ANNALES

UNIVERSITATIS MARIAE CURIE - SKもODOWSKA
 LUBLIN - POLONIA

VOL. LVII, 8 SECTIO A 2003

PIOTR PIKUTA and WITOLD RZYMOWSKI

Plane convex sets via distributions

Abstract

We will establish the correspondence between convex compact subsets of \mathbb{R}^{2} and 2π-periodic distributions in \mathbb{R}. We also give the necessary and sufficient condition for the positively homogeneous extension $\widetilde{u}: \mathbb{R}^{n} \rightarrow$ \mathbb{R} of $u: S^{n-1} \rightarrow \mathbb{R}$ to be a convex function.

1. Introduction. We say that a 2π-periodic function $p: \mathbb{R} \rightarrow \mathbb{R}$ is a support function if there exists a convex compact set $C \subset \mathbb{R}^{2}$ such that

$$
p(t)=\max _{x \in C}\langle x, e(t)\rangle, t \in \mathbb{R},
$$

where $e(t)=(\cos t, \sin t), t \in \mathbb{R}$ and $\langle x, y\rangle$ stands for the scalar product of vectors $x, y \in \mathbb{R}^{2}$.

We refer to Rademacher's test for convexity (see [7], and [1, p. 28]) as a necessary and sufficient condition for p to be a support function. There are also other tests, one of them was proposed by Gelfond ([5, p. 132]), and another one by Firey ([3, p. 239, Lemma]).

[^0]GELFOND's TEST. A 2π-periodic function $p: \mathbb{R} \rightarrow \mathbb{R}$ is a support function iff

$$
\operatorname{det}\left[\begin{array}{lll}
\cos t_{1} & \sin t_{1} & p\left(t_{1}\right) \\
\cos t_{2} & \sin t_{2} & p\left(t_{2}\right) \\
\cos t_{3} & \sin t_{3} & p\left(t_{3}\right)
\end{array}\right] \geq 0
$$

for all $0 \leq t_{1} \leq t_{2} \leq t_{3} \leq 2 \pi$, such that $t_{2}-t_{1} \leq \pi$ and $t_{3}-t_{2} \leq \pi$.
Let

$$
S^{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}
$$

We say that $p: S^{n-1} \rightarrow \mathbb{R}$ is a support function if there exists a convex compact set $C \subset \mathbb{R}^{n}$ such that

$$
p(u)=\max _{x \in C}\langle x, u\rangle, u \in S^{n-1}
$$

Firey's Test. Let $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a fixed orthonormal basis in \mathbb{R}^{n}. A function $p: S^{n-1} \rightarrow \mathbb{R}$ is a support function iff

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{cccc}
\left\langle u_{1}, a_{1}\right\rangle & \ldots & \left\langle u_{1}, a_{n}\right\rangle & p\left(u_{1}\right) \\
\ldots & \ldots & \ldots & \ldots \\
\left\langle u_{n}, a_{1}\right\rangle & \ldots & \left\langle u_{n}, a_{n}\right\rangle & p\left(u_{n}\right) \\
\left\langle u_{n+1}, a_{1}\right\rangle & \ldots & \left\langle u_{n+1}, a_{n}\right\rangle & p\left(u_{n+1}\right)
\end{array}\right] \\
& \times \operatorname{det}\left[\begin{array}{ccc}
\left\langle u_{1}, a_{1}\right\rangle & \ldots & \left\langle u_{1}, a_{n}\right\rangle \\
\ldots & \ldots & \ldots \\
\left\langle u_{n}, a_{1}\right\rangle & \ldots & \left\langle u_{n}, a_{n}\right\rangle
\end{array}\right] \leq 0
\end{aligned}
$$

for all $u_{1}, \ldots, u_{n+1} \in S^{n-1}$, such that $u_{n+1}=\sum_{i=1}^{n} t_{i} u_{i}, t_{i} \geq 0, i=$ $1,2, \ldots, n$.

In this paper we propose another test for convexity involving distributional derivatives of the function p.
2. Main result. In this section we will present the main result of the paper.

The symbol $D^{\prime}(\mathbb{R})$ will stand for the space of all distributions in \mathbb{R} and \mathcal{L}^{1} will denote the Lebesgue measure in \mathbb{R}. Distribution theory will be the main tool used in the sequel.

Theorem 1. Let $C \subset \mathbb{R}^{2}$ be a nonempty convex compact subset of \mathbb{R}^{2}. Define $p_{C}: \mathbb{R} \rightarrow \mathbb{R}$,

$$
p_{C}(t)=\max _{x \in C}\langle x, e(t)\rangle
$$

where $e(t)=(\cos t, \sin t), t \in \mathbb{R}$. Under these assumptions, the distribution $p_{C}+p_{C}^{\prime \prime}$ is a 2π-periodic non-negative Radon measure in \mathbb{R}.

Theorem 2. Given a 2π-periodic non-negative Radon measure ϱ in \mathbb{R}, satisfying the condition

$$
\int_{0}^{2 \pi} e(t) \varrho(d t)=0 .
$$

Let $p \in D^{\prime}(\mathbb{R})$ be a distributional solution of the differential equation

$$
\begin{equation*}
p+p^{\prime \prime}=\varrho . \tag{1}
\end{equation*}
$$

Under these assumptions
(a) p is a 2π-periodic Lipschitz function,
(b) for each $t \in \mathbb{R}$,

$$
p(t)=\max _{x \in C_{p}}\langle x, e(t)\rangle
$$

where C_{p} is the closure of the convex hull of all points of the form

$$
p(t) e(t)+p^{\prime}(t) e^{\prime}(t),
$$

(c) if $q \in D^{\prime}(\mathbb{R})$ is another solution of (1) then

$$
C_{q}=C_{p}+w
$$

for some $w \in \mathbb{R}^{2}$.
Theorems 1 and 2 establish a "local" version of the Rademacher-Gelfond's test for convexity. Proofs of Theorem 1 and Theorem 2 will be presented in sections 3 and 4.

3. From set to measure.

A. Let $C \subset \mathbb{R}^{2}$ be a nonempty convex compact set. Define

$$
u(y)=\max _{x \in C}\langle x, y\rangle, y \in \mathbb{R}^{2} .
$$

Clearly

$$
p_{C}(t)=u(e(t)), t \in \mathbb{R} .
$$

Since u is Lipschitz and positively homogeneous, there exists a set $E \subset \mathbb{R}$ such that $\mathcal{L}^{1}(\mathbb{R} \backslash E)=0$ and for each $t \in E, u$ has a usual derivative u^{\prime} at $e(t)$ and $e(t)$ is a Lebesgue point of u^{\prime}. Indeed, if $u^{\prime}(e(t))$ does not exist then $u^{\prime}(\lambda e(t))$ does not exist for all $\lambda>0$. Therefore, if the measurable set $\left\{t \in \mathbb{R}: u^{\prime}(e(t))\right.$ does not exist $\}$ has a positive measure, then the set $\left\{x \in \mathbb{R}^{2}: u^{\prime}(x)\right.$ does not exist $\}$ has a positive measure which contradicts Rademacher's theorem.

Moreover,

$$
\begin{equation*}
\left\langle u^{\prime}(e(t)), e(t)\right\rangle=u(e(t)), t \in E . \tag{2}
\end{equation*}
$$

B. Let us fix $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ with the following properties

$$
\begin{aligned}
& \psi \geq 0 \\
& \operatorname{supp} \psi \subset B[0,1]=\left\{x \in \mathbb{R}^{2}:\|x\| \leq 1\right\} \\
& \int_{\mathbb{R}^{2}} \psi(x) d x=1
\end{aligned}
$$

Next, for each $\varepsilon>0, x \in \mathbb{R}^{2}$ and $t \in \mathbb{R}$, define

$$
\begin{aligned}
\psi_{\varepsilon}(x) & =\frac{1}{\varepsilon^{2}} \psi\left(\frac{x}{\varepsilon}\right) \\
u_{\varepsilon}(x) & =\int_{\mathbb{R}^{2}} u(x-y) \psi_{\varepsilon}(y) d y \\
p_{\varepsilon}(t) & =u_{\varepsilon}(e(t))
\end{aligned}
$$

Obviously, u_{ε} is convex, both u_{ε} and p_{ε} are C^{∞} functions and $p_{\varepsilon} \rightarrow p_{C}$ uniformly in \mathbb{R}. Since $e^{\prime \prime}=-e$ we have

$$
p_{\varepsilon}^{\prime \prime}(t)=\left\langle u_{\varepsilon}^{\prime \prime}(e(t)) e^{\prime}(t), e^{\prime}(t)\right\rangle-\left\langle u_{\varepsilon}^{\prime}(e(t)), e(t)\right\rangle, t \in \mathbb{R}
$$

Consequently, for each $\varphi \in C_{0}^{\infty}(\mathbb{R})$

$$
\begin{aligned}
\left\langle p_{\varepsilon}+p_{\varepsilon}^{\prime \prime}, \varphi\right\rangle_{L^{2}}= & \int_{\mathbb{R}}\left(p_{\varepsilon}(t)+p_{\varepsilon}^{\prime \prime}(t)\right) \varphi(t) d t \\
= & \int_{\mathbb{R}}\left\langle u_{\varepsilon}^{\prime \prime}(e(t)) e^{\prime}(t), e^{\prime}(t)\right\rangle \varphi(t) d t \\
& \quad+\int_{\mathbb{R}}\left(p_{\varepsilon}(t)-\left\langle u_{\varepsilon}^{\prime}(e(t)), e(t)\right\rangle\right) \varphi(t) d t
\end{aligned}
$$

By (2), see e.g. [2, Theorem 1 (iv), (v), p. 123],

$$
\lim _{\varepsilon \downarrow 0} \int_{\mathbb{R}}\left(p_{\varepsilon}(t)-\left\langle u_{\varepsilon}^{\prime}(e(t)), e(t)\right\rangle\right) \varphi(t) d t=0
$$

Thus, when $\varphi \geq 0$,

$$
\begin{equation*}
\left\langle p_{C}+p_{C}^{\prime \prime}, \varphi\right\rangle_{L^{2}}=\lim _{\varepsilon \downarrow 0}\left\langle p_{\varepsilon}+p_{\varepsilon}^{\prime \prime}, \varphi\right\rangle_{L^{2}} \geq 0 \tag{3}
\end{equation*}
$$

C. Clearly, $p_{C}+p_{C}^{\prime \prime}$ is 2π-periodic. It follows from (3), see e.g. [6, Theorems 2.1.7, 2.1.8, 2.1.9], that $p_{C}+p_{C}^{\prime \prime}$ is a non-negative Radon measure in \mathbb{R}.

4. From measure to set.

D. Every solution to (1) has the form (see e.g. [4, p. 28])

$$
p(t)=a \cos t+b \sin t+S(t),
$$

where $a, b \in \mathbb{R}$ and

$$
S(t)=\int_{0}^{t} \sin (t-s) \varrho(d s), t \in \mathbb{R}
$$

It is easy to verify that

$$
\left\langle S^{\prime}, \varphi\right\rangle_{L^{2}}=\langle C, \varphi\rangle_{L^{2}}, \varphi \in C_{0}^{\infty}(\mathbb{R}),
$$

where

$$
C(t)=\int_{0}^{t} \cos (t-s) \varrho(d s), t \in \mathbb{R} .
$$

Therefore, see [2, Theorem 5, p. 131], S is Lipschitz.
E. Let p be a solution to (1). Denote by E the set of all $t \in \mathbb{R}$ for which the usual derivative p^{\prime} exists. Let

$$
\begin{aligned}
& z(t) \stackrel{\text { def }}{=} p(t) e(t)+p^{\prime}(t) e^{\prime}(t), t \in E, \\
& Z \stackrel{\text { def }}{=}\{z(t): t \in E\} .
\end{aligned}
$$

We claim that

$$
p(\tau)=\sup _{t \in E}\langle z(t), e(\tau)\rangle, \tau \in E .
$$

Indeed, for $t \in E$, we have

$$
\langle z(t), e(\tau)\rangle=\left\langle p(t) e(t)+p^{\prime}(t) e^{\prime}(t), e(\tau)\right\rangle
$$

and

$$
\lim _{t \rightarrow \tau}\langle z(t), e(\tau)\rangle=p(\tau) .
$$

On the other hand, in the sense of distribution theory,

$$
\begin{aligned}
\frac{d}{d t}\langle z(t), e(\tau)\rangle & =\left\langle p^{\prime} e+p e^{\prime}+p^{\prime \prime} e+p^{\prime} e^{\prime \prime}, e(\tau)\right\rangle \\
& =\left(p+p^{\prime \prime}\right)\left\langle e^{\prime}(t), e(\tau)\right\rangle=\varrho \sin (\tau-t)
\end{aligned}
$$

It follows from [6, Theorem 4.1.6], that $\langle z(t), e(\tau)\rangle$ is nondecreasing in $(\tau-\pi, \tau)$ and nonincreasing in $(\tau, \tau+\pi)$. Consequently, since p is $2 \pi-$ periodic, we have

$$
p(t)=\sup _{t \in E}\langle z(t), e(\tau)\rangle, \tau \in E
$$

as claimed.
F. Let C_{p} be the closure of the convex hull of Z. Obviously,

$$
p(\tau)=\max _{x \in C_{p}}\langle x, e(\tau)\rangle, \tau \in E
$$

Since p and e are continuous and E is dense in \mathbb{R}, we have,

$$
p(t)=\max _{x \in C_{p}}\langle x, e(t)\rangle, t \in \mathbb{R}
$$

5. Convex extension. In this section a simple application of Theorem 1 and Theorem 2 will be given. We will prove the necessary and sufficient condition for the positively homogeneous extension $\widetilde{u}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of u : $S^{n-1} \rightarrow \mathbb{R}$ to be a convex function.

Let $S^{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$ and let $u: S^{n-1} \rightarrow \mathbb{R}$ be a function. For each $a, b \in S^{n-1}$ satisfying $\langle a, b\rangle=0$, define $e_{a, b}: \mathbb{R} \rightarrow S^{n-1}, u_{a, b}: \mathbb{R} \rightarrow \mathbb{R}$ and $\widetilde{u}: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\begin{aligned}
e_{a, b}(t) & =a \cos t+b \sin t, \\
u_{a, b}(t) & =u\left(e_{a, b}(t)\right), \\
\widetilde{u}(x) & = \begin{cases}\|x\| \cdot u\left(\frac{x}{\|x\|}\right), & x \neq 0 \\
0, & \mathrm{x}=0\end{cases}
\end{aligned}
$$

Recall that $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is positively homogeneous if

$$
u(\alpha x)=\alpha \cdot u(x)
$$

for all $x \in \mathbb{R}^{n}$ and $\alpha>0$.
Theorem 3. If $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and positively homogeneous then $u_{a, b}+u_{a, b}^{\prime \prime}$ is a 2π-periodic, non-negative Radon measure on \mathbb{R} for all $a, b \in$ S^{n-1}, where $\langle a, b\rangle=0$.

Proof. Fix $a, b \in S^{n-1},\langle a, b\rangle=0$. Let $v: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
v\left(x_{1}, x_{2}\right)=u\left(x_{1} a+x_{2} b\right)
$$

be a restriction of u to lin $\{a, b\}$. Obviously, v is convex. The set

$$
C=\left\{x \in \mathbb{R}^{2}: \forall_{y \in \mathbb{R}^{2}}\langle x, y\rangle \leq v(y)\right\}
$$

is a convex compact subset of \mathbb{R}^{2} and

$$
v(y)=\max _{x \in C}\langle x, y\rangle
$$

for all $y \in \mathbb{R}^{2}$, see e.g. [8, Corollary 13.2.1]. Consider

$$
u_{a, b}(t)=u\left(e_{a, b}(t)\right)=v(e(t))
$$

and apply Theorem 1 to show that $u_{a, b}+u_{a, b}^{\prime \prime}$ is a 2π-periodic, non-negative Radon measure on \mathbb{R}.

Theorem 4. If $u: S^{n-1} \rightarrow \mathbb{R}$ is continuous and $u_{a, b}+u_{a, b}^{\prime \prime}$ is a $2 \pi-$ periodic, non-negative Radon measure on \mathbb{R}, satisfying

$$
\int_{0}^{2 \pi} e_{a, b}(t)\left(u_{a, b}+u_{a, b}^{\prime \prime}\right)(d t)=0
$$

for all $a, b \in S^{n-1}$, where $\langle a, b\rangle=0$, then $\widetilde{u}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex.
Proof. Let $z, y \in \mathbb{R}^{n}$ be fixed. There exist $a, b \in S^{n-1},\langle a, b\rangle=0$, such that $z, y \in \operatorname{lin}\{a, b\}$. Applying Theorem 2 to the function $u_{a, b}$, we have

$$
\begin{aligned}
\widetilde{u}(z+y) & =\|z+y\| \max _{x \in C}\left\langle x, \frac{z+y}{\|z+y\|}\right\rangle \\
& \leq\|z\| \max _{x \in C}\left\langle x, \frac{z}{\|z\|}\right\rangle+\|y\| \max _{x \in C}\left\langle x, \frac{y}{\|y\|}\right\rangle \\
& =\widetilde{u}(z)+\widetilde{u}(y) .
\end{aligned}
$$

for some convex compact set $C \subset \operatorname{lin}\{a, b\}$. Therefore \widetilde{u} is convex.

References

[1] Bonnesen T., W. Fenchel, Theorie der konvexen Körper, Berlin, 1934.
[2] Evans L.C., R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press Inc., Champaign, 1992.
[3] Firey M.J., Support flats to convex bodies, Geometriae Dedicata 2 (1973), 225-248.
[4] Gelfand I.M., G.E. Shilov, Generalized Functions, vol. 1, second edition, Gos. Izd. Fiz.-Mat. Lit., Moscow, 1959. (Russian)
[5] Gelfond A.O., Difference Calculus, Gos. Izd. Fiz.-Mat. Lit., Moscow, 1959. (Russian)
[6] Hörmander L., The Analysis of Linear Partial Differential Operators I, Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.
[7] Rademacher H., Über eine funktionale Ungleichung in der Theorie der konvexen Körper, Math. Z. Bd. 13 (1922), 18-27.
[8] Rockafellar R.T., Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.

Instytut Matematyki UMCS
pl. M. Curie-Skłodowskiej 1
20-031 Lublin, Poland
e-mail: ppikuta@golem.umcs.lublin.pl
e-mail: witrz@golem.umcs.lublin.pl
Received April 14, 2003

[^0]: 2000 Mathematics Subject Classification. 52A10, 46F99.
 Key words and phrases. Support functions, distributions, plane convex sets.

