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1. INTRODUCTION

There are many experimental data concerning the mean square radii 
(MSR) and electric quadrupole moments (Q2) of odd nuclei [1 , 2 ]. They 
show interesting systematics like odd-even staggering effect in MSR isotopic 
shifts, kink effect when crossing the magic neutron numbers or larger Q2  of 
odd nuclei.

The theoretical description of the odd system demands the information 
about the features of the even core and quantum numbers of the possible 
state occupied by the odd particle. The odd-odd nuclei are specially difficult 
to investigate, because of the coupling between the two odd neutron and 
proton systems. The first estimates with Nilsson single particle potential 
of the potential energies of odd nuclei showed [3] that the state with the 
experimental values of angular momentum fi,r occupied by the external 
particle is not always closest to the Fermi surface. It means that the 
parameters of the single particle hamiltonian should be revised in future 
calculation, or we should put the odd nucleon in the state corresponding to 
the proper experimental angular momentum and parity of even-odd nuclei.



2. THEORY

The potential energy of a nucleus by the macroscopic-microscopic me­
thod is

E = Elv + 6 Em\cr. (1 )

It consits of the liquid drop or droplet macroscopic term [4] and the 
microscopic correction 5Em\CT which contains the shell (Sî hell and pairing 
Simpair corrections for protons and neutrons

&Em\cr =  ((J^shell "I" ^£'pair)p "h (•̂ ■E'shell 4“ ^£pair)n • (2)

The shell correction is equal to the difference between the sum of single 
particle energies and the energy of the smoothed level scheme of the even 
core [5]

SEsheii =  2 (3)

The single particle energies e„ and wave functions \v) are obtained by the 
solution of the eigenproblem of hamiltonian with the average single particle 
potential. It is the Nilsson-Seo deformed harmonic oscillator potential [6 ] in 
our case

H0 \v) = eu\v) (4)
The quantum numbers describing single particle states are \v) =  |./Vn2 Afi), 
| — v) =  |A^n2A — fi). They are the quantum numbers of the oscillator 
asymptotic base: N  — harmonic oscillator number; nz — bosons number in 
z direction; A — orbital angular momentum; — the 2  component of the 
total angular momentum.

The smoothed level scheme is obtained with the average density p(e) 
calculated with the weight function j(e,e')

/+oo
p{e')j(e,e')de'.

-OO
(5)

The Fermi level ep is evaluated from the nucleon number conservation

J_ p{e)de = |
jyEVEN 
jyODD _  i (6)

The shell correction namely is calculated for the even core only, because 
the external (odd particle) single particle energy does not take part in the 
process of the Strutinski’s energy averaging. The pairing correction is the



difference between the sum of all the occupied single particle levels and BCS 
energy E^cs of the system, and the average pairing energy included already 
in the macroscopic part of energy

VF
^■Epair =  Ê BCS — ^   ̂ ~  (Epa;r) i (7)

v

where the summation goes over all the single particle states occupied by the 
nucleons (with even and odd time reversal parity). It is the same as in the 
formula (3) for the even system, but increased by the energy e„/ of the level 
\u') occupied by the odd particle for the odd system of protons or neutrons.

The BCS energy for odd system of N  protons or neutrons is (for details 
see Appendix)

£ bcsD =  2 £  ( e , - G y X 2 +  ( v - G K 2, ) - ^

+G(CVK , ) 2  +  G £ v;4 - (8 )
i/> 0

The occupation BCS factors Uu, Vu for v ^  v' and blocked energy gap A 
fulfill the BCS equations set

Ul = -  1  +
A -  GV?

2 ‘ yJ(e„-\-GVW + Al,)

x _ e„ -  A -  GV,?

V2  =  l - t / 2 ; (9)

*>(Wp' V yj{ev -  A -  GV,2 ) 2  +  A*,
IV — 1. (10)

The Fermi energy A is found from the equation

A V. = G Y ,
v>Q,v£v'

2_ _  __________ 1__________

G  ~  (ei/ -  a -  GV,2)2 +  A 2,

G is the pairing stregth [7].
The average pairing energy is [7]

( U )

( 12)



where p is the average single particle level density (5) and A denotes average 
energy gap of even core and is evaluated using the following equation:

1
(14)

2e is the width of the energy “window” above and below Fermi surface, where 
the pairing interaction acts. The microscopic correction to the potential 
energy of the odd system is then

S f £ P ?  =  2 £ )  e „ -  f  p(e)eie-\i,L'‘ +G'£v: (1 5 )
J~°° z i/ > 0

A 2 VF
+ 2  E  -̂GVfivZ+es-GVf,—̂+ G ( U 1/lVu,)2 - ' £ e ,  ■

The first term of this formula together with e„/ single particle energy 
of odd particle equals the sum of all the single particle states in the odd 
system so the microscopic correction for protons or neutrons for the odd 
system stays

=  2  E  e X - G  E  V ? -G V Z + G V }-^ -+ G (U v>Vu>)2

~ P(e)e d e ■ (16)

For the even system of one kind nucleons it is

* £ S n =  2 E  * X  ~ G E  K4  -  ̂  -  \  M 2  -  r  P(e)e de , (17)
v> 0  v> 0  U Z J-°°

where
A = G E ^ .  (18)

I'M)
After minimizing the potential energy of a whole nucleus versus the collective 
deformation parameters we get the equilibrium shape in which the average 
values Q\ of the multipole operators is calculated

Qo = r2 ,
Q2 — 2 r 2 P2 (cosi?).

(19)
(20)



using the formula

Qx = (AQ\W) + * £  W\Qx\v)vu2. (2i)

In eq. (20) P2 is the Legendre polynomial.
The diagonal matrix element (v'\Q\\v') is added only for the odd system. 

The electric moments are calculated for proton system only. Adding the 
correction for proton nonpoint distribution [8 ] we can get from eq. (2 1 ) the 
MSR value

(r2) =  %  +  0.64 fm2 (22)
/

which one can compare with the experimental data [1 , 2 ].

3. RESULTS

The calculation was done for the rare earth nuclei with the average mass 
A =  165 on the two dimensional deformation grid of Nilsson quadrupole 
£ =  —0 . 6  to 0 . 6  and hexadecapole £ 4  =  —0 . 1 2  to 0 . 1 2  parameters.

The Seo-Nilsson single particle potential [6 ] was used and the pairing 
strength G = 0.275 hu>o [7] for protons and neutrons was taken. The 
potential energy was calculated with liquid drop macroscpic part [9] and 
the unblocked (A27) version of pairing energy for odd system was used. The 
surfaces of potential energies and multipole moments were found and after 
energy minimization the equilibrium deformations were established. In these 
points the static multipole moments were calculated.

As an example of final results of our calculation we show the charge 
mean square radii of Nd isotopes.

In Figure 1  the charge MSR is compared with several sets of experimental 
data. One can see that the so-called model independent [2] values of the 
experimental MSR values (exp VI), (exp V2 ) and (exp V3) differ from 
each other up to 1.5 MeV. Their averaging done in Ref. [10] is denoted by 
diamonds. In fact only the MSR value of 142Nd was measured the other data 
were obtained by adding their experimental isotopic shifts [1] (ISMSR)

S(r2) =  (r2)A -  ( r Y  • (23)

In Figure 2 these ISMSR values are drawn for A' =  142.
The general slope of the microscopic curve is reproduced, but the odd- 

even staggering effect demands the inclusion of blocking effect and the 
dynamical calculation like in Ref. [11].



M e a n  s q u a r e  c h a r g e  r a d i u s  o f  N d

N

Fig. 1. The microscopic charge mean square radii in fm2 of Nd isotopes (solid line) 
compared with the experimental data taken from ref. [2 ], obtained by: three parameter 
Fermi model (exp Vi), two parameter Fermi model (exp V2 ), three parameter Gauss model

(exp V3 ) and from ref. [1 0 ]
Mikroskopowe średnie promienie kwadratowe ładunku w fm2 w izotopach Nd (li­
nia ciągła) porównane z danymi doświadczalnymi z artykułu [2], otrzymanymi w 3- 
parametrowym modelu Fermiego (exp Vi), dwuparametrowym modelu Fermiego (exp V2 ), 

3-parametrowym modelu Gaussa (exp V3 ) i z artykułu [10] (expn)

4. APPENDIX. THE BCS ENERGY OF ODD NUCLEONS SYSTEM

The BCS function $ bcs is the ground state of the even system of 
nucleons. A ground state of the odd system of nucleons is described by
the function

$ ° DD _  a + $ BCS f (Al)

where
^BCS — J"J {Uv + (A2)

i/ > 0

|0 ) is the particle vacuum state

a„|0 ) =  0 ; <0 |a+ =  0 . (A3)



Isotopic shifts of Nd mean square charge radius

Fig. 2. The microscopic isotopic shifts of the electric charge mean square radii in fm2 for 
Nd isotopes (solid line) compared with the experimental data [1 ] — diamonds 

Mikroskopowe przesunięcia izotopowe elektrycznego średniego promienia kwadratowego 
ładunku w fm2 dla izotopów Nd (linia ciągła) porównana z danymi doświadczalnymi [1]

— romby

The are the fermion annihilation and creation operators fulfilling
the anticommutations rules:

=  {a+,a+} =  0; {o+, aM} = 6 ^  . (A4)

The a„ ,a+  are the quasiparticle annihilation and creation operators fulfil­
ling the same anticommutation rules:

oumu} =  {a* , a j}  =  0  ; {a+, a M} =  <5„M . (A5)

and ensuring the conditions

<*i/|3>bcs) = 0; ( $ bcs |o^  =  0. (A6 )

The Bogolubov-Valatine transformation between the particle and quasipar­
ticle operators is



oî  — t/j/fflJ V„a_„ ;

a t v = Uva±v +  Vvav .

The odd system function can be then written

*°DD = <*t> II + V„a+a+,)|0) ,
i/>0

(A7)

(A8 )

where the \v') single particle state is for sure occupied by the odd particle,
i.e. blocked in BCS theory.

The nuclear hamiltonian with pairing interaction is

# — E  eua^av G ^   ̂ • (A9)

It can be easily expressed in quasiparticle space

H= 2 ^ ( e v - G V ^ V f - G  UvV ,\ + G E  V?
v > 0  \ i/> 0  /  u >0

+ E  I (e" )(U„—V?)+2G I E; w  ] U„Vv } { a i a v+ a t „ a - v)
vX) [ \n> 0  )

(A10)

+2 E  { (<tv-G V l)U vVv- G  E  W l-V ? )  > ( a + a t . + a . ^ ) . 
^ > 0  l \/i> 0  f  J

The terms responsible for the quasiparticle interaction are omitted here.
Denoting by # ,j the hamiltonian terms containing i operators of quasi­

particle creation and j  operators of quasiparticle annihilation we can write 
eq. (A10) in the following way

#  =  Hoo +  # n  +  tf 2 0  +  # 0 2  +  • • • (A ll)

Minimizing the energy of $ 0DD state versus V„ or U„ parameters, except v' 
state, with the particle conservation condition

($ ODD|#  -  AA|$odd) =  minimum , (A12)



where AT is the particle number operator:

<3II (A13)

we get blocked set of the BCS equations:

„ 2  i f ,  \
2  \  ^ - A - G V j ^  +  A2, /  ’

II H-1 1 (A14.A15)

A - 1 =  2 53 V2 ; A „,= G 53 £7„V„. (A16, A17)

The BCS energy can be written now

Ebcs = E o + Ev. , (A18)

where

E0 = 2 $ > „  -  GV2 )V2  -  G (52 UvVv ) 2  +  G 53  K* (A19)
i/>0 i/>0 i/>0

and

E v, =  (e„, -  GV?,)(U* -  V2,) +  2 G (S2 U ^ ) U vIVv, . (A2 0 )
M> 0

The energy i ? 0 0 1 3  can be also expressed in another way in the “blocked” or 
“quasiparticle” BCS form.

Putting
Ul -  V„2, =  1 -  2V2, (A2 1 )

and
Y ,U vV v = J 2  U„Vv + Uv.Vv. (A22)
i/ > 0

we get

pODD
•^BCS =2 £  (e„ -  G V„2) V„2 + (e„, -GV2,)+G 53  V t - ^ - + G U l V2,

i/>o ^
(A23)



Introducing

ev =  e„ -  A -  GVl  and A =  G £  UvV„
0

we have

Egg sD = 2  y .  ‘ - v ' + ^ + a T , v ' - ^ + i i S r h - ) ' ¥NX  (A24)v>0 ,ufr> v> 0  u  +

or

^BCsD= 2 ^ e ^ 2 + G ^  K4 - ^ + ^ + A ^ + ^ ^ 2  + N X .  (A25)
x/ > 0  V > 0  U

GAI,

All the (A18), (A23) and (A24) formulas for -Egcs* are equivalent and 
correct.

One can also omit the blocking effect in BCS equations, i.e. not exlude 
the v' state in the sums but keep the particle number condition in a proper, 
blocked way. Then we get the formula

rnODD
•^UNBLOCK 2 E e„Vf+eui+G ^  V„4- — +

G A 2

j/> 0 G 4(e2, +  A 2 )
+  NX

(A26)
or

piODD
^UNBLOCK ~ 2 £  e X + G  £  V * - ^ - + \ f  e2v,+ A2+N  A .

i/ > 0  v> 0

(A27)
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STRESZCZENIE

W niniejszym artykule podajemy metodę rachunku energii potencjalnych i statycz­
nych średnich promieni kwadratowych jąder nieparzystych. Do makroskopowej energii kro­
plowej dodaje się poprawkę powłokową Strutinskiego. Efekty łączenia nukleonów w pary 
uwzględniono metodą nadprzewodnictwa BCS.


