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1. INTRODUCTION

The second-order nonlinear optical properties of asymmetric quantum 
wells (AQWs) (connected with the intersubband transitions) have been 
investigated experimentally and theoretically by several groups [1-3]. In 
most of the papers the authors neglect the dynamical screening. The effect 
of this screening on the linear response is well known. In the systems with 
parallel subbands it leads to a depolarization shift between the intersubband 
spacing and the intersubband infrared absorption resonance [3, 4].

Recently H ey m an et al. [3] have shown experimentally that in AQWs 
with two subbands the second harmonic generation (SHG) spectrum is also 
affected by the depolarization effect (DE) i.e. resonance in x ^ ( ^ u ) occurs 
when 2hu coincides with the depolarization shifted intersubband energy, and 
not the bar intersubband spacing. The authors also presented the analytical 
expression for Unfortunately, the details of the calculations were
not given. In this paper we present the detailed derivation of x ^H^lj) for 
a two-subband system and show that the expression reported in Ref. [3] is 
not fully correct.



Our analysis is based on the density matrix formulation in the electric 
dipole approximation developed in our previous paper [6]

2. DENSITY-MATRIX FORMALISM

We start from the one band effective mass Hamiltonian given by H = 
p2/2m-|-VscF(-z) where Vscf(z) is the self-consistent quantum well potential 
and m is the effective mass of the electron. The eigenfunction of this 
Hamiltonian can be written as | i, ky) =  exp(zkyry)<^;(z) where ky and ry are 
the wave vector and the position vector in the x-y plane. <Pi(z) is the solution 
of the one dimensional Schrodinger equation [p2/2m + V scF^)]^ =  Epp% 
where E, is the minimum energy of the subband.

The equation of motion for the matrix elements of the density matrix p 
[in the representation of | i,ky) (z =  1,2)] is given by

&Pij
dt

A  p
(i)

where V = V(z,t)  is the effective perturbing Hamiltonian, r ^ 1 is the 
relaxation rate from the zth subband, rj^1 =  r _1) is the off-
diagonal elastic dephasing rate and Ap =  p — where p(°) is the 
unperturbed density matrix. The diagonal element pj^ =  Pj^jku e(luals 
the thermal equilibrium occupation probability of the corresponding state. 
The equilibrium surface density of the electrons in the jth subband is given
b y ty  =  2 £  k|1/>!•?•

The electric field E(t) =  Eexp(—iu>t) +  c.c. of the pumped radiation 
modifies the density distribution of electrons. The change of the distribution 
An(z, f) can be expressed through the density matrix as

An(z, t) =  2 ^ T r [ A ^ ( z - z ' ) ] .  (2)
kii

Modification of the carrier distribution leads to the modification of the 
effective perturbing potential V (z, t). In the electrostatic limit this potential 
can be written in the form [5, 6]

2 f
V{z,t) = eE(t)z — —  j Z dz' [ Z dz"An(z", t) . (3)

6()£ J — oo J — oo
where e is the average dielectric constant neglecting any difference between 
the dielectric properties of the well and the barrier.



As in most of the previous papers we assume that the external pertur
bation y ext(z, t) = eE(t)z is small. Then the self-consistent solution of Eqs. 
(1-3) can be obtained perturbatively by expanding Ap, V and An in powers 
of E  as

A p = X > ( n ) , (4 )
n>0

v  =  Y  v(n) - (5 )
n>0

A n  =  Y , • (6 )
n > 0

Substituting Eqs. (4-6) into Eq. (1) and using the usual iterative method 
we get

dp
( n )

ij
dt k=l

( n )

Pa
(7 )

The surface electronic polarization of the AQW can also be a series expan
sion as Eqs. (4-6). We shall limit ourselves to the first two orders, i.e.,

Pa(t) =  €0x^{uj)Eexp(-iujt) +
+ e0x^'){2u)E2exp(-i2ut) + c.c. +  c0X(2)(0)l^l2 ,

(8)

where x ^ ( w)i and X ^(0) are Ihe lineari SHG and optical rectifi
cation coefficients (per unit surface), respectively.

If we neglect, for simplicity, the effects connected with rectification then 
Eqs. (4-6) can be rewritten in the forms

A/o(f) =  Y  P(n)(^n)exp(-zw„f) +  c.c., (9)
71=1,2

V(z, t) — Y  V ^ ( z ,u jn)exp(-iu>nt) +c.c. , (10)
71=1,2

A n (z ,t)=  Y  n n̂Hz ,u n) exp(-iujnt) +  c.c.,
71=1,2



where un =  nu,
The nth order surface electronic polarization [Pj7̂  (wn)] is given by [1]

/? n,(aO = ^ 2 5 > b < “>(<*,)*], (12)
‘° *1

From Eqs. (12) and (9) we find that the second-order surface electronic 
susceptibility can be written as

X{2)(2u ) = - 4 ^ 2 J 2 p^ ( 2^ =  ( 13)
e° E  k||,i,j

=  — -Z~\p(2\2u)z2l +  p $ ( 2(j)zn  +  p^2{2u)z22] ,
6o E z

where z{j =  Zji = <pi(z)z<pj(z)dz, p jf(v„) = 2 E k t PijHun), and

P(nHu n) = P u i^n )  + P{2 \ M -
Employing Eqs. (7-11) we find after some manipulations that

«(")/■ ' 1= hujn E{j T (1 \j

with

i f ’K )  =  +  -j—  £  L &r< *. OaE W .f°«°° kl
An)t

where
/ oo r f z IT/*2

dz / dz'<pi(z')<pj(z') / dz’ipk(z')ifi(z')
-oo LJ — oo J L«/ —oo

(14)

(15)

(16)

is the Coulomb matrix element, Eij =  E{ — Ej and r\j =  h r - 1.
One can see that Eqs. (14) and (15) form a set of algebraic equations 

for p \^ \u n). In the next sections we will solve them and calculate x ^ ( 2 u )-

3. SECOND-HARMONIC SUSCEPTIBILITY

The application of Eq. (14) to n — 1 yields



_,I ) H = J M lM Ni.
Eij — hu -  ir  Eij — hu — iv

e 2
2N12

(17)

where a =  1(1, 2; 1,2), Nij =  N{ -  Nj and T =  At"1.
The expression for p ^ {u ) ,  resulting from the above equation, can be 

written as

= (is)
e 22! -  {hu + i r )2 ’

where E2\ = E2i {1+ a ) x/2 is the depolarization shifted intersubband energy. 
Since PiV(w) =  Pt z{u ) =  0, Eq. (15) can be rewritten (for n =  1) in the

form

V iSV ) =  i ,2)p(1>H

=

fÔ oo
Eg -  {hu + zT)2

(19)

E%x -  {hu +  i r )2

where E[j = E’l J l  +  ̂ j (a -a^ )] and a,- =  ^ |^ ^ -^ .L (1 ,2 ; i , i ) .  (We assume 
that za ^  0.)

Taking n = 2 and assuming that Tn =  ^ 2  =  f  we get from Eqs. (14) 
and (17) the following relations

p[ ?(2u) = 7  P1 2  H I  =
2 hu +  ir

Vfi*{u)2N i 2  2(/>w + i f ) ^ 2! -  (ftw + ir)2] 
2hu + i f  [Eh -  {hu + i r )2]2

=(!)/ =(1)/
(20)

pg(2u;) =  - p (12i)(2ĉ ) , (21)

and for i ^  j

_(2)(2w) =  [VxHu) ~ )M ]pjj)H  -  a n ^ P i h 2^) ~ o t^p W {2 u )
— “I- 2hu} -|- i r

where a 12 =  a i — a 2.
The last equation leads to the following expression for p(2\ u )



P,2)(2") =  -  "  [V 'jj'H  "  W i’H l  (23)£,2! -  (2hu +  i v y

„ [ ( £ 2 1  +  +  ( £ 2 1  ~ 2fiu; -  ŚT)/?^^)]
e\x -  (2hu + i r )2

Substituting Eq. (23) into Eq. (13) we get the final expression for the 
second-harmonic susceptibility

X(2) (2o>)
—e32N l2z22 E 2X -  (hoj+iT)2 

to [E l  -  (hw + iryy

X ( z 2 2  -  2ll)
(2 h L j+ ir)(h u + ir)+ E l t hu>+ir

E l  -  (2hu+iF)2 + 2hu+ir

~ ~ ^21 — 9 Ofl 9 -----------------------
12 E l  -  (hui+iT)2

(2^w+if)(^w-|-ir)-(-E21 E l  -  (ftw+ir)2 hu+iT  
E l  -  {huj+iry E l  -  (2hu+ir)2 +  2hu+ir

(24)

(In obtaining this equation we have used relations (17) and (18))
In limit a, a; —¥ 0 (i.e., when the DE is neglected) Eq. (24) reduces to 

that derived by T s a n g  et al. [7].
For comparison, the expression reported by Hey m an et al. [3] is given

by

X(2) (2w ) - e 3N u z l { z 22 — zn)
£ 0

3(E21 +  sT)2[(E21 +  zr)2 - ( M 2]
[(E21 + zT)2 -  (2^ ) 2][(E21 + ; r )2 -  (hu)2]2

(25)

Eqs. (24) and (25) have a rather different form. However, the numerical 
values (for |x^(2w )|) resulting from them do not differ substantially if
we take into account the fact that usually T < C  E2\ and neglect, in 
our expression, the term containing a \2. We would like to note that the 
correction to the SHG connected with omitting this term can be substantial 
only when 2Tiu> «  E21 -
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STRESZCZENIE

W niniejszym artykule analizowano od strony teoretycznej wpływ efektu depolaryza- 
cyjnego na kształt widmowy x^2*(2u>) w dwupoziomowych studniach kwantowych. Otrzy
mane wyniki porównano z danymi literaturowymi.


