ANNALES

UNIVERSITATIS MARIAECURIE - SKもODOWSKA
 LUBLIN - POLONIA

VOL. LVII, 7 SECTIO A 2003

ANDRZEJ MIERNOWSKI and WITOLD MOZGAWA

Horizontal lifts of tensor fields to the bundle of volume forms

Abstract

Dhooghe in [Dho] has given the definition and basic properties of a horizontal lift of a vector field to the bundle of volume forms in order to investigate the Thomas connection from the point of view of projective connection. In this paper we present a systematic approach to the horizontal lift of tensor fields to the bundle of volume forms of basic types of tensors with respect to a symmetric linear connection.

1. Basic definitions. Let M be an oriented manifold and let \mathcal{V} be a line bundle of the volume forms over M (see [Dho], [DVV]). We consider two charts (U, x^{i}) and (\bar{U}, \bar{x}^{i}) of $M, U \cap \bar{U} \neq \emptyset$, and the volume form $\omega \in \mathcal{V}$, $\omega=v(x) d x^{1} \wedge \ldots \wedge d x^{n}=v(\bar{x}) d \bar{x}^{1} \wedge \ldots \wedge d \bar{x}^{n}, v, \bar{v}>0$. The functions $\left(v, x^{1}, \ldots, x^{n}\right)$ (resp. $\left.\left(v, \bar{x}^{1}, \ldots, \bar{x}^{n}\right)\right)$ are called the local coordinates of ω in the chart $\left(U, x^{i}\right)$ (resp. $\left.\left(\bar{U}, \bar{x}^{i}\right)\right)$. In our setting the functions $\bar{x}^{i}=\bar{x}^{i}(x)$ are the orientation-preserving transition functions on M. Then the lifted functions on \mathcal{V} are given as

$$
\begin{equation*}
\bar{v}=\overline{\mathcal{I}} \cdot v, \quad \bar{x}^{i}=\bar{x}^{i}(x), \tag{1.1}
\end{equation*}
$$

[^0] lift.
where $\overline{\mathcal{I}}=\operatorname{det}\left(\frac{\partial \bar{x}^{i}}{\partial x^{j}}\right)$ is the Jacobian of the map $\bar{x}^{i}=\bar{x}^{i}(x)$. Following [Dho] we introduce a new coordinate system $\left(x^{0}, \ldots, x^{n}\right)$ on \mathcal{V}, where $x^{0}=\ln v$. The transition functions in terms of these coordinates are
\[

\left\{$$
\begin{array}{l}
\bar{x}^{0}=x^{0}+\ln \overline{\mathcal{I}} \tag{1.2}\\
\bar{x}^{i}=\bar{x}^{i}(x)
\end{array}
$$\right.
\]

We put $\overline{\mathcal{J}}(x)=\ln \overline{\mathcal{I}}(x)$ and $\mathcal{J}(\bar{x})=\ln \mathcal{I}(\bar{x})$. Since $\mathcal{I} \cdot \overline{\mathcal{I}}=1$, we have

$$
\begin{equation*}
\frac{\partial \mathcal{J}}{\partial \bar{x}^{i}}=-\frac{\partial \overline{\mathcal{J}}}{\partial x^{j}} \frac{\partial x^{j}}{\partial \bar{x}^{i}} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \overline{\mathcal{J}}}{\partial x^{i}}=-\frac{\partial \mathcal{J}}{\partial \bar{x}^{j}} \frac{\partial \bar{x}^{j}}{\partial x^{i}} \tag{1.4}
\end{equation*}
$$

Note that the Jacobian matrix of the transition function (1.2) has the following form

$$
\left[\begin{array}{ll}
1 & \frac{\partial \overline{\mathcal{J}}}{\partial x^{i}} \tag{1.5}\\
0 & \frac{\partial \bar{x}^{j}}{\partial x^{i}}
\end{array}\right]
$$

Let M be equipped with a linear symmetric connection Γ. We have the following well-known formulas (see e.g. [Sch])

$$
\begin{aligned}
& \bar{\Gamma}_{k i}^{i}=\frac{\partial x^{m}}{\partial \bar{x}^{k}} \Gamma_{m i}^{i}+\frac{\partial \mathcal{J}}{\partial \bar{x}^{i}} \\
& \Gamma_{k i}^{i}=\frac{\partial \bar{x}^{m}}{\partial x^{k}} \bar{\Gamma}_{m i}^{i}+\frac{\partial \overline{\mathcal{J}}}{\partial x^{i}}
\end{aligned}
$$

where $\Gamma_{k j}^{i}$ and $\bar{\Gamma}_{k j}^{i}$ are the coefficients of Γ in the coordinates $\left(x^{i}\right)$ and $\left(\bar{x}^{i}\right)$, respectively.
2. The horizontal lift. Note that on \mathcal{V} there is a canonical vector field $\frac{\partial}{\partial x^{0}}$. Moreover, it is easy to check that a 1-form $\eta=d x^{0}+\Gamma_{i k}^{k} d x^{i}$ is globally defined on \mathcal{V} and $d \eta=\Gamma_{i k \mid j}^{k} d x^{j} \wedge d x^{i}$, where $\Gamma_{i k \mid j}^{k}=\frac{\partial \Gamma_{i k}^{k}}{\partial x^{j}}$. We call η the canonical 1-form on \mathcal{V}. The vector field $\frac{\partial}{\partial x^{0}}$ and the 1-form η define the canonical tensor field of type $(1,1)$ on \mathcal{V} by the formula

$$
\begin{equation*}
\left(\eta \otimes \frac{\partial}{\partial x^{0}}\right)(w)=\eta(w) \frac{\partial}{\partial x^{0}} \tag{2.1}
\end{equation*}
$$

Theorem 2.1. ([Dho], [DVV]) Let $v=v^{i} \frac{\partial}{\partial x^{i}}$ be a vector field on M. Then

$$
\begin{equation*}
v^{H}=-v^{i} \Gamma_{i k}^{k} \frac{\partial}{\partial x^{0}}+v^{i} \frac{\partial}{\partial x^{i}} \tag{2.2}
\end{equation*}
$$

is a globally defined vector field on \mathcal{V} called the horizontal lift of v.
By a direct calculation we get

Lemma 2.1.

$$
\begin{equation*}
\left[v^{H}, w^{H}\right]=[v, w]^{H}+d \eta\left(v^{H}, w^{H}\right) \frac{\partial}{\partial x^{0}} . \tag{2.3}
\end{equation*}
$$

Lemma 2.2. Suppose that $v_{1}, \ldots v_{n}$ are local vector fields which are linearly independent at each point. Then $\frac{\partial}{\partial x^{0}}, v_{1}^{H}, \ldots, v_{n}^{H}$ are linearly independent at each point. In particular, each vector field on \mathcal{V} is locally a linear combination of such vector fields.

Now, we are going to consider the horizontal lift of 1-forms. By straightforward calculations we get

Theorem 2.2. If $\omega=\omega_{i} d x^{i}$ is a 1-form on M then

$$
\begin{equation*}
\omega^{H}=\left(\omega_{i}+\Gamma_{i k}^{k}\right) d x^{i}+d x^{0} \tag{2.4}
\end{equation*}
$$

is a 1-form on \mathcal{V} called the horizontal lift of ω.

Corollary 2.1.

(1) The horizontal lift of 1-forms is not linear.
(2) The canonical 1-form η is the lift of zero 1-form, that is $\eta=0^{H}$
(3) For any 1-form ω and and any vector field v we have $(\omega(v))^{V}=$ $\omega^{H}\left(v^{H}\right)$, where $(\omega(v))^{V}$ denotes the vertical lift of the function $\omega(v)$.

Theorem 2.3. The horizontal lift ω^{H} of a 1 -form to \mathcal{V} is unique and satisfies

$$
\begin{equation*}
\omega^{H}\left(v^{H}\right)=(\omega(v))^{V}, \quad \omega^{H}\left(\frac{\partial}{\partial x^{0}}\right)=1 \tag{2.5}
\end{equation*}
$$

Proof. The proof follows directly from Lemma 2.2.
The proof of the next theorem follows by direct calculations of coordinate transformations of coefficients of a tensor under consideration.

Theorem 2.4. Let $F=\left(F_{j}^{i}\right)$ be a tensor of type $(1,1)$ on M. Then

$$
F^{H}=\left[\begin{array}{cc}
1 & -F_{i}^{t} \Gamma_{t k}^{k}+\Gamma_{i k}^{k} \tag{2.6}\\
0 & F_{j}^{i}
\end{array}\right]
$$

defines a tensor of the type $(1,1)$ on \mathcal{V}. The tensor F^{H} is called the horizontal lift of F.

Similarly as in the case of 1 -forms we have

Lemma 2.3.

$$
\begin{equation*}
(F(v))^{H}=F^{H}\left(v^{H}\right) . \tag{2.7}
\end{equation*}
$$

Lemma 2.4. If F and G are any tensors of type $(1,1)$ on M then

$$
\begin{equation*}
(F \circ G)^{H}=F^{H} \circ G^{H} . \tag{2.8}
\end{equation*}
$$

From Lemma 2.2 we have
Theorem 2.5. The horizontal lift F^{H} to \mathcal{V} of a tensor F of type $(1,1)$ is unique and satisfies

$$
\begin{equation*}
F^{H}\left(v^{H}\right)=(F(v))^{H}, \quad F^{H}\left(\frac{\partial}{\partial x^{0}}\right)=\frac{\partial}{\partial x^{0}} \tag{2.8}
\end{equation*}
$$

Corollary 2.2.

1) $\left(I_{M}\right)^{H}=I_{\mathcal{V}}$,
2) $\left(-I_{M}\right)^{H}=-I_{\mathcal{V}}+2 \eta \otimes \frac{\partial}{\partial x^{0}}$,
3) $(-F)^{H}=-\left(F^{H}\right)+2 \eta \otimes \frac{\partial}{\partial x^{0}}$

In the next theorem we suppose that the connection Γ is locally volume preserving which means that locally there exists a volume form ω which is parallel with respect to Γ. In this case there exist local coordinate systems such that $\Gamma_{i k}^{k}=0$ (see [Dh1], [Dh2], [Sch]).

Note that in this case we have

$$
\begin{equation*}
\left[v^{H}, w^{H}\right]=[v, w]^{H} \tag{2.9}
\end{equation*}
$$

Theorem 2.6. Let F be a tensor field of type $(1,1)$ on M. Suppose that Γ is a symmetric locally volume preserving linear connection. Then

$$
\begin{equation*}
N_{F}=0 \Longleftrightarrow N_{F^{H}}=0, \tag{2.10}
\end{equation*}
$$

where $N_{F}\left(\right.$ resp. $\left.N_{F^{H}}\right)$ denotes the Nijenhuis tensor of F (resp. F^{H}).
Proof. Observe that $N_{F^{H}}\left(v^{H}, \frac{\partial}{\partial x^{0}}\right)=0$. Moreover,

$$
\begin{align*}
N_{F^{H}}\left(v^{H}, w^{H}\right)= & \left(N_{F}(v, w)\right)^{H} \\
& +\left(d \eta\left(F(v)^{H}, F(w)^{H}\right)-d \eta\left(v^{H}, w^{H}\right)\right. \tag{2.11}\\
& \left.-d \eta\left(v^{H}, F(w)^{H}\right)-d \eta\left(F(v)^{H}, y^{H}\right)\right) \frac{\partial}{\partial x^{0}} .
\end{align*}
$$

But according to our assumptions we have $d \eta=0$.

Corollary 2.3.

1) If F is an almost complex structure on M, that is $F \circ F=-I_{M}$, then $F^{H} \circ F^{H}=-I_{\mathcal{V}}+2 \eta \otimes \frac{\partial}{\partial x^{0}}$.
2) If $F \circ F=I_{M}$ then $F^{H} \circ F^{H}=I_{\mathcal{V}}$.
3) If $F^{3}+F=0$ then $\left(F^{H}\right)^{3}+F^{H}=2 \eta \otimes \frac{\partial}{\partial x^{0}}$.
4) If $F^{3}-F=0$ then $\left(F^{H}\right)^{3}-F^{H}=0$.

Now we are going to describe the horizontal lift of a Riemannian metric.
Theorem 2.7. Let $g=\left(g_{i j}\right)$ be a tensor of type $(0,2)$ on M. Then

$$
g^{H}=\left[\begin{array}{cc}
1 & \Gamma_{i k}^{k} \tag{2.12}\\
\Gamma_{i k}^{k} & g_{i j}+\Gamma_{i k}^{k} \Gamma_{j k}^{k}
\end{array}\right]
$$

is globally defined $(0,2)$-tensor on \mathcal{V}. The tensor g^{H} is called the horizontal lift of g.

Proof. It is enough to check the transformation rule.
Theorem 2.8. The tensor g^{H} is unique on \mathcal{V} and satisfies

1) $g^{H}\left(v^{H}, w^{H}\right)=(g(v, w))^{H}$,
2) $g^{H}\left(\frac{\partial}{\partial x^{0}}, \frac{\partial}{\partial x^{0}}\right)=1$,
3) $g^{H}\left(\frac{\partial}{\partial x^{0}}, v^{H}\right)=0$.

Proof. Conditions 1), 2), 3) follow from definitions and the uniqueness follows from Lemma 2.2.

For the tensors of type $(2,0)$ we have

Theorem 2.9. Let $h=\left(h^{i j}\right)$ be a tensor of type $(2,0)$ on M. Then

$$
h^{H}=\left[\begin{array}{cc}
h^{i j} \Gamma_{i k}^{k} \Gamma_{j t}^{t} & -h^{i j} \Gamma_{j k}^{k} \tag{2.13}\\
-h^{i j} \Gamma_{j k}^{k} & h^{i j}
\end{array}\right]
$$

is globally defined $(2,0)$-tensor on \mathcal{V}. The tensor h^{H} is called the horizontal lift of h.

Theorem 2.10. The tensor h^{H} is the unique (2,0)-tensor on \mathcal{V} such that

1) $h^{H}\left(\omega^{H}, \varphi^{H}\right)=(h(\omega, \varphi))^{V}$,
2) $h^{H}(\eta, \eta)=0$,
3) $h^{H}\left(\omega^{H}, \eta\right)=h^{H}\left(\eta, \omega^{H}\right)=0$.

Theorem 2.11. Let g be a Riemannian metric on M. Then g^{H} is a Riemannian metric on \mathcal{V} and

$$
\begin{equation*}
\left(g^{H}\right)^{-1}=\left(g^{-1}\right)^{H}+\frac{\partial}{\partial x^{0}} \otimes \frac{\partial}{\partial x^{0}} \tag{2.14}
\end{equation*}
$$

Proof. Due to Theorem 2.8 we know that g^{H} is nonsingular and positively defined. By multiplication one can check directly that $\left(g^{H}\right)^{-1} \circ g^{H}=g^{H} \circ$ $\left(g^{H}\right)^{-1}=I_{\mathcal{V}}$.

We shall consider now the horizontal lift of the tensors of type $(0, p)$ and $(p, 0)$. Checking the transformation rule we have the following two theorems.

Theorem 2.12. Let $F=\left(f^{i_{1} i_{2} \ldots i_{p}}\right)$ be a tensor of type $(p, 0)$ on M. Then $F^{H}=\left(h^{\alpha_{1} \alpha_{2} \ldots \alpha_{p}}\right), \alpha_{i} \in\{0,1, \ldots n\}$, where

$$
\begin{aligned}
& h^{00 \ldots 0}=f^{i_{1} i_{2} \ldots i_{p}} \Gamma_{i_{1} t_{1}}^{t_{1}} \Gamma_{i_{2} t_{2}}^{t_{2}} \ldots \Gamma_{i_{p} t_{p}}^{t_{p}}, \\
& h^{0 \ldots i_{k} \ldots 0}=-f^{i_{1} \ldots i_{k} \ldots i_{p}} \Gamma_{i_{1} t_{1}}^{t_{1}} \ldots \Gamma_{i_{k-1} t_{k-1}}^{t_{k-1}} \Gamma_{i_{k+1} t_{k+1}}^{t_{k+1}} \ldots \Gamma_{i_{p} t_{p}}^{t_{p}}, \\
& h^{0 \ldots i_{k} \ldots i_{m} \ldots 0}= \\
& =f^{i_{1} \ldots i_{k} \ldots i_{m} \ldots i_{p}} \Gamma_{i_{1} t_{1}}^{t_{1}} \ldots \Gamma_{i_{k-1} t_{k-1}}^{t_{k-1}} \Gamma_{i_{k+1} t_{k+1}}^{t_{k+1}} \ldots \Gamma_{i_{m-1} t_{m-1}}^{t_{m-1}} \Gamma_{i_{m+1} t_{m+1}}^{t_{m+1}} \ldots \Gamma_{i_{p} t_{p}}^{t_{p}}, \\
& \quad \vdots \\
& \quad h^{i_{1} i_{2} \ldots i_{p}}=(-1)^{p} f^{i_{1} i_{2} \ldots i_{p}}
\end{aligned}
$$

is a tensor of type $(p, 0)$ on \mathcal{V}.

Theorem 2.13. Let $G=\left(g_{i_{1} i_{2} \ldots i_{p}}\right)$ be a tensor on M of type $(0, p)$. Then $G^{H}=\left(h_{\alpha_{1} \alpha_{2} \ldots \alpha_{p}}\right)$, where

$$
\begin{aligned}
& h_{00 \ldots 0}=1 \\
& h_{0 \ldots i \ldots 0}=\Gamma_{i k}^{k} \\
& h_{0 \ldots i \ldots j \ldots 0}=\Gamma_{i t}^{t} \Gamma_{j k}^{k}, \\
& \quad \vdots \\
& \quad \\
& h_{i_{1} i_{2} \ldots i_{p}}=g_{i_{1} i_{2} \ldots i_{p}}+\Gamma_{i_{1} t_{1}}^{t_{1}} \Gamma_{i_{2} t_{2}}^{t_{2}} \ldots \Gamma_{i_{p} t_{p}}^{t_{p}}
\end{aligned}
$$

is a tensor of type $(0, p)$ on \mathcal{V}.

References

[Bou] Bouzon, J., Structures presque-cocomplexes, Rend. Sem. Mat. Univ. Politec. Torino 24 (1964/65), 53-123.
[Dho] Dhooghe, P.F., The T. Y. Thomas Construction of Projectively Related Manifolds, Geom. Dedicata 55 (1995), 221-235.
[DVV] Dhooghe, P.F., A. Van Vlierden, Projective Geometry on the Bundle of Volume Forms, J. Geom. 62 (1998), 66-83.
[Kol] Kolář, I., On the natural operators transforming vector fields to the r-th tensor power, Rend. Circ. Mat. Palermo (2) Suppl. 32 (1993), 15-20.
[Kur] Kurek, J., On a horizontal lift of a linear connection to the bundle of linear frames, Ann. Univ. Mariae Curie-Skłodowska Sect. A 41 (1987), 31-38.
[Mi1] Mikulski, W., The natural affinors on generalized higher order tangent bundles, Rend. Math. Roma 21 (2001), 331-349.
[Mi2] Mikulski, W., The natural operators lifting vector fields to generalized higher order tangent bundles, Arch. Math. (Brno) 36 (2000), 207-212.
[Mos] Moser, J., On volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286-294.
[Sas] Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structures, Tôhoku Math.J. 13 (1961), 281-294.
[Sch] Schouten, J.A., Ricci-calculus, Grundlehren Math. Wiss., X, Springer-Verlag, Berlin, 1954.
[YI] Yano, K., S. Ishihara, Tangent and cotangent bundles, Marcel Dekker, Inc., New York, 1973.

Institute of Mathematics
Maria Curie-Skłodowska University
pl. M. Curie-Skłodowskiej 1
20-031 Lublin, Poland
e-mail: mierand@golem.umcs.lublin.pl
e-mail: mozgawa@golem.umcs.lublin.pl
Received March 31, 2003

[^0]: 2000 Mathematics Subject Classification. 58A32, 53A55.
 Key words and phrases. Bundle of volume forms, symmetric connection, horizontal

