ANNALES

UNIVERSITATIS MARIAECURIE - SKもODOWSKA
 LUBLIN - POLONIA

VOL. LVII, 10
SECTIO A 2003

JOANNA SZYSZKOWSKA

On upper semicontinuity of geometric difference of multifunctions

Abstract

The short proof of upper semicontinuity of geometric difference of multifunctions is given.

Let X and Y be two topological spaces. A multifunction (or a set-valued $\operatorname{map}) F: X \rightarrow Y$ is a mapping from X to the nonempty subsets of Y; thus, for each $x \in X, F(x)$ is a nonempty set in Y.

We say that F is upper semicontinuous (usc) at $x \in X$ if for any open set V containing $F(x)$ there exists a neighborhood U of x such that $F(y) \subset V$ for any $y \in U . F$ is usc on X if it is usc at each $x \in X$.

We say that F is lower semicontinuous (lsc) at $x \in X$ if for any open set V which meets $F(x)$ there exists a neighborhood U of x such that $F(y) \cap V \neq \emptyset$ for every $y \in U . F$ is lsc on X if it is lsc at any $x \in X$.

If a multifunction $F: X \rightarrow Y$ is compact-valued, i.e. if for every $x \in X$, the set $F(x)$ is a compact set in Y, and if X and Y satisfy the "first axiom of countability", then we have the following useful conditions, which are equivalent to usc and lsc, respectively.

[^0]Proposition 1. ([4, Proposition 4.1, p. 48]). A multifunction $F: X \rightarrow Y$ is usc at $x \in X$ if and only if for any sequence $\left\{x_{n}\right\}$ in X converging to x and for any sequence $\left\{y_{n}\right\}$ of elements of $F\left(x_{n}\right)$ there exists a subsequence $\left\{y_{n_{k}}\right\}$ of $\left\{y_{n}\right\}$ converging to $y \in F(x)$.

Proposition 2. ([3, Proposition II-2-1, p. 15]). A multifunction $F: X \rightarrow$ Y is lsc at $x \in X$ if and only if for any $y \in F(x)$ and for any sequence $\left\{x_{n}\right\}$ in X converging to x there exists a sequence $\left\{y_{n}\right\}$ of elements of $F\left(x_{n}\right)$ converging to y.

Now let Y be a linear topological space. For $A \subset Y, B \subset Y$ and $\lambda \in \mathbb{R}$ we put

$$
\begin{gathered}
A+B=\{a+b: a \in A, b \in B\}, \\
\lambda A=\{\lambda a: a \in A\}, \\
A-B=A+(-1) B .
\end{gathered}
$$

The geometric difference (or Minkowski subtraction [1], [2], [5]) of the set A and B is denoted by $A \stackrel{*}{*} B$ and defined by setting

$$
A \stackrel{*}{ } B=\{y \in Y: y+B \subset A\} .
$$

Remark. It is worth noting here that the set $A \stackrel{*}{*} B$ is different from $A-B$.

In [1] the following theorem is proved
Theorem 1. ([1, Theorem 2.1, p. 165]). Let X be a complete metric space, Y a separable Banach space and let $F, G: X \rightarrow Y$ be weakly compact-valued multifunction. If $F: X \rightarrow Y$ is weakly usc, G weakly lsc and a multifunction $H: X \rightarrow Y$ is defined by $H(x)=F(x) \stackrel{*}{-} G(x) \neq \emptyset$ for any $x \in X$, then the multifunction H is weakly usc, provided $H(X)$ is contained in some weakly compact set in Y.

We will give a certain generalisation of this result. Moreover, our proof seems to be shorter and simpler.

Theorem 2. Let X be a topological space with "the first axiom of countability", Y a metrisable linear topological space and let $F, G: X \rightarrow Y$ be compact-valued multifunctions. If F is use, G is lsc then the multifunction $H: X \rightarrow Y$ defined by $H(z)=F(x)^{\underline{*}} G(x) \neq \emptyset$ for any $x \in X$ is usc.

Proof. Obviously the multifunction $H=F \stackrel{*}{\underline{*}} G$ is compact-valued. Therefore, by Proposition 1, it suffices to show that for every $x \in X$ and for any sequence $\left\{x_{n}\right\} \subset X$ converging to x and for any sequence $\left\{y_{n}\right\} \subset Y$ such
that $y_{n} \in H\left(x_{n}\right)$, there exists a subsequence $\left\{y_{n_{k}}\right\}$ of $\left\{y_{n}\right\}$ which converges to $y \in H(x)$.

So, let $x \in X$ and suppose that $\left\{x_{n}\right\} \subset X$ converges to x. Let $\left\{y_{n}\right\} \subset Y$ be such that $y_{n} \in H\left(x_{n}\right)$. We have $y_{n}+G\left(x_{n}\right) \subset F\left(x_{n}\right)$. From lower semicontinuity of G at x it follows (by Proposition 2) that for each $z \in G(x)$ there exists a sequence $\left\{z_{n}\right\} \subset Y$ with $z_{n} \in G\left(x_{n}\right)$ which converges to z. Thus we have $u_{n}=y_{n}+z_{n} \in F\left(x_{n}\right)$. Since F is usc at x, there exists a subsequence $\left\{u_{n_{k}}\right\}$ of $\left\{u_{n}\right\}$ converging to $u \in F(x)$.

Hence the subsequence $\left\{y_{n_{k}}\right\}$ of $\left\{y_{n}\right\}$, where $y_{n_{k}}=u_{n_{k}}-z_{n_{k}}$, converges to $y=u-z$ and $y+z=u \in F(x)$.

Since $z \in G(x)$ was chosen arbitrarily, $y+G(x) \subset F(x)$, which gives $y \in F(x) \stackrel{*}{*} G(x)=H(x)$.

By Proposition 2, the multifunction $H=F \stackrel{*}{ } G: X \rightarrow Y$ is usc at x and the proof of Theorem 2 is complete.

References

[1] Balašov, M.V., On geometric difference of set-valued mappings, Mat. Zametki 70 (2001), no. 2, 163-169.
[2] Chikrii, A., Conflict-Controlled Processes, Kluver Academic Publishers, Dordrecht-Boston-London, 1992, pp. 163-169.
[3] Delahaye, J. P., J. Denel, Equivalences des continuités des applications multivoques dans des espaces topologiques, Publication n ${ }^{o}$ 111, Laboratoire de Calcul, Université de Lille, 1978.
[4] Hukuhara, M., Sur l'Application Semi-continue dont la Valeur est un Compact Convexe, Funkcial. Ekvac. 10 (1967), 43-66.
[5] Pontryagin, L. S., Linear Differential Games of Pursuit, Matem. Sbornik 112 (1980), no. 3, 307-330.

Catholic University of Lublin
Faculty of Mathemathics and Natural Sciences
Konstantynów 1H
20-708 Lublin, Poland
Received November 18, 2003

[^0]: 2000 Mathematics Subject Classification. 47H04, 49J53.
 Key words and phrases. Lower and upper semicontinuous multifunction, geometric difference of multifunctions.

