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On upper semicontinuity of geometric difference

of multifunctions

Abstract. The short proof of upper semicontinuity of geometric difference
of multifunctions is given.

Let X and Y be two topological spaces. A multifunction (or a set-valued
map) F : X → Y is a mapping from X to the nonempty subsets of Y ; thus,
for each x ∈ X, F (x) is a nonempty set in Y .

We say that F is upper semicontinuous (usc) at x ∈ X if for any open set
V containing F (x) there exists a neighborhood U of x such that F (y) ⊂ V
for any y ∈ U . F is usc on X if it is usc at each x ∈ X.

We say that F is lower semicontinuous (lsc) at x ∈ X if for any open
set V which meets F (x) there exists a neighborhood U of x such that
F (y) ∩ V 6= ∅ for every y ∈ U . F is lsc on X if it is lsc at any x ∈ X.

If a multifunction F : X → Y is compact-valued, i.e. if for every x ∈ X,
the set F (x) is a compact set in Y , and if X and Y satisfy the ”first axiom
of countability”, then we have the following useful conditions, which are
equivalent to usc and lsc, respectively.
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Proposition 1. ([4, Proposition 4.1, p. 48]). A multifunction F : X → Y
is usc at x ∈ X if and only if for any sequence {xn} in X converging to x
and for any sequence {yn} of elements of F (xn) there exists a subsequence
{ynk

} of {yn} converging to y ∈ F (x).

Proposition 2. ([3, Proposition II-2-1, p. 15]). A multifunction F : X →
Y is lsc at x ∈ X if and only if for any y ∈ F (x) and for any sequence {xn}
in X converging to x there exists a sequence {yn} of elements of F (xn)
converging to y.

Now let Y be a linear topological space. For A ⊂ Y,B ⊂ Y and λ ∈ R
we put

A + B = {a + b : a ∈ A, b ∈ B},

λA = {λa : a ∈ A},

A−B = A + (−1)B.

The geometric difference (or Minkowski subtraction [1], [2], [5]) of the
set A and B is denoted by A ∗ B and defined by setting

A ∗ B = {y ∈ Y : y + B ⊂ A}.

Remark. It is worth noting here that the set A ∗ B is different from
A−B.

In [1] the following theorem is proved

Theorem 1. ([1, Theorem 2.1, p. 165]). Let X be a complete metric space,
Y a separable Banach space and let F,G : X → Y be weakly compact-valued
multifunction. If F : X → Y is weakly usc, G weakly lsc and a multifunction
H : X → Y is defined by H(x) = F (x) ∗ G(x) 6= ∅ for any x ∈ X, then the
multifunction H is weakly usc, provided H(X) is contained in some weakly
compact set in Y .

We will give a certain generalisation of this result. Moreover, our proof
seems to be shorter and simpler.

Theorem 2. Let X be a topological space with ”the first axiom of count-
ability”, Y a metrisable linear topological space and let F,G : X → Y be
compact-valued multifunctions. If F is use, G is lsc then the multifunction
H : X → Y defined by H(z) = F (x) ∗ G(x) 6= ∅ for any x ∈ X is usc.

Proof. Obviously the multifunction H = F ∗ G is compact-valued.
Therefore, by Proposition 1, it suffices to show that for every x ∈ X and for
any sequence {xn} ⊂ X converging to x and for any sequence {yn} ⊂ Y such
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that yn ∈ H(xn), there exists a subsequence {ynk
} of {yn} which converges

to y ∈ H(x).
So, let x ∈ X and suppose that {xn} ⊂ X converges to x. Let {yn} ⊂ Y

be such that yn ∈ H(xn). We have yn + G(xn) ⊂ F (xn). From lower
semicontinuity of G at x it follows (by Proposition 2) that for each z ∈ G(x)
there exists a sequence {zn} ⊂ Y with zn ∈ G(xn) which converges to z.
Thus we have un = yn + zn ∈ F (xn). Since F is usc at x, there exists a
subsequence {unk

} of {un} converging to u ∈ F (x).
Hence the subsequence {ynk

} of {yn}, where ynk
= unk

− znk
, converges

to y = u− z and y + z = u ∈ F (x).
Since z ∈ G(x) was chosen arbitrarily, y + G(x) ⊂ F (x), which gives

y ∈ F (x) ∗ G(x) = H(x).
By Proposition 2, the multifunction H = F ∗ G : X → Y is usc at x

and the proof of Theorem 2 is complete. �
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