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Funkcja korelacji nieliniowych układów dynamicznych a metody kwantowej teorii pola

1. INTRODUCTION

As it is known, the nonlinear dynamical systems such as neural networks can 
possess a variety of types of behaviour including convergence to fixed points, 
persistent oscillations (limit cycles) and chaotic motions. In spite of great efforts 
to study such systems on the basis of functional analysis, differential geometry 
and topology and other mathematical sciences, fairly little knowledge has been 
obtained analytically, and the main research tool are still computer simulations. 
For this reason, in this paper we discuss the problem of developing analytic 
methods and look for support in the experience of physical studies. More 
precisely, we try to borrow methods constructed in the quantum field theory 
by F e y n m a n ,  D y s o n ,  S c h w i n g e r  and others (see for introduction, 
e.g., [1-3]). The field-theoretic methods are successfully applied to the problems 
of quantum statistical physics as well (see, e.g. [4-8]). The seminal paper [9] 
has opened the door for statistical theories for classical systems that possess the 
power close to that of the Schwinger-Dyson functional methods and the Feyn
man diagrammatic perturbation theory in the quantum field theory. Further this 
approach was mainly developed for the stochastic dynamical systems for which 
the average of observables is undertaken over noise [10-19]. In contrast, de
terministic dynamical systems are the subject of the present paper and our 
final target is to elaborate such a technique that would enable us to investigate
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deterministic chaos also in the neural systems. (Nevertheless, introducing some 
auxiliary noise into the system under consideration with its subsequent elimina
tion is used in section 3).

We study a system whose state at the time t is described by the variables 
cpx{ t ) < P n(0 e R  which evolve in time so as

ęi{t) = F ,[ę(f)l (1.1)

Here F [ę \  is a (nonlinear) function depending on the vector of the state 
variables ę(t) = ((px ( t) , . . . ,  <Pn(())- The quantities of interest are the correlation 
functions (or Green functions)

Gjl . jm ( / , , . . . ,  tm | m) = (<Pji (t\).  .. <pJm (/„)) (1.2)

where the average is undertaken over the initial conditions (initial values of the 
state lying inside the basin of attraction of an attractor). They are of importance 
because they enable to conclude any type of the attractor.

As a specific example we will consider the known Lorenz system

x -  a (-x + y )
y  = r x - y - x z  (1.3)
i  = -bz + xy

where a, r and b are some positive constants.

2. THE OPERATOR FORMALISM OF QUANTUM THEORY AND EQUATIONS 
FOR CORRELATION AND RESPONSE FUNCTIONS

Let us introduce the additional dynamical variables <px (t), . . . , ę N (t) e R 
which satisfy both equations of motion

V (0  = -<Pt (0
SF[ę( t )]  

8 <pt (t)
(2.1)

and the canonical commutation relations

[fr(t), (/)] = ióij, i ,j  = 1, . . .  ,N (2.2)



In eq. (2.1) and below summation over repeated indices is assumed. The 
appearance of the fields <p in addition to the ę  is caused by that, in contrast 
to the quantum systems for which the expectation values of products of the field 
operators ę  and their Hermitian conjugates (p describe both correlations in 
a system and the response of the system to its external perturbations, no coun
terparts of the conjugated fields (p occur in the case of classical systems and con
sequently the response functions do not emerge automatically in the theory [9]. 
One can introduce the operator

(2.3)

which plays the role of a non-Hermitian Hamiltonian in such a way that the 
equations of motion (1.1) and (2.1) recast into the cannonical form

<P; (0 = i [H (0, <P, (t)], <p, (0 = i [H (0, <p, (/)] (2.4)

It is convenient to combine the variables (t) and (t) into the two-component
one O, (/) so as

0,(0  = V, (0
v

Then the commutation relations (2.2) can be written in the form

^0 - O
[0, (0 , 0 , (0 ] = -ioSij, i,j = \ , . . . , N ,  cr =

and the equations of motions (2.4) so as 

0 ,(0  = / [H{t\ 0 ,(0 ],

1 0
(2.5)

y

(2 .6)

For any polynomial functions Fj [ę], . . . ,  FN [ę\, the Hamiltonian H (t) may be 
represented as

« M 0 - - A ( 0
k

with the symmetrized coefficients From eqs.(2.5)-(2.7) it follows that



aÓ , (0 cD(j ( , ) . . .  <D.(0 (2.8)
k

Thus the quantities <f>, (t) can be regarded as dynamical variables in the Heis
enberg picture. We can defme them in the Schrodinger picture so as Of = O, (/0) 
where to is an arbitrary time moment treated as the initial time value. The rela
tionship between the two pictures is well known. So, the dynamical variables 
<t>, (t) and Of are connected by the transformation

0 , ( 0  = exp {iHs • (t - 10)} Of exp {-iff* • (t - 10)}

which contains the operator (cf. eq.(2.7))

H ’ = Y u r ,  -
k

playing the role of the Hamiltonian of the system under consideration in the 
Schrodinger picture. It is easy to see that

H(t) = exp{iHs ■ (f - 10)} H s exp{-iHs ( t - t 0)} = Hs

Now we introduce the auxiliary source fields rj, (/) and construct the 
operator [21]

S{t2, r,) = r e x p | - / j y  (2-9)

where T is the usual chronological ordering operator which arranges the opera
tors in order of increasing time from right to left and

A (0 = 7?, (0 ^ ( 0  (2.10)

Using this operator we turn from the Heisenberg picture to ther|-picture as follows:



Then one can easily derive the equations of motion for these dynamical vari
ables. They are

is the Hamiltonian of the system with the additional external source r) (t). The 
commutation relations (2.5) are kept intact. This t|-representation can be viewed 
as the Heisenberg picture for the generalized system described by the Hamilto
nian (2.13). From eqs.(2.12) and (2.13) it follows that

Now we are in position to deal with the Green functions (1.2) which are de
fined in terms of the two-component variables O, (() as

Here dO(t0) = do, (r0) . . . dON (/„), P[<D(f0)] = p [ę (/„)] • 5 [ę (><,)], and

P [<P «b)] is the probability distribution density for the initial state ę  (t0) of the 

system while 8 [<p (r0)] = 8 (f0) ] ...  8 [(pN (f0)] is the product of the Dirac

initial conditions as defined in (2.15 ). More precisely, eq.(2.15) defines a ma
trix function whose elements are both the correlation functions and response 
functions of the system.

Let us set the initial time /0 = 0 and designate by tm the maximum value of 
time moments under consideration. Generalize the definition (2.15) as follows

Ó ^ O ^ H ” (/), *7 (0 ], i = l , . . . . N (2.12)

where

(2.13)
k

(2.14)
k

(2.15)

^■functions. The operator P symbolically denotes taking the average over the



where

R = PS(tm, 0), e~w =Trk  (2.17)

and we took into account eqs.(2.9) and (2.11). If we set the auxiliary external 
source r| (t) to zero then the generalized Green function Gn (2.16) is reduced 
to the desired usual one G (2.15). However, the presence of the source r| (t) 
enables to generate the Gv by functional differentiations of the functional W 
defined by eq.(2.17) and find also the Gn of the &-th order as a functional de
rivative of the Gn of the (k -  1)—th order. Acting by the operator R on eq. (2.14) 
we find

G?('i ID = V 'i )  + X k Uj? , a?,1iJk f t....... h \ k - 1) (2.18)

Taking the functional derivatives we obtain hence the hierarchy of equations for 
the generalized Green functions Gn [9, 21]. Each equation of this chain contains 
a new unknown Green function of higher order and therefore up to this stage we 
have benefited a little. The next step is to make use of some approximation 
when the Green functions of higher orders are expressed through the lower 
cumulants. A known scheme of such a kind is a Hartree-Fock or Gaussian ap
proximation (see the discussion, e.g. [9] and references therein). The quantum 
field theory brings another procedure of constructing techniques for approxi
mate calculation of the Green functions by making use of the so-called mass 
and charge renormalizations [1-3, 9, 21]. All these approximations were for
mulated and analysed in statistical physics for many particles problems and 
therefore they should be reexamined as applied to the nonlinear dynamical 
systems with small numbers of degrees of freedom. This important problem will 
be discussed elsewhere.

3. GENERATING FUNCTIONALS AND FEYNMAN DIAGRAMS 
FOR CORRELATION FUNCTIONS

Now we introduce noise into the system under consideration, i.e. in this sec
tion we will deal, instead of eq. (1.1), with the stochastic differential equations

<i>i(t) = Fl[ę(t)] + $(t),  i = 7 ,-----N (3.1)



where %i, (t) is a Gaussian white noise with zero means and autocorrelation 
functions equal to2r v 5 (t -  f)  There are two reasons for doing this [22, 23]. 
First, real systems are never entirely free from the influence of noise and conse
quently a deterministic dynamics should, in principle, be considered always as 
a limit of a stochastic one as the noise amplitude tends to zero. Second, investi
gation of dynamical systems may be simplified by adding noise. Namely, intro
ducing noise into the system can serve as a kind of regularization procedure. 
This role may be particularly significant for the systems with strange attractors. 
After derivation of a perturbation theory we will return to the deterministic case 
by taking the limit T -» 0.

Following [18], we introduce the generating functional

is the Jacobian introduced to satisfy the normalization condition Zą [0, 0] = 1. 
The quantity k is the value of the step function 0(x) at the zero value of its 
argument, i.e. k  = 0(*). Usually the value k  = 1/2 is accepted and we follow this 
prescription as well (see [19] for more detail). The quantity p[ę  (to)] is the prob
ability distribution density for the initial state of the system. We are mainly in
terested in behaviour of the system near an attractor. Therefore we will take, for 
simplicity, the uniform distribution of the initial states inside a neighbourhood 
D of the attractor (the region D should be located in the basin of attraction) and 
zero elsewhere. Hence integration in the formulae below is performed over 
paths (functions) for which ę  (to) e D.

After the average over the stochastic variable £ we have the functional

Here



containing the effective action of Martin-Siggia-Rose [9]

S  [ ę  (/), <p (/)] = \d t  jp ,  (0  T jk <p (t ) - i  <pj (0  [<ji>j ( 0 -  

- F j [ i p  m  +  x S F j i v  (0 ] / $  <P, (o ]

(3.4)

Correlation functions can be found by differentiation of the above functional so as

5mZ[rnt), f?(p]
I TJ=fT=0 (3.5)

Let us separate the functional F[ę] on a linear term ^ y ie ld in g  a "free" dy
namics of the system and the rest W[$o] which describes interactions between 
the variables cpi, . . . ,<Pn and influences of the external signals (if any). The 
choice of the free dynamics term K ę  is affected by the attractor under consid
eration because the linearization of eqs.(3.1) should be carried out in a neigh
bourhood of a point from the region D around the attractor.

The action (3.4) is then written as S = S0 + Sw and the generating functional 
(3.3) can be represented in the form (see, e.g., [24] for a technique)

Z[r/(t), ?(/)] = expj -  ̂  J dtds
8 8 8 8 

C ik ( ' -  * ) t — TT + T - T7'G i k 0  - s ) -
&Pj( 0 S(pj(s) Sę^t) Vt (s)

xexp jjcfr [rjj (0, 9j (0+»fj (0 <Pj (0 ] -S w [(p (0, <P (0]}

x

(3.6)

(We have omitted in the first exponent the terms that yield no contribution into 
the correlation functions (15)). This equation generates two types of contrac
tions between the fields and consequently two types of lines in the diagrams. 
Namely, the quantity

Gjk (t, s) = (<pj (0  i (pk (5))o ---------------- ,

is a propagator and the quantity

G j k  U ,  s )  =  { ( P j  ( 0  (p t  ( j ) ) o =  7



is a correlator. Let

A ę  = (dl - K ) ę  = 0

be the equation of motion of the homogeneous linear conservative system in the 
deterministic limit. Then

G = A~\ C = A~l (2 _l

Consider, eq. (3.6). Expanding the second exponent into the power series, we 
have the equation which can be calculated with the aid of the diagrammatic 
perturbation theory as follows.

The functional = [<p, ę] is diagrammaticaly depicted by a point (vertex), 

the factor S£, = [q>, ę \ corresponds to a diagram containing k  such vertices. The 

operators (8 /8 ę C  8 / 8ę) and ( 8 /8 ę G 8 /8 ę ) produce lines connecting the

pairs of the vertices. Every such a line is associated with the correlator C or 
propagator G. These lines adjoin to the vertices by means of all possible ways. 
Thus, action o f the operators {8 /  8ęC  8 / 8ę) and ( 8 / 8q>G8 / 8<p)on the

factor Sy = [<p, <p] yields the set of diagrams which contain k vertices and an

arbitrary number of the lines C and G connecting the vertices by all possible 
variants. Every vertex with (m +n) lines is associated with the factor

A ( 8m+nSw [ę(t),ę (t)]
U- jU^ ' ....... ... 8 % ( t0 .. .8 v iJ t m) 8 ę h (sl)...8< pjn(.sn)

The arguments of this vertex function are convoluted with the corresponding 
arguments of the correlators and propagators associated with the lines.

To find the correlation functions with the aid of the diagrammatic perturba
tion theory, an infinite series of terms should be computed and summed up. This 
goal can partly be achieved by making use of the dimensional analysis and 
renormalization group approach (see, e.g., [25-27]). Indeed, if we consider the 
problem of finding the Fourier transform G(wi, . . . , wm \ m) of the correlation 
function (1.3) then we can take the so-called renormalization point /j which 
is an arbitrary parameter whose dimension coincides with that of the variables 
w i,. . . ,  w*. Then the dimensional analysis yields the equation



G (w„
f

wm\m) = ^ w r - H w,

r >
ę(/i)

W , L I

\

with some numerical constants D and y  and some dimensionless function c,(p) 
which is commonly identified with an effective coupling constant of the theory 
a s(Q ) at an energy scale Q  taken to be equal to the value fi. The function H  is 
obviously dimensionless.

The last equation can easily be recast into the following one

+ B — Y] G (w„ . . .  ,wm; ii, r \m ) \ ^  w =0  
a jJ. o r

which has a typical form of the renormalization group equation. Here G (w»i,... ,wm; 
/Ą r\m ) is such a function that reduces to the Fourier transform of the correlation 
function G when the variable r is taken to be equal to ę(/i). B{q) is a generalized 
Gell-Man-Low function and the parameter y is known as an anomalous 
dimension.

4. CONCLUSION

In conclusion, we have developed in this work a new method for treatment 
of the nonlinear dynamic systems using the quantum field theory. Such an 
approach would help to search analytically a deterministic chaos behaviour in 
neural networks.
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STRESZCZENIE

W artykule przedstawiono system dynamiczny opisywany układem równań różniczkowych. 
Wykazano, że metody kwantowej teorii pola mogą być użyte i prowadzą do rozwiązań analitycz
nych, a zatem również do otrzymywania jawnej postaci funkcji korelacji.


