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1 . INTRODUCTION

In the seventies many theoretical calculations of the spontaneous fission 
half-lives Tsj  were done. Those calculations have been based mainly on the 
Ni l s s on  single particle potential [1] and the static [2-4] or the dynamic 
approximation [5-7]. A successful description of the spontaneous fission 
half-lives Tsj of experimentally known heaviest nuclei and the prediction 
of existence of the shape isomers were essential achievements of those 
investigations.

In particular, the theoretical model predicted well the Tsf of the fermium 
and nobelium isotopes [5, 7], e.g. a very fast decrease of the spontaneous 
fission half-lives with an increasing number of neutrons (N  > 152). But 
for the nuclei heavier than Z =  102, the agreement between experiment 
and theoretical estimates were essentially worse. Especially the Tsj  of the 
heaviest nuclei (Z  = 108,110) appeared to be too small.

It was a reason to search for a better theoretical description of these 
properties. A proper choice of the single-particle nuclear potential is of 
fundamental importance for a wide variety of nuclear calculations.



The papers [8 , 9] on the spontaneous fission and alpha decay half- 
lives have been based on another, more realistic single particle model: the 
Woods-Saxon potential [10]. The calculations were done for even-even [8 ] 
and odd-A and odd-odd [9] nuclei with atomic number Z  ^  104 in static 
approximation and with the phenomenological effective inertia only. Their 
promising results which agree with the experimental data for Z=104 isotopes 
were good stimulation to extend these calculations.

In recent years a number of theoretical papers have been devoted to 
estimate the properties of the heaviest nuclei with Woods-Saxon potential. 
In the paper [11] the two fission modes (static paths to fission) of the heavy 
fermium isotopes (so-called “bimodal” fission) were explained. The model 
used in this paper has been based on the Woods-Saxon potential in the 
multidimensional deformation space (/3>, A =  2  4- 9) and Strutinsky [1 2 , 1 ] 
shell correction method.

In the paper [13] the ground state properties of the heaviest nuclei 
(Z =  90 -T- 114) were analyzed in the three-dimensional deformation space 
{0\, A =  2,4,6). It was found there that the use of the larger deformation 
space significantly improves the description of the experimental data.

The paper [14] on the potential energy and fission barriers of superheavy 
nuclei predicted the fission lifetimes of nuclei with Z  = 112 130 in statical
model and with the phenomenological mass parameter. The authors have 
shown that the fission lifetimes are larger than the alpha-decay half-lives 
for most of the considered nuclides. In the paper [15] the authors give 
information about the shell structure, equilibrium deformations and binding 
energies of nuclei with atomic number Z  =  95 4- 111.

The paper [16] on the spontaneous fission half-lives gives Tsj  in dynami­
cal approximation of the even-even nuclei with proton number Z  104, for 
which the fission barriers are relatively simple and thin. The dynamical cal­
culations of Tsf have been done in the two-dimensional deformation space 
{0 2 , 0a) with the simultaneous minimization of the potential energy V in 
the remaining degrees of freedom {0 s, 0 5 , 0 e and/lg) and with the full mass 
tensor B in the adequate points. But as we demonstrate a detailed study 
of the T3f in deformation spaces of various dimensions has shown that this 
“combined” approximation is not good for lighter nuclei( Z  ~  100) conside­
red in the present paper. Therefore, in this paper we will consequently use 
only the full dynamical method. To minimize the action integral we have 
applied the dynamic-programming method [5].

In the present study we use a 4-dimensional collective space {02, 0a, Ap, 
A„). Except the shape deformations 02 and 0a, describing the elongation 
and neck of nuclei we add the pairing protons and neutrons gaps Ap and



A„ as new collective coordinates. It was done in order to get the coupling of 
the shape and pairing vibrations. The earlier microscopic calculations [17], 
in 3-dimensional (/?2 4 , Ap, An) model and with Nilsson potential show that 
this effect plays the important role in the estimation of the fission lifetime.

In order to examine the above effects we extended the dynamic pro­
gramming method up to four collective degrees of freedom; the calculations 
in more-dimensional collective space are practically impossible. The present 
paper is a continuation of our previous research [9] in which a theoretical es­
timate of the half-lives Taj  with Woods-Saxon potential has been obtained. 
We concentrate on the even-even nuclei with the atomic number Z=100- 
110. The half-lives Taj  are calculated both in the static and the dynamic 
approach.

The main differences with respect to the previous papers are:
• the full dynamical method of calculations of Tsj  (the static Taj  are 

given only for comparison);
• extension of the dynamic-programming method up to four collective 

degrees of freedom;
• inclusion of the pairing degrees of freedom (Ap and An), describing the 

coupling of the collective pairing vibrations with the fission mode;
• usage of the full microscopic adiabatic cranking model for mass tensor 

B instead of the phenomenological formulae.
The method of evaluation of the Taj  is described in Sect. 2. In Sect. 3 

the main results are presented. Conclusions are drawn in Sect. 4.

2 . THEORETICAL MODEL

We have used the single-particle deformed Woods-Saxon potential. As 
this potential is widely described in the literature (see e.g. [1 0 , 18]), we 
restricted ourselves to a brief presentation of the basic formulae only.

The Woods-Saxon potential consists of the central part Vcenti the spin- 
orbit term Vao and the Coulomb potential Vcw for protons:

V w s (r,p,s;/3) = VceDt(f; /?) +  Vao(r, p, s; /3) +  Vboul(c /?) (1)

The central part is defined by

Vb[l ±  k(N -  Z ) / (N  +  Z)\
Kent(r;/3) =

[ 1  +  exp(l(r; ())/a)] (2)



where parameter a describes the diffuseness of the nuclear surface, the 
plus (+) sign holding for protons, the minus ( - )  sign for neutrons and 
k = 0.86 [18]. The set of @\ parameters is denoted by (3. The function /(r, /?), 
describing the distance between a given point f  and the nuclear surface has 
been determined numerically [1 0 ].

The spin orbit potential was taken as

Vso{r,p, s; f3) = -A(VVcent x p) ■ s . (3)

The Coulomb potential for protons is assumed to be that of the uniform 
charge distribution with sharp edges. In our calculations we have used the 
single-particle W-S potential with the “universal” set of its parameters adju­
sted to the single-particle levels of all odd-A nuclei with A ^  40. The values 
of the 12 constants which determine the W-S potential parametrisation are 
specified in Ref. [18].

According to the Strutinsky model [12], the collective potential energy 
surface reads

V (q) = E macr(ę ) + ÓEshen(g) + ÓEpair(q) • (4 )

Here Ema,cr(q) is the macroscopic, smooth part energy. The argument 
"q" denotes the set of collective variables used in our calculations q = 
(/?2 ,/?4 , Ap, A„). Other two terms correspond to the shell correction 5.Esheii 
and the pairing correction 6 Epa,;r. The details of the smoothing procedure 
when evaluating £.Eshell and the calculations of SEp!l\T are completely analo­
gous to those described in Refs. [2-9].

Two models for the smooth part of the energy Em&cr, entering the 
formula (4) were applied. One is the liquid drop model [19] and the second 
one is the folded Yukawa plus exponential term [20, 21].

We include the pairing forces in BCS scheme with constant matrix 
element of interaction G independent of deformation:

HBcs = -G '£ ,P?Pa /, (5)
a, at

where P+ and Ptt are the creation and annihilation operators of the pair of 
particles conjugate to zero angular momentum: |a) ~  |vv) and \v) and \v) 
are the time reversed conjugate single particle states.

In the whole calculation we have used the pairing strength constants 
as follows [22]: for protons G zA  =  13.3 +  0.217(A^ — Z ) and for neutrons 
Gn A =  19.3 — 0.084(A — Z), where N , Z  and A are proton, neutron and 
mass number A =  N  + Z  respectively. The number of levels in the pairing



window equals to the number of particles (Z  or N)  and is counted from the 
bottom of the energy spectrum.

In the adiabatic cranking model the collective mass Bki(q) reads

Bkl(q) = 2h2 £
m̂ O

MgglOXOlgglm)
(^ 7 7 1  £o)3

(6)

where |m) and |0 ) denote the wave function of the excited and ground state 
of the nucleus, respectively; em and Eo are the corresponding energies.

After transforming to the quasi-particle representation and calculating 
of the derivative of the collective Hamiltonian % over the variables qk, the 
formulae takes the following form:

Bki(q) = 2 h2 £ ( Ą ) mi/(E , + (7)
H,u

where

=  -  E  ^ Ev  K w  +

for shape deformations and

A dX
E l W k

X dA
ElddJ ( 8)

( P k U ( A )  =  S l u / { e v  (9)

for pairing degrees of freedom. Here A and A are the gap energy and Fermi 
level of nuclei, are the pairing occupation probability factors, the Hs
is the single particle Hamiltonian and the EM is the quasi-particle energy 
corresponding to |/x) state.

We describe the fission process of a nucleus as a tunnelling through the 
collective potential energy barrier. Using the classical WKB approximation 
the probability of tunneling reads

P = ( l  +  eS) - 1, (1 0 )

where ___________________

s = i r  ^ 2[v{s) ~ Efisa] Beff{s)  ds • (u)
Here V  (s) is the collective potential energy of fissioning nucleus and B(s) 
is the effective collective inertia. Both collective functions correspond to



a motion along the fission path L(s). The integral limits si and s2 are 
the entrance and exit points, respectively. The value of 5/2 is the reduced 
Maupertuis action for the “motion” under the potential energy barrier.

The time Tsf  corresponds to the time in which the half of the number of 
fissioning nuclei disintegrated. It is inversely proportional to the tunnelling 
probability

Tsf — ~
In 2

Pn ( 12)

In this formula n is the number of assaults of the nucleus on the fission 
barrier in the time unit. This is frequently calculated from the zero point 
energy Ejias (for the quadrupole axial vibrations) which in turn is assumed 
to be the same for all considered nuclei and is equal to 0.5 MeV. This value 
corresponds to

assaults.

u_ _  _  0.5MeV c _  IQ2 0  3 8

2n h nch, ~  s (13)

3. RESULTS

We have used the four-dimensional collective space in the calculations: 
the deformations 0 2  and 0 4  describing the elongation and neck of nucleus 
and the pairing gaps Ap and An, describing the pairing collective degrees 
of freedom. The potential energy V(/32, 04, Ap, A„) and ten components 
of the mass tensor £?piP(02, 04, Ap, A„), where n,u  = 02,04, Ap, A„, were 
calculated microscopically in the following grid points:

& =  0.15(0.05)1.40 (26 points);
04 =  -0.08(0.04)0.40 (13 points);
Ap =  0.40(0.20)1.80 ( 8  points);
An =  0.40(0.20)1.80 ( 8  points).

The spontaneous fission half-lives were calculated in the static and the 
dynamic approach. The static value of the action integral S(Lstat) was 
obtained along the fission trajectory minimizing the potential energy only. 
In the dynamic approach the minimal value of S(Ldyn) was calculated by 
minimization of the action integral with respect to all possible trajectories 
in our 4-dimensional collective space (02ł04i Api An).

For illustration a general view of the potential energy surface and three 
components of the mass tensor Bp2p2, Bp2 p ,̂ # apap is shown in Figure 1 
for 254Fm  nucleus. At each grid point on the maps (02,04) the energy is



V (MeV) BWl (hz/MeV)
0.15  0.35  0.55 0 .75  0.05 1.15 1.35 0 .15  0.35 0.55 0.75 0.05 1.15 1.35

BW( (h 2 /MeV) Bm, (hz/MeV3)
0.15  0 .35  0.55 0.75  0.05 1.15 1.35 0.15 0.35 0.55 0.75 0.05 1.15 1.35
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Fig. 1 . Potential energy surface and Bp2p2, Bp2p4, BapA„ components of the mass
parameters tensor

Powierzchnie energii potencjalnej i składowych Bp2p2, Bp2p4, Bapa „ tensora parametrów
masowych

minimized versus Ap and A„ degrees of freedom. Figure 1  also illustrates the 
range of the deformation parameters ( / ? 2  and (3ą) considered in the present 
study.

In order to examine the role of the pairing degrees of freedom we have 
done the additional calculations in the 2 -dimensional deformation space (/?2 ? 
/3ą). The results are illustrated in the Figure 2 for the fermium isotopes. In 
the Figure we show the spontaneous fission half-lives Tsj  in 4-dimensional 
collective space (/32, /?4 , Ap, A„) (denoted by square) and in 2 -dimensional



FERMIUM (yuk .)

Neutron Number N
Fig. 2. Spontaneous fission half-lives of the fermium isotopes in (02, 04, Ap, A„) and

(0 2 , 0t)  collective spaces
Czasy życia ze względu na proces spontanicznego rozszczepienia izotopów fermu wyzna­

czone w przestrzeni kolektywnej: (02, 04, Ap, An) oraz (02,04)

(/?2, Pi) (denoted by up-triangle). For comparison, the experimental data 
are drawn by means of circles. The difference between the dynamical results 
of Tsj  in 4-dimensional space (with Ap and An as collective degrees of 
freedom) and 2 -dimensional space (where the proton and neutron pairing 
gaps are obtained in the BCS approximation), represents the dynamical 
effect of the pairing degrees of freedom in our model:

6 Tsf(AP,A„) =  |Ts/(/?2, /34, Ap, A„) -  Ta/(/?2 , Pa)\ ■ (14)

As it is seen the effect of the pairing degrees of freedom is very strongly 
isotopic dependent. For lighter isotopes the &Taj{Ap,A n) is about 0.5-1.0 
order of magnitude and increase to 4-5 orders of magnitude for heavier Fm 
isotopes. This effect has been defined similarly in [17] but as a difference 
between statical values of Tsj.  Although, as we show further, the statical 
values of Tsj  are too big in comparison with experimental data and strongly 
dependent on the dimensionless of the collective space we apply the 6 Tsj, 
calculated from dynamical model.

The investigations show that the pairing degrees of freedom are very 
important in calculations of the spontaneous fission lifetime therefore the



further investigations in this paper are done in 4-dimensional (/?2 i/?4 )Ap,An) 
space. For illustration in Figure 3 we show for 254Fm  the values of Ap 
and An through the path to fission in the BCS approximation (dashed 
line) and in dynamical approach i.e. when pairing degrees of freedom are 
included (solid line). We can see that the pairing gaps along path to fission 
in dynamical case are larger about 0.2-0.3 MeV in comparing with statical 
BCS approximation.
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Fig 3  The dynamical and statical paths to fission in collective space (0 2 , 0 4 , Ap, An) for
254 Fm

Dynamiczne i statyczne ścieżki do rozszczepienia uzyskane w przestrzeni kolektywnej
(/02,04, Ap, A„) dla 254Fm



BARRIERS

P2

Fig. 4. The dynamical and statical fission barrier for 2S4Fm 
Dynamiczna i statyczna bariera do rozszczepienia dla 254 Fm

EFFECTIVE INERTIA

P2

Fig. 5. The dynamical and statical effective mass parameter for 254Fm 
Dynamiczny i statyczny efektywny parametr masowy dla 254 Fm



Figures 4 and 5 demonstrate the fission barriers and the effective mass 
parameters along those both (static and dynamic) paths to fission. One can 
see that the dynamic approach gives larger values of the potential energy V 
and considerably smaller effective mass parameter Bejj .

Spontaneous fission half-lives for the heaviest even-even nuclei with 
atomic number Z  — 100 4-110 are shown in Figures 6-11. In the figures, the 
results of Tsj  obtained with the static approach are denoted with a triangle, 
the results of the dynamic calculations with a square and the experimental 
values with a circle. Logarithm fission half-lives are given in years. The right 
part of each figure corresponds to the calculations with folded Yukawa with 
exponential model [20, 21] and the left with the liquid drop model [19].

L I Q U I D - D R O P  Y U K A W A

Fig. 6 . Spontaneous fission half-lives for fermium isotopes 
Czasy życia ze względu na proces spontanicznego rozszczepienia izotopów fermu

The differences between static (triangle) and dynamic (square) estimates 
of the fission lifetimes increase from 2-4 orders of magnitude for light 
isotopes to 8-10 orders of magnitude for the heaviest ones. The static 
estimates are too big in comparison with the experimental data. On the 
contrary to the earlier papers [8 , 9] in which also the Woods-Saxon potential 
was used we can see that only the dynamical calculations may reproduce 
the experimental data. For nuclei with atomic numbers Z =  104 and 106 
the discrepancies between the results obtained with dynamic model and 
the experimental values of Tsj  are not larger than one order of magnitude. 
It is worthwhile to mention that there are only six experimental points 
for these nuclei, therefore the good agreement between the theoretical and 
experimental data is probably accidental.
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Fig. 7. The same as in 
To samo, co na rycinie

Y U K A W A

N e u t r o n  N u m b e r  N

ig. 6 for nobelium isotopes 
>, lecz dla izotopów noblu

L I Q U I D - D R O P  Y U K A W A

Fig. 8 . The same as in Fig. 6  for rutherfordium isotopes 
To samo, co na rycinie 6 , lecz dla izotopów ruterfordu
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LIQUID-DROP YUKAWA

N eu tro n  N um ber N N eutron  N u m b er  N

Fig. 9. The same as in Fig. 6  for seaborgium isotopes 
To samo, co na rycinie 6 , lecz dla izotopów siborgu

LIQUID-DROP YUKAWA

N eu tro n  N u m b er  N N eutron  N u m b e r  N

Fig. 1 0 . The same as in Fig. 6  for hassium isotopes 
To samo, co na rycinie 6 , lecz dla izotopów hassu



LIQUID-DROP YUKAWA

Fig. 11. The same cis in Fig. 6  for Z=110 isotopes 
To samo, co na rycinie 6 , lecz dla izotopów Z=110

A different situation is for the fermium and nobelium isotopes. In the 
figures we can see that for the lighter isotopes the theoretical and experi­
mental values of Tsj  are in relatively good agreement. But for the heavier 
isotopes (N  ^  154) the agreement is rather poor. In particular we do not 
observe the well known effect of decrease of the fission lifetimes for heavier 
isotopes with increase of the neutron numbers. The calculated Tsj  nearly 
increases monotonically with N.

It is well known that in the calculations of the fission lifetime the 
peculiarities of fission barrier play an essential role (height and positions 
of entrance and exit points, thickness of the barrier). Figure 12 presents 
the fission barriers of the fermium isotopes as a function of deformations 
along the static trajectory, determined by minimizing energy of nuclei by /?4, 
Ap and An degrees of freedom. Curves are labelled with respective neutron 
numbers. The left-hand scale corresponds to the lightest isotope (the bottom 
curve). Other curves are shifted upwards by 2 MeV, subsequently. The 
results presented in the figure show that the fission barrier heights first 
increase with neutron number N and next for N  ^  152 decrease with neutron 
number. The thickness of the barriers nearly monotonically increase with 
N. It explains why the theoretical estimates of Tsj  for fermium isotopes 
monotonically increase too.

This bad tendency is similar when using the different prescriptions for 
the smooth part of energy: the folded Yukawa plus exponential or the li­
quid drop model. So we can draw the conclusion that the increase of the



m

Fig. 1 2 . The fission barriers of the fer- 
mium isotopes. The left-hand scale cor­
responds to the bottom curve. Other 
curves are shifted upwards by 2 MeV 

Bariery na rozszczepienie izotopów 
fermu. Skala z lewej strony odnosi się

Fig. 13. The fission barriers for the 
fermium isotopes in (0 2 , 0 3 , 0 4 , 0 s) and

Bariery na rozszczepienie izotopów 
fermu uzyskane w przestrzeni kolek­

tywnej: (02,03,04,05) i (02,04)

(0 2 , 0 4 ) deformation spaces

do najniższej bariery. Pozostałe ba­
riery przesunięte zostały odpowiednio 

o 2 MeV do góry każda

theoretical Tsj  with N is connected rather with the poor shell corrections 
energy determined from Woods-Saxon potential.

In order to improve the strange results of T„f for Fm and No isotopes 
we have analyzed the dependence of the fission barrier on higher order of 
deformations.

Since the calculations taking into account the higher order of deforma­
tions require much computer time, we restrict ourself to the four dimensio­
nal spaces: (/?2, /?3 , 0 4 , fls), describing also the reflection asymmetry shapes 
of the nucleus and {/3 2 ,P4 ,P6 ,Ps) describing the shapes of nuclei with higher 
even-multipolarity deformations.

Figure 13 presents the fission barrier for fermium isotopes in two cases: 
with (/3 2 i /3a, /?4 , /3s) deformations (solid lines) and when only / ? 2  and /J4  

parameters are included (dashed lines). As it is seen when the reflection 
asymmetry is included, the barriers become shorter. The reduction of the 
barrier is very similar for each isotope.

Figure 14 shows the spontaneous fission half-lives for fermium isotopes 
calculated in the 4-dimensional {0 2 ,P3 iP4 ,0 s) and 2-dimensional (/?2 iAt) 
collective spaces. In the Figure the experimental data are denoted with full 
circles, Tsj obtained in 4-diraensional deformation space by



FERMIUM (yulcawa)

140 144 148 152 156 160 164
Neutron Number N

Fig. 14. The T„f for the fermium isotopes in (ft, f t , f t ,  f t )  and (ft, f t )  deformation
spaces

Czasy życia Tsf dla izotopów fermu wyznaczone w przestrzeni kolektywnej ( f t , f t , f t ,  f t )
i ( f t , f t )

up-triangles and values obtained in 2 -dimensional deformation space {fa,Pa) 
with down-triangles. The full symbols denote the dynamical results, the open 
statical ones. From the Figure we can see that in the dynamical calculations 
the results in 4- and 2-dimensional space are practically the same. It is seen 
that the spontaneous fission process prefers the shapes of nuclei with fa = 
fa =  0. The above conclusion confirm Figure 15 where the paths to fission 
are shown in fa profile. It is seen that the dynamical paths fa  and fa  are the 
straight lines while the statical ones give values different from zero. From 
this investigations one can draw that odd-multipolarity deformations fa  and 
fa do not play any role in the dynamical method of calculations of the Tsj 
in this region of nuclei.

In Figure 14 the statical values of Tsj  are too large in comparison with 
the experiment. Moreover it is seen that the statical values of Tsj  in 4- 
dimensional collective space lie about 2-4 orders of magnitude higher than 
the ones obtained in 2 -dimensional space, despite the fact that statical fission 
barriers in 4-dimensional space are shorter. Generally speaking it is caused 
by “the longer valley to fission” in the more rich collective space.
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In order to study the influence of the even-parity of deformations of 
higher multipolarity on the Taj  we have performed the calculations in the 
deformation spaces of various dimensions. Figure 16 shows the theoretical 
values of T3j calculated successively in the 4-dimensional deformation space 
(/?2 ,/?4 , /36 ,/3s) (up-triangles), in 3-dimensional (down-triangles)
and in the standard 2-dimensional (/?2 iAi) collective space (squares). The 
experimental data are denoted with full circles.

As previously, the open symbols denote the statical results, the full dy­
namical ones. One can see that only the deformation (3e changes the dyna-



FERMIUM (yukaw a)

140 144 148 152 156 160 164
Neutron Number N

Fig. 16. The Taf for the fermium isotopes in (^2, /34, /9e, /3a), (@2,Pt,Pt,) and (/32, /34)
deformation spaces

Czasy życia T , /  izotopów fermu uzyskane w przestrzeni kolektywnej ( P 2 ,  P i ,  P e ,  P & ) ,

( P 2, P i , p e ) oraz ( P 2 , P i )

mical results of the Tsj  (the calculations with and without /?g give almost 
the same results). The spontaneous fission half-lives with / ? 6  increase Ts/  
about 1-4 orders of magnitude. This effect improves a little the agreement 
with experiment, but for the nuclei with N ^  154 the difference between 
theory and experiment still reaches 4-6 orders of magnitude. We can conc­
lude that only /?e deformation, in addition to and /?4 , is important in 
the dynamical calculations of the Tsj. In this case the statical results of Taj 
in 4-dimensional collective space are larger about 1-5 orders of magnitude 
than the ones obtained in 3-dimensional space.

We are obliged to give some remarks about the statical method of the 
calculation of Tsf. From the above investigations of the spaces of various 
dimensions and various set of collective coordinates we can conclude that 
the statical results of the T3j are strongly dependent on the dimension of 
the collective space. Especially it is well illustrated in the case of the odd- 
parity deformations ( ^ 3  and ^ 5 ). Inclusion of these deformations leads to the 
considerable decrease of statical fission barriers for large deformations (see 
Figure 12), but after all the statical spontaneous fission half-lives becomes 
larger. It is caused, as we wrote above, by longer path to fission in the more



rich collective space. If in calculations of the Taj  we apply the “combined” 
[16] procedure e.g. the minimization of the potential energy in ( 0 3  and /3s) 
deformations and dynamical calculations in (/?2 > Pi) space it leads to the 
reduction of the fission barrier and together with the shorter subbarrier 
trajectory in (/32, @4 ) space to considerable reduction of the spontaneous 
fission half-life. Hence it appears that the combined method in which the 
energy is minimized in selected degrees of freedom may leads to errors.

In order to describe properly the spontaneous fission half-lives of the 
heaviest nuclei we have to revise the parameters of the Woods-Saxon 
potential, especially the dependence of the spin-orbit part on deformations 
and if it is possible to expand the dynamical-programming method to five 
dimensions: (f32,04, @6 , Ap, A„).

3. CONCLUSIONS

The following conclusions can be drawn from our investigations:

1. The investigations show that the pairing degrees of freedom are impor­
tant in calculations of the spontaneous fission lifetimes.

2. The model with Woods-Saxon potential gives the Taj  on a good 
agreement with experimental data for the nuclei with atomic number 
Z  ^  104.

3. The calculations of Taj  show that it is very important to use the 
dynamic path to fission.

4. The lifetimes Taj  evaluated along the static trajectories are too large 
in comparison with experimental data and strongly dependent from 
dimension of collective spaces.

5. The theoretical estimates of Taj  are weakly dependent on the model 
used as macroscopic smooth part of the potential energy.

6 . The odd-multipolarity deformations 03 and 05 do not play an impor­
tant role in the theoretical calculations of the spontaneous fission half- 
lives.

7. For higher even-multipolarity deformations only 0e is important in the 
calculations of the T$j-

8  The calculations of Taj  with Woods-Saxon potential do not reproduce 
the experimentally known effect of the decrease of the fission lifetimes 
with the increase neutron number for N  ^  152 for fermium and 
nobelium isotopes.



ACKNOWLEDGMENT

We are thankful to Professor Krzysztof Pomorski and Dr Andrzej Baran for many 
valuable discussions, suggestions and comments.

Work supported partly by KBN, Project No. 2P 03B 049 09.

PACS numbers: 25.85.Ca;21.60.Ev;21.10.Tg.

REFERENCES

[1] Nilsson S. G., Tsang C. F., Sobiczewski A., Szymański, Z., Wycech S., Gustafson C., 
Lamm I. L., Molier P. and Nilsson B., Nucl. Phys., A 131 (1969) 1 .

[2] Sobiczewski A., Szymański, Z., Wycech S., Nilsson S. G., Nix J. R., Tsang C. F., 
Gustafson C., Molier P. and Nilsson B., Nucl. Phys., A 131 (1969) 67.

[3] Randrup J., Tsang C. F., Molier P. and Nilsson S. G. Nucl. Phys., A 217 (1973)
221.

[4] Randrup J., Larsson S. E., Molier P., Nilsson S. G., Pomorski K. and Sobiczewski A., 
Phys. Rev., C 13 (1979) 229.

[5] Baran A., Łukasiak, A., Pomorski K. and Sobiczewski A., Nucl. Phys., A 361 (1981) 
83.

[6 ] Baran A., Phys. Lett., 76B (1978) 8 .
[7] Baran A., Pomorski K., Larsson S. E., Molier P., Nilsson S. G., Randrup J., 

Łukasiak, A. and Sobiczewski A., Proc. Ąth IAEA Symp. on Physics and Chemistry 
of Fission, Jiilich 1979.

[8 ] Boning K., Patyk Z., Sobiczewski A. and ćwiok S., Z. Phys., A 325 (1986) 479.
[9] Łojewski Z., Baran A., Z. Phys., A 329 (1988) 161.

[1 0 ] Dudek J., Wemer T., J. Phys., G 4 (1978) 1543.
[11] ćwiok S., Rozmej P., Sobiczewski A. and Patyk Z., Nucl. Phys., A 491 (1989) 281.
[12] Strutinsky V. M., Nucl. Phys., A 95 (1967) 420; Nucl. Phys., A 122 (1968) 1.
[13] Patyk Z., Sobiczewski A., Nucl. Phys., A 533 (1991) 132.
[14] ćwiok S., Sobiczewski A., Z. Phys., A 342 (1992) 203.
[15] ćwiok S., Hofmann S. and Nazarewicz W., Nucl. Phys., A 573 (1994) 356.
[16] Smolańczuk R., Skalski J. and Sobiczewski A., Phys. Rev., C 52 (19195) 1871.
[17] Staszczak A., Piłat S. and Pomorski K., Nucl. Phys., A 504 (1989) 589.
[18] ćwiok S., Dudek J., Nazarewicz W., Skalski J. and Werner T., Comp. Phys. Comm., 

46 (1987) 379.
[19] Myers V., Światecki W. J., Ark. Fys., 36 (1967) 343.
[20] Krappe H. J., Nix J. R. and Sierk A. J., Phys. Rev., C 2 0  (1979) 992.
[21] Molier P., Nix R. J. and Światecki W. J., Nucl. Phys., A 469 (1987) 1 .
[2 2 ] Dudek J., Majhofer A. and Skalski J., J. Phys., G 6  (1980) 447.
[23] Góźdź A., Pomorski K., Nucl. Phys., A 451 (1986) 1.



STRESZCZENIE

W artykule prezentowane są wyniki badań dotyczących czasów połowicznego zaniku 
Tsf w procesie spontanicznego rozszczepienia parzyto-parzystych jąder atomowych o licz­
bach masowych A =  100 -i- 110.

Do obliczeń czasów życia T,f wykorzystano półklasyczne przybliżenie WKB. Bariery 
na rozszczepienie wyznaczono w modelu mikroskopowo-makroskopowym z użyciem jedno- 
cząstkowego potencjału typu Woodsa-Saxona, natomiast parametry masowe w przybliże­
niu adiabatycznym ’’cranking”. Klasyczne trajektorie prowadzące do rozszczepienia poszu­
kiwane były w czterowymiarowej przestrzeni parametrów kolektywnych (02,04, Ap, An). 
Dwa pierwsze parametry i 0* opisują deformację kształtu jądra atomowego, a pozostałe 
Ap i An związane są z tzw. oddziaływaniem resztkowym ’’pairing”.

Prezentowane czasy życia T3 / wyznaczano w sposób w pełni dynamiczny z uwzględnie­
niem zarówno efektów pochodzących od barier potencjału, jak i parametrów mcisowych.


