ANNALES

UNIVERSITATIS MARIAE CURIE - SKもODOWSKA
LUBLIN - POLONIA
VOL. LVII, 12
SECTIO A 2003

WOJCIECH ZYGMUNT

On a functional equation

Abstract. The existence of continuous solutions of the functional equation

$$
\phi(\phi(x))=2 \phi(x)-x+p
$$

is studied.

The object of the paper is to investigate the functional equation of the form

$$
\begin{equation*}
\phi(\phi(x))=2 \phi(x)-x+p \tag{1}
\end{equation*}
$$

where ϕ is the unknown function and p a real constant. The equation (1) is a particular case of the equation $\phi(\phi(x))=g(x, \phi(x))$, which has been studied in [K1, p. 282], [K2], [K3] and [F]. Here we look for continuous solutions of (1) defined on the whole real line \mathbb{R}. We show that this equation has a solution only when $p=0$. In this case the only solutions are $\phi(x)=x+\alpha$, $\alpha \in \mathbb{R}$.

To prove our main result we will need the following lemmas.

[^0]Lemma 1. If $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous solution of (1), then ϕ is strictly increasing and $\phi(\mathbb{R})=\mathbb{R}$.

Proof. Observe first that any solution of (1) (even not continuous) must be a one-to-one map. Indeed, if ϕ satisfies (1) and $\phi(x)=\phi(y)$, then

$$
2 \phi(x)-x+p=\phi(\phi(x))=\phi(\phi(y))=2 \phi(y)-y+p=2 \phi(x)-y+p
$$

Thus $x=y$. Consequently, each continuous solution ϕ of (1) is either strictly decreasing or strictly increasing. In the former case, one of the following conditions holds.

1) $\lim _{x \rightarrow-\infty} \phi(x)=+\infty$ and $\lim _{x \rightarrow \infty} \phi(x)=-\infty$,
2) $\lim _{x \rightarrow-\infty} \phi(x)=+\infty$ and $\lim _{x \rightarrow \infty} \phi(x)=b>-\infty$,
3) $\lim _{x \rightarrow-\infty} \phi(x)=a>-\infty$ and $\lim _{x \rightarrow \infty} \phi(x)=-\infty$,
4) $\lim _{x \rightarrow-\infty} \phi(x)=a>-\infty$ and $\lim _{x \rightarrow \infty} \phi(x)=b>-\infty, \quad a>b$.

We claim that any of 1) -4) is not possible. Indeed, if 1) holds, then we would get

$$
\lim _{x \rightarrow-\infty} \phi(\phi(x))=\lim _{x \rightarrow-\infty}(2 \phi(x)-x+p)=+\infty
$$

On the other hand, by the continuity of ϕ,

$$
\lim _{x \rightarrow-\infty} \phi(\phi(x))=\phi\left(\lim _{x \rightarrow-\infty} \phi(x)\right)=-\infty
$$

a contradiction. In case 2) we have
$-\infty \neq \phi(b)=\phi\left(\lim _{x \rightarrow+\infty} \phi(x)\right)=\lim _{x \rightarrow \infty} \phi(\phi(x))=\lim _{x \rightarrow \infty}(2 \phi(x)-x+p)=-\infty$,
a contradiction. Similar analysis can be applied to show that neither 3) nor 4) is possible. This proves that ϕ cannot be strictly decreasing. So it is strictly increasing. Our next claim is that $\phi(\mathbb{R})=\mathbb{R}$. The following four cases are possible:
5) $\lim _{x \rightarrow-\infty} \phi(x)=-\infty$ and $\lim _{x \rightarrow \infty} \phi(x)=\infty$,
6) $\lim _{x \rightarrow-\infty} \phi(x)=-\infty$ and $\lim _{x \rightarrow \infty} \phi(x)=b<\infty$,
7) $\lim _{x \rightarrow-\infty} \phi(x)=a>-\infty \quad$ and $\quad \lim _{x \rightarrow \infty} \phi(x)=+\infty$,
8) $\lim _{x \rightarrow-\infty} \phi(x)=a>-\infty \quad$ and $\quad \lim _{x \rightarrow \infty} \phi(x)=b<\infty, \quad a<b$.

As above one can show that the last three cases give a contradiction. To see that 5) is possible, we rewrite (1) in the form

$$
\phi(\phi(x))+x=2 \phi(x)+p
$$

Lemma 2. Equation (1) has a solution if and only if $p=0$.

Proof. If $p=0$, then the identity function is a solution of (1). Suppose now that (1) has a solution ϕ and let $x_{0} \in \mathbb{R}$ be arbitrarily chosen. If $\phi\left(x_{0}\right)=x_{0}$, then

$$
x_{0}=\phi\left(x_{0}\right)=\phi\left(\phi\left(x_{0}\right)\right)=2 \phi\left(x_{0}\right)-x_{0}+p=x_{0}+p .
$$

Thus $p=0$. If $\phi\left(x_{0}\right) \neq x_{0}$, then we construct a sequence $\left\{x_{n}\right\}_{-\infty}^{\infty}$ by setting $x_{n}=\phi^{n}\left(x_{0}\right)$, where ϕ^{n} denotes the nth iterate of ϕ, that is,

$$
\phi^{0}(x)=x, \quad \phi^{n+1}(x)=\phi\left(\phi^{n}(x)\right), \quad \phi^{n-1}(x)=\phi^{-1}\left(\phi^{n}(x)\right)
$$

where ϕ^{-1} is the inverse of ϕ. Since $x_{1} \neq x_{0}$, we have $x_{1}=x_{0}+r$ with some nonzero r. Then the sequence $\left\{x_{n}\right\}_{-\infty}^{\infty}$ is, by Lemma 1 , strictly increasing if $r>0$, and strictly decreasing if $r<0$. Moreover, for each integer n,

$$
x_{n+2}=2 x_{n+1}-x_{n}+p
$$

or, equivalently,

$$
x_{n+2}-x_{n+1}=x_{n+1}-x_{n}+p .
$$

By induction, we obtain

$$
\begin{equation*}
x_{n}=x_{0}+n\left(r+\frac{(n-1)}{2} p\right), \quad n=0, \pm 1, \ldots \tag{2}
\end{equation*}
$$

So, if $p \neq 0$, then for sufficiently large $|n|$ the terms x_{n} are either greater than x_{0} or less then x_{0}, which contradicts strict monotonicity of $\left\{x_{n}\right\}_{-\infty}^{\infty}$. Thus $p=0$.

Now we are ready to prove our main result.
Theorem. The only functions continuous on \mathbb{R} and satisfying the equation

$$
\begin{equation*}
\phi(\phi(x))=2 \phi(x)-x \tag{3}
\end{equation*}
$$

are

$$
\phi(x)=x+\alpha, \quad \alpha \in \mathbb{R} .
$$

Proof. It is clear that the identity function $\phi(x)=x$ is a solution of (3). Now, suppose that ϕ, different from identity, is a solution of (3). Then there exists an x_{0} such that $\phi\left(x_{0}\right) \neq x_{0}$. As in Lemma 2 we define the sequence $\left\{x_{n}\right\}_{-\infty}^{\infty}$ with $x_{n}=\phi^{n}\left(x_{0}\right)$. By (2),

$$
x_{n+1}=x_{n}+r \quad \text { and } \quad x_{n}=x_{0}+n r
$$

where $r=x_{1}-x_{0}=\phi\left(x_{0}\right)-x_{0}$. Choose y_{0} from the open interval with end points x_{0} and x_{1} and consider the sequence $\left\{y_{n}\right\}_{-\infty}^{\infty}$ with $y_{n}=\phi^{n}\left(y_{0}\right)$. If we set $\rho=y_{1}-y_{0}$, then by (2),

$$
y_{n+1}=y_{n}+\rho \quad \text { and } \quad y_{n}=y_{0}+n \rho .
$$

Since ϕ, as a solution of (3), is strictly increasing, we see that each y_{n} is between x_{n} and x_{n+1}. Note that the sequences $\left\{x_{n}\right\}_{-\infty}^{\infty}$ and $\left\{y_{n}\right\}_{-\infty}^{\infty}$ are both either strictly decreasing or strictly increasing. Suppose, for example, that the latter case holds. If $\rho \neq r$, then for some n, x_{n} would not be in the interval $\left(x_{n}, x_{n+1}\right)$, a contradiction. An analogous reasoning can be applied in the other case. Thus we see that $\rho=r$. Consequently, if ϕ is a continuous solution of (3), then $\phi(x)-x=\alpha$ with some real constant α.

References

[F] Fort, Jr, M.K., Continuous solutions of a functional equation, Ann. Polon. Math. 13 (1963), 205-211.
[K1] Kuczma, M., Functional Equation in a Single Variable, PWN, Warszawa, 1968.
[K2] Kuczma, M., On monotonic solutions of a functional equation I, Ann. Polon. Math. 9 (1960), 295-297.
[K3] Kuczma, M., On monotonic solutions of a functional equation II, Ann. Polon. Math. 10 (1961), 161-166.

Faculty of Mathematics and Natural Sciences KUL
Al. Racławickie 14
20-950 Lublin, Poland
e-mail: wzygmunt@ kul.lublin.pl
Received November 28, 2001

[^0]: 2000 Mathematics Subject Classification. 39B22.
 Key words and phrases. Functional equation.

