p(t) f\left[\frac{q(t)}{p(t)}\right] d \mu(t), \quad p, q \in \mathcal{P} \tag{5.10}
\end{equation*}
$$

where f is convex on $(0, \infty)$. It is assumed that $f(u)$ is zero and strictly convex at $u=1$. By appropriately defining this convex function, various divergences are derived. Most of the above distances (5.1)-(5.9), are particular instances of Csiszár f-divergence. There are also many others which are not in this class (see for example [95]). For the basic properties of Csiszár f-divergence see [21], [22] and [100].

The following result holds:
Proposition 3. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a convex function with the property that $f(1)=0$. Assume that $p, q \in \mathcal{P}$ and there exist constants $0<r<1<$ $R<\infty$ such that

$$
\begin{equation*}
r \leq \frac{q(t)}{p(t)} \leq R \text { for } \mu \text {-a.e. } t \in \Omega \tag{5.11}
\end{equation*}
$$

If $\left|f^{\prime}\right|$ is h-convex on the interval $[r, R]$, then we have the inequalities

$$
0 \leq I_{f}(p, q) \leq \int_{0}^{1} h(s) d s\left\{\begin{array}{l}
(R-r)\left[\left|\Phi^{\prime}(1)\right|+I_{\left|f^{\prime}\right|}(p, q)\right] \tag{5.12}\\
D_{v}(p, q)\left[\left|\Phi^{\prime}(1)\right|+\left\|f^{\prime}\right\|_{[r, R], \infty}\right]
\end{array}\right.
$$

Proof. Applying the inequality (3.2), we have

$$
\begin{aligned}
& \left|\int_{\Omega} p(t) f\left(\frac{q(t)}{p(t)}\right) d \mu(t)-f(1)\right| \\
& \quad \leq \int_{0}^{1} h(s) d s \\
& \\
& \quad \times\left\{\begin{array}{l}
\operatorname{ess}_{\sup }^{t \in \Omega} \\
\left|\frac{q(t)}{p(t)}-1\right|\left[\left|\Phi^{\prime}(1)\right|+\int_{\Omega} p(t)\left|f^{\prime}\left(\frac{q(t)}{p(t)}\right)\right| d \mu(t)\right] \\
\|q-p\|_{\Omega, 1}\left[\left|\Phi^{\prime}(1)\right|+\operatorname{ess}^{2} \sup _{t \in \Omega}\left|f^{\prime}\left(\frac{q(t)}{p(t)}\right)\right|\right]
\end{array}\right. \\
& \quad \leq \int_{0}^{1} h(s) d s \\
& \quad \times\left\{\begin{array}{l}
(R-r)\left[\left|\Phi^{\prime}(1)\right|+I_{\left|f^{\prime}\right|}(p, q)\right] \\
D_{v}(p, q)\left[\left|\Phi^{\prime}(1)\right|+\operatorname{esssup}_{x \in[r, R]}\left|f^{\prime}(x)\right|\right]
\end{array}\right.
\end{aligned}
$$

and the inequality (5.12) is obtained.
Consider the convex function $f(x)=x^{u}-1, u \geq 2$. Then $f(1)=0$, $f^{\prime}(x)=u x^{u-1}$ and $\left|f^{\prime}\right|$ is convex on the interval $[r, R]$ for any $0<r<1<$ $R<\infty$.

Then by (5.12) we have

$$
0 \leq D_{\chi^{u}}(p, q) \leq \frac{1}{2} u\left\{\begin{array}{l}
(R-r)\left[1+D_{\chi^{u-1}}(p, q)\right] \tag{5.13}\\
D_{v}(p, q)\left(1+R^{u-1}\right)
\end{array}\right.
$$

provided

$$
r \leq \frac{q(t)}{p(t)} \leq R \text { for } \mu \text {-a.e. } t \in \Omega
$$

If we consider the convex function $f:(0, \infty) \rightarrow \mathbb{R}, f(t)=-\ln t$, then

$$
\begin{aligned}
I_{f}(p, q) & :=-\int_{\Omega} p(t) \ln \left[\frac{q(t)}{p(t)}\right] d \mu(t)=\int_{\Omega} p(t) \ln \left[\frac{p(t)}{q(t)}\right] d \mu(t) \\
& =D_{K L}(p, q)
\end{aligned}
$$

We have $f^{\prime}(t)=-\frac{1}{t}$ and $\left|f^{\prime}\right|$ is convex on the interval $[r, R]$ for any $0<r<$ $1<R<\infty$. If we apply the inequality (5.12) we have

$$
0 \leq D_{K L}(p, q) \leq \frac{1}{2}\left\{\begin{array}{l}
(R-r)\left[2+D_{\chi^{2}}(q, p)\right] \tag{5.14}\\
\frac{r+1}{r} D_{v}(p, q)
\end{array}\right.
$$

provided

$$
r \leq \frac{q(t)}{p(t)} \leq R \text { for } \mu \text {-a.e. } t \in \Omega
$$

References

[1] Ali, S. M., Silvey, S. D., A general class of coefficients of divergence of one distribution from another, J. Roy. Statist. Soc. Sec. B 28 (1966), 131-142.
[2] Alomari, M., Darus, M., The Hadamard's inequality for s-convex function, Int. J. Math. Anal. (Ruse) 2, No. 13-16 (2008), 639-646.
[3] Alomari, M., Darus, M., Hadamard-type inequalities for s-convex functions, Int. Math. Forum 3, No. 37-40 (2008), 1965-1975.
[4] Anastassiou, G. A., Univariate Ostrowski inequalities, revisited, Monatsh. Math. 135, No. 3 (2002), 175-189.
[5] Barnett, N. S., Cerone, P., Dragomir, S. S., Pinheiro, M. R., Sofo, A., Ostrowski type inequalities for functions whose modulus of the derivatives are convex and applications, in Inequality Theory and Applications Vol. 2 (Chinju/Masan, 2001), Nova Sci. Publ., Hauppauge, NY, 2003, 19-32. Preprint: RGMIA Res. Rep. Coll. 5, No. 2 (2002), Art. 1 [Online http://rgmia.org/papers/v5n2/Paperwapp2q.pdf].
[6] Beckenbach, E. F., Convex functions, Bull. Amer. Math. Soc. 54 (1948), 439-460.
[7] Beth Bassat, M., f-entropies, probability of error and feature selection, Inform. Control 39 (1978), 227-242.
[8] Bhattacharyya, A., On a measure of divergence between two statistical populations defined by their probability distributions, Bull. Calcutta Math. Soc. 35 (1943), 99109.
[9] Bombardelli, M., Varošanec, S., Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities, Comput. Math. Appl. 58, No. 9 (2009), 1869-1877.
[10] Breckner, W. W., Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen, Publ. Inst. Math. (Beograd) (N.S.) 23 (37) (1978), 13-20.
[11] Breckner, W. W., Orbán, G., Continuity Properties of Rationally s-Convex Mappings with Values in an Ordered Topological Linear Space, Universitatea "BabeşBolyai", Facultatea de Matematica, Cluj-Napoca, 1978.
[12] Burbea, I., Rao, C. R., On the convexity of some divergence measures based on entropy function, IEEE Trans. Inform. Theory 28 (3) (1982), 489-495.
[13] Cerone, P., Dragomir, S. S., Midpoint-type rules from an inequalities point of view, in Handbook of Analytic-Computational Methods in Applied Mathematics, Anastassiou, G. A., (Ed.), CRC Press, New York, 2000, 135-200.
[14] Cerone, P., Dragomir, S. S., New bounds for the three-point rule involving the Riemann-Stieltjes integrals, in Advances in Statistics Combinatorics and Related Areas, Gulati, C., et al. (Eds.), World Science Publishing, River Edge, N.J., 2002, 53-62.
[15] Cerone, P., Dragomir, S. S., Pearce, C. E. M., A generalised trapezoid inequality for functions of bounded variation, Turkish J. Math. 24 (2) (2000), 147-163.
[16] Cerone, P., Dragomir, S. S., Roumeliotis, J., Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Math. 32 (2) (1999), 697-712.
[17] Chen, C. H., Statistical Pattern Recognition, Hoyderc Book Co., Rocelle Park, New York, 1973.
[18] Chow, C. K., Lin, C. N., Approximating discrete probability distributions with dependence trees, IEEE Trans. Inform. Theory 14 (3) (1968), 462-467.
[19] Cristescu, G., Hadamard type inequalities for convolution of h-convex functions, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 8 (2010), 3-11.
[20] Csiszár, I. I., Information-type measures of difference of probability distributions and indirect observations, Studia Math. Hungarica 2 (1967), 299-318.
[21] Csiszár, I. I., On topological properties of f-divergences, Studia Math. Hungarica 2 (1967), 329-339.
[22] Csiszár, I. I., Körner, J., Information Theory: Coding Theorem for Discrete Memoryless Systems, Academic Press, New York, 1981.
[23] Dragomir, S. S., Ostrowski's inequality for monotonous mappings and applications, J. KSIAM 3 (1) (1999), 127-135.
[24] Dragomir, S. S., The Ostrowski integral inequality for mappings of bounded variation, Bull. Austral. Math. Soc. 60 (1) (1999), 495-508.
[25] Dragomir, S. S., The Ostrowski's integral inequality for Lipschitzian mappings and applications, Comp. Math. Appl. 38 (1999), 33-37.
[26] Dragomir, S. S., A converse result for Jensen's discrete inequality via Gruss' inequality and applications in information theory, An. Univ. Oradea Fasc. Mat. 7 (1999/2000), 178-189.
[27] Dragomir, S. S., On the midpoint quadrature formula for mappings with bounded variation and applications, Kragujevac J. Math. 22 (2000), 13-18.
[28] Dragomir, S. S., On the Ostrowski's inequality for Riemann-Stieltjes integral, Korean J. Appl. Math. 7 (2000), 477-485.
[29] Dragomir, S. S., On the Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Inequal. Appl. 4 (1) (2001), 59-66.
[30] Dragomir, S. S., On the Ostrowski inequality for Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ where f is of Hölder type and u is of bounded variation and applications, J. KSIAM 5 (1) (2001), 35-45.
[31] Dragomir, S. S., On a reverse of Jessen's inequality for isotonic linear functionals, J. Ineq. Pure Appl. Math. 2, No. 3, (2001), Art. 36.
[32] Dragomir, S. S., Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure Appl. Math. 3 (5) (2002), Art. 68.
[33] Dragomir, S. S., A refinement of Ostrowski's inequality for absolutely continuous functions whose derivatives belong to L_{∞} and applications, Libertas Math. 22 (2002), 49-63.
[34] Dragomir, S. S., An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3, No. 2 (2002), Art. 31.
[35] Dragomir, S. S., An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3, No. 3 (2002), Art. 35.
[36] Dragomir, S. S., Some companions of Ostrowski's inequality for absolutely continuous functions and applications, Preprint RGMIA Res. Rep. Coll. 5 (2002), Suppl. Art. 29. [Online http://rgmia.org/papers/v5e/COIACFApp.pdf], Bull. Korean Math. Soc. 42, No. 2 (2005), 213-230.
[37] Dragomir, S. S., A Grüss type inequality for isotonic linear functionals and applications, Demonstratio Math. 36, No. 3 (2003), 551-562. Preprint RGMIA Res. Rep. Coll. 5 (2002), Supl. Art. 12. [Online http://rgmia.org/v5(E).php].
[38] Dragomir, S. S., An Ostrowski like inequality for convex functions and applications, Revista Math. Complutense 16 (2) (2003), 373-382.
[39] Dragomir, S. S., Bounds for the normalised Jensen functional, Bull. Aust. Math. Soc. 74 (2006), 471-478.
[40] Dragomir, S. S., Bounds for the deviation of a function from the chord generated by its extremities, Bull. Aust. Math. Soc. 78, No. 2 (2008), 225-248.
[41] Dragomir, S. S., Reverses of the Jensen inequality in terms of the first derivative and applications, Preprint RGMIA Res. Rep. Coll. 14 (2011), Art. 71 [http://rgmia.org/papers/v14/v14a71.pdf].
[42] Dragomir, S. S., Operator Inequalities of Ostrowski and Trapezoidal Type, Springer, New York, 2012.
[43] Dragomir, S. S., Perturbed companions of Ostrowski's inequality for absolutely continuous functions (I), Preprint RGMIA Res. Rep. Coll. 17 (2014), Art 7. [Online http://rgmia.org/papers/v17/v17a07.pdf].
[44] Dragomir, S. S., Inequalities of Hermite-Hadamard type for λ-convex functions on linear spaces, Preprint RGMIA Res. Rep. Coll. 17 (2014), Art. 13.
[45] Dragomir, S. S., Jensen and Ostrowski type inequalities for general Lebesgue integral with applications (I), Preprint RGMIA Res. Rep. Coll. 17 (2014), Art. 25.
[46] Dragomir, S. S., Cerone, P., Roumeliotis, J., Wang, S., A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis, Bull. Math. Soc. Sci. Math. Romanie 42(90) (4) (1999), 301-314.
[47] Dragomir, S. S., Fitzpatrick, S., The Hadamard inequalities for s-convex functions in the second sense, Demonstratio Math. 32, No. 4 (1999), 687-696.
[48] Dragomir, S. S., Fitzpatrick, S., The Jensen inequality for s-Breckner convex functions in linear spaces, Demonstratio Math. 33, No. 1 (2000), 43-49.
[49] Dragomir, S. S., Ionescu, N. M., Some converse of Jensen's inequality and applications, Rev. Anal. Numér. Théor. Approx. 23, No. 1 (1994), 71-78.
[50] Dragomir, S. S., Mond, B., On Hadamard's inequality for a class of functions of Godunova and Levin, Indian J. Math. 39, No. 1 (1997), 1-9.
[51] Dragomir, S. S., Pearce, C. E., On Jensen's inequality for a class of functions of Godunova and Levin, Period. Math. Hungar. 33, No. 2 (1996), 93-100.
[52] Dragomir, S. S., Pearce, C. E., Quasi-convex functions and Hadamard's inequality, Bull. Aust. Math. Soc. 57 (1998), 377-385.
[53] Dragomir, S. S., Pečarić, J., Persson, L., Some inequalities of Hadamard type, Soochow J. Math. 21, No. 3 (1995), 335-341.
[54] Dragomir, S. S., Pečarić, J., Persson, L., Properties of some functionals related to Jensen's inequality, Acta Math. Hungarica 70 (1996), 129-143.
[55] Dragomir, S. S., Rassias, Th. M. (Eds.), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publishers, Dordrecht-BostonLondon, 2002.
[56] Dragomir, S. S., Wang, S., A new inequality of Ostrowski's type in L_{1}-norm and applications to some special means and to some numerical quadrature rules, Tamkang J. Math. 28 (1997), 239-244.
[57] Dragomir, S. S., Wang, S., A new inequality of Ostrowski's type in L_{p}-norm and applications to some special means and to some numerical quadrature rules, Indian J. Math. 40 (3) (1998), 245-304.
[58] Dragomir, S. S., Wang, S., Applications of Ostrowski's inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett. 11 (1998), 105-109.
[59] El Farissi, A., Simple proof and refinement of Hermite-Hadamard inequality, J. Math. Ineq. 4, No. 3 (2010), 365-369.
[60] Fink, A. M., Bounds on the deviation of a function from its averages, Czechoslovak Math. J. 42, No. 2 (1992), 298-310.
[61] Godunova, E. K., Levin, V. I., Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions, in Numerical Mathematics and Mathematical Physics, Moskov. Gos. Ped. Inst., Moscow, 1985, 138-142 (Russian).
[62] Gokhale, D. V., Kullback, S., Information in Contingency Tables, Marcel Decker, New York, 1978.
[63] Hudzik, H., Maligranda, L., Some remarks on s-convex functions, Aequationes Math. 48, No. 1 (1994), 100-111.
[64] Guessab, A., Schmeisser, G., Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Theory 115 (2002), 260-288.
[65] Havrda, J. H., Charvat, F., Quantification method classification process: concept of structural α-entropy, Kybernetika 3 (1967), 30-35.
[66] Hellinger, E., Neue Bergrüirdung du Theorie quadratisher Formerus von uneudlichvieleu Veränderlicher, J. Reine Angew. Math. 36 (1909), 210-271.
[67] Jeffreys, H., An invariant form for the prior probability in estimating problems, Proc. Roy. Soc. London A Math. Phys. Sci. 186 (1946), 453-461.
[68] Kadota, T. T., Shepp, L. A., On the best finite set of linear observables for discriminating two Gaussian signals, IEEE Trans. Inform. Theory 13 (1967), 288-294.
[69] Kailath, T., The divergence and Bhattacharyya distance measures in signal selection, IEEE Trans. Comm. Technology 15 (1967), 52-60.
[70] Kapur, J. N., A comparative assessment of various measures of directed divergence, Advances in Management Studies 3 (1984), 1-16.
[71] Kazakos, D., Cotsidas, T., A decision theory approach to the approximation of discrete probability densities, IEEE Trans. Perform. Anal. Machine Intell. 1 (1980), 61-67.
[72] Kikianty, E., Dragomir, S. S., Hermite-Hadamard's inequality and the p-HH-norm on the Cartesian product of two copies of a normed space, Math. Inequal. Appl. (in press).
[73] Kirmaci, U. S., Klaričić Bakula, M., E Özdemir, M., Pečarić, J., Hadamard-type inequalities for s-convex functions, Appl. Math. Comput. 193, No. 1 (2007), 26-35.
[74] Kullback, S., Leibler, R. A., On information and sufficiency, Annals Math. Statist. 22 (1951), 79-86.
[75] Lin, J., Divergence measures based on the Shannon entropy, IEEE Trans. Inform. Theory 37 (1) (1991), 145-151.
[76] Latif, M. A., On some inequalities for h-convex functions, Int. J. Math. Anal. (Ruse) 4, No. 29-32 (2010), 1473-1482.
[77] Mei, M., The theory of genetic distance and evaluation of human races, Japan J. Human Genetics 23 (1978), 341-369.
[78] Mitrinović, D. S., Lacković, I. B., Hermite and convexity, Aequationes Math. 28 (1985), 229-232.
[79] Mitrinović, D. S., Pečarić, J. E., Note on a class of functions of Godunova and Levin, C. R. Math. Rep. Acad. Sci. Canada 12, No. 1 (1990), 33-36.
[80] Ostrowski, A., Über die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Helv. 10 (1938), 226-227.
[81] Pearce, C. E. M., Rubinov, A. M., P-functions, quasi-convex functions, and Hadamard-type inequalities, J. Math. Anal. Appl. 240, No. 1 (1999), 92-104.
[82] Pečarić, J. E., Dragomir, S. S., On an inequality of Godunova-Levin and some refinements of Jensen integral inequality, "Babeş-Bolyai" University, Research Seminars, Preprint No. 6, Cluj-Napoca, 1989.
[83] Pečarić, J., Dragomir, S. S., A generalization of Hadamard's inequality for isotonic linear functionals, Radovi Mat. (Sarajevo) 7 (1991), 103-107.
[84] Pielou, E. C., Ecological Diversity, Wiley, New York, 1975.
[85] Radulescu, M., Radulescu, S., Alexandrescu, P., On the Godunova-Levin-Schur class of functions, Math. Inequal. Appl. 12, No. 4 (2009), 853-862.
[86] Rao, C. R., Diversity and dissimilarity coefficients: a unified approach, Theoretic Population Biology 21 (1982), 24-43.
[87] Rényi, A., On measures of entropy and information, in Proc. Fourth Berkeley Symp. Math. Stat. and Prob., Vol. 1, University of California Press, 1961, 547-561.
[88] Roberts, A. W., Varberg, D. E., Convex Functions, Academic Press, New York, 1973.
[89] Sarikaya, M. Z., Saglam, A., Yildirim, H., On some Hadamard-type inequalities for h-convex functions, J. Math. Inequal. 2, No. 3 (2008), 335-341.
[90] Sarikaya, M. Z., Set, E., Özdemir, M. E., On some new inequalities of Hadamard type involving h-convex functions, Acta Math. Univ. Comenian. (N.S.) 79, No. 2 (2010), 265-272.
[91] Set, E., Özdemir, M. E., Sarkkaya, M. Z., New inequalities of Ostrowski's type for s-convex functions in the second sense with applications, Facta Univ. Ser. Math. Inform. 27, No. 1 (2012), 67-82.
[92] Sharma, B. D., Mittal, D. P., New non-additive measures of relative information, J. Comb. Inf. Syst. Sci. 2 (4) (1977), 122-132.
[93] Sen, A., On Economic Inequality, Oxford University Press, London, 1973.
[94] Shioya, H., Da-Te, T., A generalisation of Lin divergence and the derivative of a new information divergence, Electronics and Communications in Japan 78 (7) (1995), 37-40.
[95] Taneja, I. J., Generalised Information Measures and Their Applications [http://www.mtm.ufsc.br/~taneja/bhtml/bhtml.html].
[96] Theil, H., Economics and Information Theory, North-Holland, Amsterdam, 1967.
[97] Theil, H., Statistical Decomposition Analysis, North-Holland, Amsterdam, 1972.
[98] Topsoe, F., Some inequalities for information divergence and related measures of discrimination, Preprint RGMIA Res. Rep. Coll. 2 (1) (1999), 85-98.
[99] Tunç, M., Ostrowski-type inequalities via h-convex functions with applications to special means, J. Inequal. Appl. 2013, 2013:326.
[100] Vajda, I., Theory of Statistical Inference and Information, Kluwer Academic Publishers, Dordrecht-Boston, 1989.
[101] Varošanec, S., On h-convexity, J. Math. Anal. Appl. 326, No. 1 (2007), 303-311.

S. S. Dragomir
Mathematics, College of Engineering \& Science
Victoria University, PO Box 14428
Melbourne City, MC 8001
Australia
e-mail: sever.dragomir@vu.edu.au
url: http://rgmia.org/dragomir

School of Computer Science \& Applied Mathematics
University of the Witwatersrand
Private Bag 3, Johannesburg 2050
South Africa

Received March 10, 2015

[^0]: 2010 Mathematics Subject Classification. Primary 26D15; Secondary 94A17.
 Key words and phrases. Ostrowski's inequality, Jensen's inequality, f-divergence measures.

