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On a functional equation

Abstract. The existence of continuous solutions of the functional equation

φ(φ(x)) = 2φ(x)− x + p

is studied.

The object of the paper is to investigate the functional equation of the
form

(1) φ(φ(x)) = 2φ(x)− x + p,

where φ is the unknown function and p a real constant. The equation (1) is a
particular case of the equation φ(φ(x)) = g(x, φ(x)), which has been studied
in [K1, p. 282], [K2], [K3] and [F]. Here we look for continuous solutions
of (1) defined on the whole real line R. We show that this equation has a
solution only when p = 0. In this case the only solutions are φ(x) = x + α,
α ∈ R.

To prove our main result we will need the following lemmas.
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Lemma 1. If φ : R → R is a continuous solution of (1), then φ is strictly
increasing and φ(R) = R.

Proof. Observe first that any solution of (1) (even not continuous) must
be a one-to-one map. Indeed, if φ satisfies (1) and φ(x) = φ(y), then

2φ(x)− x + p = φ(φ(x)) = φ(φ(y)) = 2φ(y)− y + p = 2φ(x)− y + p.

Thus x = y. Consequently, each continuous solution φ of (1) is either strictly
decreasing or strictly increasing. In the former case, one of the following
conditions holds.

1) lim
x→−∞

φ(x) = +∞ and lim
x→∞

φ(x) = −∞,

2) lim
x→−∞

φ(x) = +∞ and lim
x→∞

φ(x) = b > −∞,

3) lim
x→−∞

φ(x) = a > −∞ and lim
x→∞

φ(x) = −∞,

4) lim
x→−∞

φ(x) = a > −∞ and lim
x→∞

φ(x) = b > −∞, a > b.

We claim that any of 1) - 4) is not possible. Indeed, if 1) holds, then we
would get

lim
x→−∞

φ(φ(x)) = lim
x→−∞

(2φ(x)− x + p) = +∞.

On the other hand, by the continuity of φ,

lim
x→−∞

φ(φ(x)) = φ( lim
x→−∞

φ(x)) = −∞,

a contradiction. In case 2) we have

−∞ 6= φ(b) = φ( lim
x→+∞

φ(x)) = lim
x→∞

φ(φ(x)) = lim
x→∞

(2φ(x)− x + p) = −∞,

a contradiction. Similar analysis can be applied to show that neither 3) nor
4) is possible. This proves that φ cannot be strictly decreasing. So it is
strictly increasing. Our next claim is that φ(R) = R. The following four
cases are possible:

5) lim
x→−∞

φ(x) = −∞ and lim
x→∞

φ(x) = ∞,

6) lim
x→−∞

φ(x) = −∞ and lim
x→∞

φ(x) = b < ∞,

7) lim
x→−∞

φ(x) = a > −∞ and lim
x→∞

φ(x) = +∞,

8) lim
x→−∞

φ(x) = a > −∞ and lim
x→∞

φ(x) = b < ∞, a < b.

As above one can show that the last three cases give a contradiction. To
see that 5) is possible, we rewrite (1) in the form

φ(φ(x)) + x = 2φ(x) + p. �
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Lemma 2. Equation (1) has a solution if and only if p = 0.

Proof. If p = 0, then the identity function is a solution of (1). Suppose now
that (1) has a solution φ and let x0 ∈ R be arbitrarily chosen. If φ(x0) = x0,
then

x0 = φ(x0) = φ(φ(x0)) = 2φ(x0)− x0 + p = x0 + p.

Thus p = 0. If φ(x0) 6= x0, then we construct a sequence {xn}∞−∞ by setting
xn = φn(x0), where φn denotes the nth iterate of φ, that is,

φ0(x) = x, φn+1(x) = φ(φn(x)), φn−1(x) = φ−1(φn(x)),

where φ−1 is the inverse of φ. Since x1 6= x0, we have x1 = x0 +r with some
nonzero r. Then the sequence {xn}∞−∞ is, by Lemma 1, strictly increasing
if r > 0, and strictly decreasing if r < 0. Moreover, for each integer n,

xn+2 = 2xn+1 − xn + p,

or, equivalently,
xn+2 − xn+1 = xn+1 − xn + p.

By induction, we obtain

(2) xn = x0 + n

(
r +

(n− 1)
2

p

)
, n = 0,±1, . . . .

So, if p 6= 0, then for sufficiently large |n| the terms xn are either greater
than x0 or less then x0, which contradicts strict monotonicity of {xn}∞−∞.
Thus p = 0. �

Now we are ready to prove our main result.

Theorem. The only functions continuous on R and satisfying the equation

(3) φ(φ(x)) = 2φ(x)− x

are
φ(x) = x + α, α ∈ R.

Proof. It is clear that the identity function φ(x) = x is a solution of (3).
Now, suppose that φ, different from identity, is a solution of (3). Then there
exists an x0 such that φ(x0) 6= x0. As in Lemma 2 we define the sequence
{xn}∞−∞ with xn = φn(x0). By (2),

xn+1 = xn + r and xn = x0 + nr,
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where r = x1−x0 = φ(x0)−x0. Choose y0 from the open interval with end
points x0 and x1 and consider the sequence {yn}∞−∞ with yn = φn(y0). If
we set ρ = y1 − y0, then by (2),

yn+1 = yn + ρ and yn = y0 + nρ.

Since φ, as a solution of (3), is strictly increasing, we see that each yn is
between xn and xn+1. Note that the sequences {xn}∞−∞ and {yn}∞−∞ are
both either strictly decreasing or strictly increasing. Suppose, for example,
that the latter case holds. If ρ 6= r, then for some n, xn would not be in the
interval (xn, xn+1), a contradiction. An analogous reasoning can be applied
in the other case. Thus we see that ρ = r. Consequently, if φ is a continuous
solution of (3), then φ(x)− x = α with some real constant α. �
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