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A new theoretical approach of adsorption equilibrium description founded 
on the Osmotic Theory of Adsorption (OTA) proposed by Bering and 
Serpinsky is presented. In the first part the new general derivation of the 
adsorption equations basing on the regularities of the osmotic equilibrium is 
proposed. One of the developed isotherm formulas leads, after 
simplifications, to the fundamental Freundlich isotherm equation, another to 
the OTA isotherm equation (sometimes also called empirical Bradley’s 
adsorption isotherm). Taking into account that in real adsorption space the 
energy of adsorption as well as the value of the osmotic coefficient should 
be distributed, the new general heterogeneous version of the OTA model, 
and corresponding isosteric enthalpy of adsorption equation are derived. 
Next, two different distribution functions are assumed, and the results of 
simulations of adsorption isotherms and enthalpy data are presented. It can 
be concluded that developed models generate the shapes of adsorption 
isotherms and enthalpy very similar to those observed experimentally. 
Finally, the applicability of presented model to description of experimental 
data is presented.

1. INTRODUCTION -  DEVELOPING THE OTA EQUATIONS

The Osmotic Theory of Adsorption (OTA) [1] is one of the most interesting 
and valuable approaches developed in the 20th century. Originating from the so- 
called “Russian school of adsorption” this concept was in fact the alternative to
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the second important idea, i.e. the Theory of Volume Filling of Micropores 
(TVFM) founded by Dubinin et al [2]. The major difference in both approaches 
is the treatment of the adsorption system. While the TVFM postulates the 
creation of a quasi-liquid adsorbate in the potential field of pores, the OTA 
assumes the formation of the adsorbent-adsorbate-two component solution. The 
comparative discussion of the both approaches in adsorption thermodynamics 
was discussed recently [3]. Now the short presentation of the OTA theory is 
given; however, in the alternative (to the original) new form.

Consider the system in which a pure solvent is separated from the two- 
component solution (solute "1" and solvent "0") by a membrane permeable only 
for the solvent (Figure 1). Osmotic system is at equilibrium, i.e. the flow 70=0, 
and the difference in the pressure is equal to the osmotic pressure Ap=x. The 
solvent will penetrate into the solution side until its chemical potential on both 
sides of a membrane becomes the same because of the increasing Ap on the 
solute side. Moreover,

( 1)

Fig. 1. Osmotic system; at equilibrium J0=0 and Ap=n (Eq. (3)).



The part of the system with pure solvent is denoted by ("). The expression for 
the chemical potential of species i can be written as :

Mi = M° + R T lnai + (P~ P° Wi 1 = 0,1 (2)

where p° is the standard pressure, R -  the gas constant, T -  the absolute 
temperature, /il° , a„ and v,. are the standard chemical potential, the activity, and 
the partial molar volume of species i, respectively. Now re-writing Eq. (2) for a 
solvent in both parts of the system, and taking into account Eq. (1) the osmotic 
pressure (it) can be defined as follows:

n - p - p  = —— lna0 l'5''

If some amount of a solute is added to the solution (left side in Figure 1), the 
new equilibrium establishes. As the right side (pure solvent) does not change, the 
chemical potential of the solvent on the left side also does not change (Eq. (1)), 
whereas the chemical potential of a solute changes according to the Gibbs- 
Duhem equation (as mentioned above the solute does not penetrate the 
membrane):

Ma =const

cxdfUx -  d p - c 0dp0 = dp = dK (4)

where c, is the molar concentration of species i (mol/m3). Combining Eqs. (4) 
and (3) after some manipulations one obtains the following expression for dp.\\

d jU i= -R T ( l / x I - l  + vI / v 0) d l n a 0 (5)

where xi is the mole fraction of the solute.

Now one can apply the analogy between the system described above (and 
shown in Figure 1) and the adsorption system. Frumkin [4] as well as Adam [5] 
and Barrer [6] suggested that the spreading pressure of the adsorbed phase can 
be identified with the osmotic pressure of the surface solution created by 
adsorbed molecules and the surface atoms of an adsorbent. This idea was 
developed by Bering and co-workers [1], Here an adsorbate plays the role of the 
dissolved substance (i.e. solute) and the vacancies (i.e. holes) are the solvent (p 
is the analogue of the surface tension) c i is the number of adsorbed moles (per



m2) of a surface of / ]  and c0 describes the number of moles of vacancies (per m2)
of a surface of r 0. Partial molar volumes V,. are simply the molar specific surface 
areas i 2, (note that here also the adsorption in the porous system can be 
considered since Ą  can be assumed as the molar volume of the component i). 
Assuming that T, + T 0 is constant it is easy to show that Ć20=ć2h However, one 
can consider different approach -  it can be assumed that the adsorbed space can 
be filled incompletely, i.e. for maximum adsorption amax there is the molar ratio 
of the space filled via the vacancies (ya):

where a and Umax are the adsorption and the maximum adsorption, respectively. 
Then, bearing in mind that r iQ] + r oQ0 = 1, the mole ratio, jti, is equal to:

Now one can introduce the osmotic coefficients. Since the solution is not 
ideal, this nonideality can be introduced into Eq. (5) via [7]:

•  the rational osmotic coefficient (g) (as it was proposed in the original OTA) 
defined by:

(6)

Denoting the molar ratio of the adsorbate as xa:

l ,m a x (7)

l - ( Q , / Q 0) { l - l / y axa)
1 (8)

lna0 = g In x0 (9)

•  the rational activity coefficient ( f) defined by:

lna0 = ln( yx0 ) ( 10)

•  the molal osmotic coefficient {(/>) defined by: 

In a0 -  ~<j>xt /  x0



• and finally, proposed in this study, the new definition of the osmotic 
coefficient:

In a0 = ~<px, (12)

Here, contrary to Bering et al. [1] one can assume that g and (p are the unknown 
functions of the adsorption.

Introducing Eqs. (9) -  (12) into Eq. (5) one obtains, respectively:

dju,=
f

8 k“8 ' In
( i w  i  -  y„x„-'a a

^a( 1 - yaxa)(l —( 1 - 1 / kn )yaxa) yaXa { l - ( l - l / k a )yaxa )J
da (13a)

d V , =

dMi =

______________ L_______________
a ( l - y axa ) ( l - ( l - l / k a )yaxa ) yaxa

da

</> ¥ da

d fh  =

“ {t -yaXa)

__________<P_________
a ( l - ( l - l / k a )yaxa y  ( l - ( l - l / k n )yaxa )_

¥ da

(13b)

(13c)

(13d)

where kQ = Q /Q 0; g', y\ (/)', and q' are the derivative of the osmotic coefficient 
with respect to a. Obviously, yaXa is the fraction of the surface covered (or the 
fraction of the pore space filled) by an adsorbate. Now if the adsorbate and 
adsorbent are in the equilibrium:

d jU ]= dlnp  (14)

where p is the equilibrium pressure.
Applying Eq. (13) together with Eq. (14) and integrating under the 

assumption that osmotic coefficients are constant (similarly to Bering et al. [1]) 
one can obtain the following adsorption isotherm equations:



p  = b

p  = b

p  = b

P ~ b

(
X a '  1 -  y  xJ  a  a

l~kn Y

K l ~ y a x a [ l - ( l - l / k n )yax J
y

1 -  y„x„J a a
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l - ( l - l / k a )yaxta )
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J - y a Xa(1 ~ 1^ ko ) j  

where b is the integration constant.

<P

l - y a Xa(1 ~ 1 / k a )

2. SIMPLIFYING THE OTA EQUATIONS 

Assuming ya = ka =1 Eqs. (15a) - (15d) reduce to:

p  = b
(  Yx„

\ J ~ Xa J

p  = b ^ ~
l - * „

p  = b
*  (  <p \

\ l ~ X a J

exp
\ l ~ XaJ

p=b(xay  exp{<p)=bI(xaY

(15a)

(15b)

(15c)

(15d)

(16a)

(16b)

(16c)

(16d)

Eq. (16a) is in fact the equation proposed by Bering et al. [1] in the original 
version of the OTA, and it is sometimes called the Bradley isotherm equation. It



is interesting to admit here that the Bradley isotherm was derived by Rudziński 
and Everett [8] basing on the method proposed by Cerofolini and assuming the 
Fermi-Dirac distribution of the surface atoms of solid and the condensation 
approximation method. Eq. (16b) is the Langmuir and Eq. (16d) Freundlich 
isotherm equation. This leads to the conclusion that the Osmotic Theory of 
Adsorption is a very powerful concept making possible to derive important and 
well known adsorption isotherm equations.

3. OTA EQUATION BASING ON THE CONCEPT OF VIRIAL EQUATION 
OF THE OSMOTIC PRESSURE

Following the presented above methodology one can develop the adsorption 
isotherm basing on thermodynamics of mixtures, for example applied in 
description of polymeric solutions. Following Eq.(3):

In an = —
RT

n

The osmotic pressure can be written as: 

— = Ą + A f  + Aici +...

(17)

(18)

and this is simply another way of taking into account the non-ideality of the 
solution.

By the way, for the ideal solution: 

lna0 = lnx0 = —— 7T (19)

and only in the case of diluted solution:

lim -  = A =  ~R T   (20)
c-*° c MŁ lV l dil.sub.

where MdiLsub. is the molar mass of the diluted substance. In the case of the 
solution of polymer this is simply the average molecular mass of the polymer.



Following the Flory -  Huggins concept A2 is given by:

a _  RT p 0 
^  M 0 p {

- X (21)

where: p0 and pi are the densities of the solution and polymer, Z  -  is the 
parameter describing the interactions between the polymer and solvent.

Taking into account Eqs.(17) and (18):

c = (22)

X] is related to xa (Eq. (7)) by Eq.(8). This makes it possible to calculate the 
derivative of lna0 with respect to xa. Following the method described above 
(Eq.(5)) one obtains the adsorption isotherm equation in the form:

r
P = b x*  exp

V f t ,
+

2 l ft, ‘

Y
(23)

4. HETEROGENEOUS OTA MODEL AND RELATED ENTHALPY
FORMULA

In this paragraph we wish to pay attention to Eq. (16a). After simple 
manipulation and conversion of the symbols accepted in the theory of solutions 
to symbols applied in the field of adsorption (xa =&(h;T,E,g ), b = K(T;E) ,
g = g ( T  )) this equation can be written in the following form:

0  (h;T;E;g) =

i
K(T;E)hs{r)

7

l  + K(T;E)hs{r)

where E is the energy of adsorption and h is the relative pressure. 
The temperature dependence of K is well known:



(25)

where K0 is slightly dependent on the temperature entropie factor.
On the other hand, the temperature dependence of the osmotic coefficient was 
evaluated from experimental data by Bering et al. [1]:

It is obvious that in the adsorption space the regions with different adsorption 
energy can occur. Moreover, adsorbed molecules can behave non-ideally, and 
the measure of his behaviour is the value of the osmotic coefficient g e (0,7]

(this assumption should be verified experimentally since in the case of solutions 
g can be even larger, for example in 7 m NaOH solution g is around 2). 
Assuming that the lower limit of this coefficient gmin is very small and close to 
zero, and taking this into account the global adsorption isotherm equation one 
can write:

Here one can introduce a new variable (linearly related to the adsorption 
energy):

g ( T )  = l - j (26)

a(h;T) = am j J 0 L(h;T;E;g)z{E;g)dEdg =am J J
E.

l + K(T;E)hs{r]
(27)

E = {1 + S ) Q (28)

where Q is the energy median:

E  . + EQ  _  n u n  t

2
m a x

Eq. (27) can now be rewritten as:



8=A l V(T-A) \hs^
a(h;T) = am J J --------- :--------— %(8;g)dSdg  (30)

s=-x«"‘" l  + K { T ; S ) h ' (T)

where the integration limits of the first integral (- A and A) are connected with 
the minimal (Emin) and maximal adsorption energy (Emax) by:

E — E
A = —^ ----- (31)

2 2

and:

K  (T ;S )  = K0 exp
(1 + 8 ) Q ]

R T  'J

After simple manipulation Eq. (30) can be transformed to the form:

(36)

a{h ;T )  = an
S=A 1 S=A 1

V

J \ X ( S ; g ) i S d g -  j
*mA gmt" *=~* *■* 1 + K ( T ;  8 ) h g{T)

(37)

Since the distribution function should be normalized, the first integral is equal to 
1, and:

i (h;T)  = ,
8=1 1

J 1
z [ 8 ;  g)d8dg

S=-Agm l  + K ( T ; S ) h g(T)

(38)

and for isothermal conditions:

a{h)  = an

f  \
8=A 1

> -  I J
l  + K ( S ) h

%(S;g)dSdg
(39)



To develop the equation describing the isosteric enthalpy of adsorption (qst) 
related to Eq. (38) we applied the Clausius-Clapeyron formula [9]:

qst —L -  R T 2
d lnh

dT
(40)

where L is the enthalpy of condensation. This leads to:

7 K{T;S)hs{T]

I  I

s=x [l + S)Q + - ^ F)lnh
Z(S;g)dSdg

5 = - ,

q* '-L  =

s= -x  g,

(41)

Taking into account Eq. (26) we have:

, K ( S ) w { ( H - S ) Q + ? &

!  IS=~Xgmin

V

_Jf rq - L - -

X{S;g)dSdg

S=X 1 K{S)h
f  ----------~ ^ x { 5 ; g ) d S d g

S=-l g,
l  + K ( S ) h g

where:
''"u

(42)

B ( g )  = R T { l - g ) (43)



5. DISCUSSION OF SIMULATED RESULTS

To study the behaviour of the heterogeneous version of the OTA equation, 
and the related enthalpy of adsorption formula we postulate arbitrarily the 
following distribution function:

x { S ; g )  = D'Yj - A
;=/

1 +
S - S ;

k j

V (
+ 8 ~ 8 i

V

v C, )

(44)

where D is the normalization factor.
Two cases are studied: one-peak (n=l) and two-peak (n-2)  distribution 

functions (Figure 2). Obviously here the introduction of A\ is (due to 
normalization) redundant and in this case A\ = 1. Figure 3 shows the influence of 
the parameters (i.e. gt, d,, Bh and C,) on contour plots of the one-peak function. 
The integrals were calculated applying the approximate method from:

f J F (£’2 ) =  4 Z Z ( 3 - ; )(S;  - 8h )[F (5 i~ ,• 8 j- j )
ą 1=2 i=2

+ F(Ą_J;g .)  + F (^ ;g ._ J) + F (Ą ;g .)]  (45)

Fig. 2. One- and two-peak distribution functions applied during simulation, and generated 
from Eq. (33). The values of the parameters: /l=0.3, A;=l, fi,= 0.05, C;= 0.05, Ą=0, 
g i= 0 .5  and A 2= 0 .1 5 ,B 2=  0.05, C 2=  0.05, ^.=0.125, g2=0.25.



g =0.6 ---------  g,=0.5 6=0.0 ----------► 6=0.1

B,=0.1 < ---------  B^O.025 C=0.025 ----------► C^O.1

Fig. 3. Contour plots of the one-peak distribution function -  the influence of g], 6/, Bh 
and C,. The values of the starting parameters: /I=0.1, A /=l, B ,-  0.025, C,= 0.025, Ą=0, 
and g 7=0 .5 .

Figure 4 presents the results considering the influence of g/ on adsorption 
isotherms and related enthalpy data for the one-peak distribution function. The 
rise in the value of the osmotic coefficient leads to the conversion of the 
adsorption isotherms from type IV up to I. Simultaneous rise in the adsorption 
enthalpy value is observed. This result shows the tendency often observed in 
experimental systems. It is well known that e.g. during adsorption on 
microporous activated carbons if one studies adsorption of a series of polar and 
nonpolar molecules the isotherms change in the same sequence. Therefore, in the 
OTA the change in the value of the osmotic coefficient of the created solution is 
responsible for the observed changes (this is of course the hypothetical situation 
since the change of the adsorbate results in the change in the value of <S;). Next 
figure (Figure 5) presents the changes caused by the value of Sj. The shift of the 
maximum of the peak towards lower energy leads to the change in the plots of 
adsorption isotherms. For the lowest energy value the maximum adsorption is 
not achieved and this is caused by the incomplete saturation of adsorption 
centres. Contrary to larger energy values all the centres contribute to adsorption 
(adsorption increases), however, since the distribution function is shifted toward 
larger energy (but simultaneously up to the lower g values) the enthalpy 
decreases.



Fig. 4. The influence of the maximal gi value on the shape of adsorption isotherms (Eq. 
(27)) and related enthalpy (Eq. (30)) data. One-peak distribution function was assumed 
(Eq. (33) and Figure 3). The values of the parameters: a„,=0.02 mol/g, Ko=5 10‘16, 
Q=100 kJ/mol, ;i=0.3, T=298 K, A;=l,fi,=0.01, C,=0.01, S,=0, and gm,„=0.01.



Fig. 5. The influence of the maximal value of the peak on Ą axis on the shape of 
adsorption isotherms (Eq. (27)) and related enthalpy (Eq. (30)) data. One-peak 
distribution function was assumed (Eq. (33) and Figure 3). The values of the parameters: 
am=0.02 mol/g, Kq=5 1 0 16, 0=100 kJ/mol, ,4=0.3, 7=298 K, A ,= 1, S ;=0.01, C,=0.01, 
g;=0 .1 , and gmi„=0 .0 1 .



Fig. 6 . The influence of the B, value on the shape of adsorption isotherms (Eq. (27)) and 
related enthalpy (Eq. (30)) data. One-peak distribution function was assumed (Eq. (33) 
and Figure 3). The values of the parameters: am=0.02 mol/g, K0=5 10 , <2=30 kJ/mol, 
£=0.3, T=298 K, Cj=0.01, S,=0, g,=0.8, and gmi„=0.01.



Fig. 7. The influence of the Q  value on the shape of adsorption isotherms (Eq. (27)) and 
related enthalpy (Eq. (30)) data. One-peak distribution function was assumed (Eq. (33) 
and Figure 3). The values of the parameters: am=0.02 mol/g, Kq=5 10"4, Q=30 kJ/mol, 
A,=0.3, T=298 K, A ,= l, B,=0.01, 8,=0, g,=0.8, and g ^ O .O l.



h

Fig. 8 . The influence of the changing in the cross-sectional area of the peak on the shape 
of adsorption isotherms (Eq. (27)) and related enthalpy (Eq. (30)) data. One-peak 
distribution function was assumed (Eq. (33) and Figure 3). The values of the parameters: 
am=0.02 mol/g, Ko=5 10*4, Q=30 kJ/mol, X=0.3, T=298 K, A ,= l, 8,=0, g,=0.8, and
gm,n=0.0l.



Fig. 9. The influence of the ratio of the heights of two peaks on the shape of adsorption 
isotherms (Eq. (27)) and related enthalpy (Eq. (30)) data. Two-peak distribution function 
was assumed (Eq. (33) and Figure 2). The values of the parameters: am=0.02 mol/g, 
K<,=5 10'29, Q=150 kJ/mol, A.=0.3, T=298 K, A ,= l, B,=0.01, C,=0.005, 5,=0.18, g,=0.8, 
B2=0.01, C2=0.005, 52=0.21, g2=0.1, and gmm=0.01.



Fig. 10. The influence of the g value related to the second peak on the shape of adsorption 
isotherms (Eq. (27)) and related enthalpy (Eq. (30)) data. Two-peak distribution function 
was assumed (Eq. (33) and Figure 2). The values of the parameters: am=0.02 mol/g, 
Ko=0.05, Q=30 kJ/mol, 5l=0.3, T=298 K, A ,= l, B,=0.01, C,=0.005, 8 ,=0.21, g,=0.8, 
B2=0.01, C2=0.005, 82=0 .2 1 , and gmin=0.01.



Figures 6 and 7 show the influence of the parameters B, and C/. Both 
parameters are connected with the half-width of the peak parallel to the S  and g 
axes, respectively. In more heterogeneous system the adsorption isotherm is 
characterised by a wider range of relative pressure necessary to attain the 
plateau, accompanied by steeper enthalpy plots. Similar effect can be observed 
during the changing of the cross-sectional area of the peak (Figure 8). In Figure 8 
the broadening of the peaks leads to more “heterogeneous” plots of adsorption 
isotherms and related enthalpy.

To generate more complicated enthalpy of adsorption plots the two-peak 
distribution function was assumed. Figure 9 shows that the increase in the 
intensity of the peak (the values of A2 are changed for constant A/ and equal to 1) 
related to lower adsorption energy decreases the adsorption values and related 
enthalpy. If the rise in g2 (gi = const.) value for low energy centres occurs one 
can observe the rise in adsorption and enthalpy in the range of adsorption on this 
centres (Figure 10).

Benzene adsorption isotherm and corresponding enthalpy data were measured 
on carbon film Cf at 298 K. The experimental results, the method of isotherm 
and enthalpy measurements as well as the characteristics of the adsorbent were 
reported previously [10]. Adsorption isotherm and enthalpy were described 
applying the heterogeneous OTA equations Eqs. (39, 42 and 43) assuming the 
one-peak distribution function (Eq.(44), n=l). We assumed the single-peak 
distribution function since the initial calculations showed that this is sufficient 
for the studied system. Moreover, this assumption reduces the number of the 
best-fit parameters and simplifies the model. The determination coefficient 
describing the fit of theoretical adsorption isotherm to experimental one (DCiz) 
was calculated from:

6. DESCRIPTION OF EXPERIMENTAL DATA

(46)

where:



and aexPfi and aexpi are the experimental and theoretical adsorption values for i-th 
point, respectively, a is the average experimental adsorption, and N  is the

number of experimental points.
The fit between theoretical and experimental enthalpy was calculated using: 

DCq„ = l-7 jqst (48)

and:

(49)

where the meaning of symbols is the same as above; however, here they concern 
the enthalpy curves determined for M  experimental points.
The global parameter describing the goodness of the simultaneous fit of isotherm 
and enthalpy is defined as:

DC = (50)

This value is the objective function (ofunc) in the genetic algorithm described 
below.

The assumption of the one-peak distribution function ((n =1))  leads to the 
following best fit parameters: am, K0 (in fact log K0 was fitted), Q, A, B,, Ch 8\ 
and gj. Moreover, the assumption of the one-peak distribution function makes 
the parameter A/ contributing to the normalisation constant (D), therefore this 
parameter is not fitted.

Theoretical relationships were fitted to experimental data by applying the 
minimization procedure using the differential evolution (DE) algorithm proposed 
by Price and Stom [11-13]. The DE algorithm is a very simple heuristic 
approach for minimizing non-linear and non-differentiable continuous space 
functions. Moreover, it was successfully used [14-20] to verify different 
theoretical models. In other words, to optimize the objective function (ofunc: 
(1 -DCj), where DC, is the determination coefficient with DE the following 
settings for the input file are taken into account: ‘DE/best/2/bin’ method is 
chosen (this time, the new vector to be perturbed is the best performing vector of



the current generation); the number of parents (i.e. number of population 
members), NP is 10 times greater than the number of parameters of the objective 
function, VD; weighting factor, F is equal to 0.8 and crossover probability 
constant CR=0.5; the value to reach, VTR is equal to MO'25 (the procedure stops 
when ofunc < VTR, if either the maximum number of iterations (generations) 
"itermax" is reached, or the best parameter vector "bestmem" has found a value 
f(bestmem)<VTR). The algorithm seems to work well only if [XVmin,XVmax] 
covers the region where the global minimum is expected. Therefore, we have 
taken into account the very wide ranges of XV. Moreover, the calculations were 
repeated at least five times in order to check the reproducibility.

7. RESULTS

Figure 11 shows the algorithm at work. For the assumed single-peak 
distribution function the algorithm reproduces the isotherm and related enthalpy 
very well. The parameters are practically the same as assumed after few 
thousands of iterations. In this figure we also show the changes in the value of 
DC calculated from Eq.(50). The fit of theoretical model to experimental data is 
shown in Figure 12 together with the distribution function obtained from the best 
fit parameters. The results of the fit are good. Obtained distribution function has 
maximum at the g value around 0.4. This suggests strong deviation of the system 
from ideality. The maximum value on the energy is shifted towards large values 
(the maximum of the peak is located behind the integration limit) suggesting 
relatively high energy of solid-fluid interactions.

Fig. 11. The results showing reproducibility of the adsorption isotherm and related 
enthalpy by the genetic algorithm. Points -  starting data, lines -  recovered data. Third 
figure shows the changes in the value of the global DC (Eq.(50)) with the number of 
iterations. Starting parameters (Eqs.(39), (42) -  (44), n=l): am=0.02 mol/g, Kq=5 10‘4, 
2=30 kJ/mol, 2=0.3, B,=0.01, C,=0.01, S,=0, and g, = 0.8 (T=298 K, gmi„=0.01).



Fig. 12. Applicability of the heterogeneous OTA model for description of experimental 
data of benzene adsorption and enthalpy of adsorption measured on carbon film Cf at 
298 K. Points -  experimental data, lines -  Eqs.(39), (42) -  (44), n- 1 (DC,,=0.9858, 
DCqs{=0.9243). The best fit parameters: am=2.333 mol/kg, K(f= 1.904 10'20,
Q=145.3 kJ/mol, ,1=0.1612, B,=1.556 1C4, C;=1.006 1C4, Ą=0.1931, and g ,=0.3855. 
Bottom figure shows the distribution function obtained from the fitting of the model to 
experimental data.

8. CONCLUSIONS

The proposed procedure of derivation of the Osmotic Theory of Adsorption 
related isotherms leads to adsorption equations that can be reduced to the most 
popular, sometimes empirical (e.g. Bradley) equations. Therefore, the 
assumption of the form of the relation between the osmotic coefficient and the



activity coefficient is crucial and determines the final version of the isotherm 
equation.

The heterogeneous OTA generates the plots of adsorption isotherms and 
related enthalpy formula curves being very similar to those observed 
experimentally. Therefore the OTA seems to be a very interesting and attractive 
approach.

The results presented in this study are verified using experimental data, 
showing relatively good fit. The application of this model to other experimental 
systems will be the subject of the forthcoming study.
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