ANNALES UNIVERSITATIS MARIAE CURIE – SKŁODOWSKA LUBLIN – POLONIA

VOL. LVII, 7

SECTIO A

2003

ANDRZEJ MIERNOWSKI and WITOLD MOZGAWA

Horizontal lifts of tensor fields to the bundle of volume forms

ABSTRACT. Dhooghe in [Dho] has given the definition and basic properties of a horizontal lift of a vector field to the bundle of volume forms in order to investigate the Thomas connection from the point of view of projective connection. In this paper we present a systematic approach to the horizontal lift of tensor fields to the bundle of volume forms of basic types of tensors with respect to a symmetric linear connection.

1. Basic definitions. Let M be an oriented manifold and let \mathcal{V} be a line bundle of the volume forms over M (see [Dho], [DVV]). We consider two charts (U, x^i) and (\bar{U}, \bar{x}^i) of $M, U \cap \bar{U} \neq \emptyset$, and the volume form $\omega \in \mathcal{V}$, $\omega = v(x)dx^1 \wedge \ldots \wedge dx^n = v(\bar{x})d\bar{x}^1 \wedge \ldots \wedge d\bar{x}^n, v, \bar{v} > 0$. The functions (v, x^1, \ldots, x^n) (resp. $(v, \bar{x}^1, \ldots, \bar{x}^n)$) are called the local coordinates of ω in the chart (U, x^i) (resp. (\bar{U}, \bar{x}^i)). In our setting the functions $\bar{x}^i = \bar{x}^i(x)$ are the orientation-preserving transition functions on M. Then the lifted functions on \mathcal{V} are given as

(1.1) $\bar{v} = \bar{\mathcal{I}} \cdot v, \qquad \bar{x}^i = \bar{x}^i(x),$

²⁰⁰⁰ Mathematics Subject Classification. 58A32, 53A55.

Key words and phrases. Bundle of volume forms, symmetric connection, horizontal lift.

where $\overline{\mathcal{I}} = \det\left(\frac{\partial \overline{x}^i}{\partial x^j}\right)$ is the Jacobian of the map $\overline{x}^i = \overline{x}^i(x)$. Following [Dho] we introduce a new coordinate system (x^0, \ldots, x^n) on \mathcal{V} , where $x^0 = \ln v$. The transition functions in terms of these coordinates are

(1.2)
$$\begin{cases} \bar{x}^0 = x^0 + \ln \bar{\mathcal{I}} \\ \bar{x}^i = \bar{x}^i(x). \end{cases}$$

We put $\overline{\mathcal{J}}(x) = \ln \overline{\mathcal{I}}(x)$ and $\mathcal{J}(\overline{x}) = \ln \mathcal{I}(\overline{x})$. Since $\mathcal{I} \cdot \overline{\mathcal{I}} = 1$, we have

(1.3)
$$\frac{\partial \mathcal{J}}{\partial \bar{x}^i} = -\frac{\partial \mathcal{J}}{\partial x^j} \frac{\partial x^j}{\partial \bar{x}^i}$$

and

(1.4)
$$\frac{\partial \mathcal{J}}{\partial x^i} = -\frac{\partial \mathcal{J}}{\partial \bar{x}^j} \frac{\partial \bar{x}^j}{\partial x^i}$$

Note that the Jacobian matrix of the transition function (1.2) has the following form

(1.5)
$$\begin{bmatrix} 1 & \frac{\partial \mathcal{J}}{\partial x^i} \\ 0 & \frac{\partial \bar{x}^j}{\partial x^i} \end{bmatrix}.$$

Let M be equipped with a linear symmetric connection Γ . We have the following well-known formulas (see e.g. [Sch])

(1.6)
$$\bar{\Gamma}^{i}_{ki} = \frac{\partial x^{m}}{\partial \bar{x}^{k}} \Gamma^{i}_{mi} + \frac{\partial \mathcal{J}}{\partial \bar{x}^{i}},$$
$$\Gamma^{i}_{ki} = \frac{\partial \bar{x}^{m}}{\partial x^{k}} \bar{\Gamma}^{i}_{mi} + \frac{\partial \bar{\mathcal{J}}}{\partial x^{i}},$$

where Γ_{kj}^i and $\overline{\Gamma}_{kj}^i$ are the coefficients of Γ in the coordinates (x^i) and (\overline{x}^i) , respectively.

2. The horizontal lift. Note that on \mathcal{V} there is a canonical vector field $\frac{\partial}{\partial x^0}$. Moreover, it is easy to check that a 1-form $\eta = dx^0 + \Gamma_{ik}^k dx^i$ is globally defined on \mathcal{V} and $d\eta = \Gamma_{ik|j}^k dx^j \wedge dx^i$, where $\Gamma_{ik|j}^k = \frac{\partial \Gamma_{ik}^k}{\partial x^j}$. We call η the canonical 1-form on \mathcal{V} . The vector field $\frac{\partial}{\partial x^0}$ and the 1-form η define the canonical tensor field of type (1, 1) on \mathcal{V} by the formula

(2.1)
$$\left(\eta \otimes \frac{\partial}{\partial x^0}\right)(w) = \eta(w)\frac{\partial}{\partial x^0}.$$

Theorem 2.1. ([Dho], [DVV]) Let $v = v^i \frac{\partial}{\partial x^i}$ be a vector field on M. Then

(2.2)
$$v^{H} = -v^{i}\Gamma^{k}_{ik}\frac{\partial}{\partial x^{0}} + v^{i}\frac{\partial}{\partial x^{i}}$$

is a globally defined vector field on \mathcal{V} called the horizontal lift of v.

By a direct calculation we get

Lemma 2.1.

(2.3)
$$\left[v^H, w^H\right] = \left[v, w\right]^H + d\eta (v^H, w^H) \frac{\partial}{\partial x^0}.$$

Lemma 2.2. Suppose that $v_1, \ldots v_n$ are local vector fields which are linearly independent at each point. Then $\frac{\partial}{\partial x^0}, v_1^H, \ldots, v_n^H$ are linearly independent at each point. In particular, each vector field on \mathcal{V} is locally a linear combination of such vector fields.

Now, we are going to consider the horizontal lift of 1-forms. By straightforward calculations we get

Theorem 2.2. If $\omega = \omega_i dx^i$ is a 1-form on M then

(2.4)
$$\omega^{H} = \left(\omega_{i} + \Gamma_{ik}^{k}\right) dx^{i} + dx^{0}$$

is a 1-form on \mathcal{V} called the horizontal lift of ω .

Corollary 2.1.

- (1) The horizontal lift of 1-forms is not linear.
- (2) The canonical 1-form η is the lift of zero 1-form, that is $\eta = 0^H$
- (3) For any 1-form ω and and any vector field v we have $(\omega(v))^V = \omega^H(v^H)$, where $(\omega(v))^V$ denotes the vertical lift of the function $\omega(v)$.

Theorem 2.3. The horizontal lift ω^H of a 1-form to \mathcal{V} is unique and satisfies

(2.5)
$$\omega^{H}\left(v^{H}\right) = \left(\omega(v)\right)^{V}, \qquad \omega^{H}\left(\frac{\partial}{\partial x^{0}}\right) = 1.$$

Proof. The proof follows directly from Lemma 2.2. \Box

The proof of the next theorem follows by direct calculations of coordinate transformations of coefficients of a tensor under consideration.

Theorem 2.4. Let $F = (F_j^i)$ be a tensor of type (1,1) on M. Then

(2.6)
$$F^{H} = \begin{bmatrix} 1 & -F_{i}^{t}\Gamma_{tk}^{k} + \Gamma_{ik}^{k} \\ 0 & F_{j}^{i} \end{bmatrix}$$

defines a tensor of the type (1,1) on \mathcal{V} . The tensor F^H is called the horizontal lift of F.

Similarly as in the case of 1-forms we have

Lemma 2.3.

(2.7)
$$(F(v))^H = F^H \left(v^H \right) .$$

Lemma 2.4. If F and G are any tensors of type (1,1) on M then

(2.8)
$$(F \circ G)^H = F^H \circ G^H.$$

From Lemma 2.2 we have

Theorem 2.5. The horizontal lift F^H to \mathcal{V} of a tensor F of type (1,1) is unique and satisfies

(2.8)
$$F^{H}(v^{H}) = (F(v))^{H}, \quad F^{H}\left(\frac{\partial}{\partial x^{0}}\right) = \frac{\partial}{\partial x^{0}}$$

Corollary 2.2.

1)
$$(I_M)^H = I_V$$
,
2) $(-I_M)^H = -I_V + 2\eta \otimes \frac{\partial}{\partial x^0}$,
3) $(-F)^H = -(F^H) + 2\eta \otimes \frac{\partial}{\partial x^0}$

In the next theorem we suppose that the connection Γ is locally volume preserving which means that locally there exists a volume form ω which is parallel with respect to Γ . In this case there exist local coordinate systems such that $\Gamma_{ik}^{k} = 0$ (see [Dh1], [Dh2], [Sch]).

Note that in this case we have

$$(2.9) [v^H, w^H] = [v, w]^H.$$

Theorem 2.6. Let F be a tensor field of type (1,1) on M. Suppose that Γ is a symmetric locally volume preserving linear connection. Then

$$(2.10) N_F = 0 \iff N_{F^H} = 0,$$

where N_F (resp. N_{F^H}) denotes the Nijenhuis tensor of F (resp. F^H).

Proof. Observe that $N_{F^H}\left(v^H, \frac{\partial}{\partial x^0}\right) = 0$. Moreover,

(2.11)

$$N_{F^{H}}\left(v^{H}, w^{H}\right) = \left(N_{F}(v, w)\right)^{H} + \left(d\eta \left(F(v)^{H}, F(w)^{H}\right) - d\eta \left(v^{H}, w^{H}\right) - d\eta \left(v^{H}, y^{H}\right)\right) \frac{\partial}{\partial x^{0}}$$

$$- d\eta \left(v^{H}, F(w)^{H}\right) - d\eta \left(F(v)^{H}, y^{H}\right) \frac{\partial}{\partial x^{0}}$$

But according to our assumptions we have $d\eta = 0$. \Box

Corollary 2.3.

- 1) If F is an almost complex structure on M, that is $F \circ F = -I_M$, 1) If F is an almost complex structure on M, i then $F^H \circ F^H = -I_V + 2\eta \otimes \frac{\partial}{\partial x^0}$. 2) If $F \circ F = I_M$ then $F^H \circ F^H = I_V$. 3) If $F^3 + F = 0$ then $(F^H)^3 + F^H = 2\eta \otimes \frac{\partial}{\partial x^0}$. 4) If $F^3 - F = 0$ then $(F^H)^3 - F^H = 0$.

Now we are going to describe the horizontal lift of a Riemannian metric.

Theorem 2.7. Let $g = (g_{ij})$ be a tensor of type (0,2) on M. Then

(2.12)
$$g^{H} = \begin{bmatrix} 1 & \Gamma_{ik}^{k} \\ \\ \Gamma_{ik}^{k} & g_{ij} + \Gamma_{ik}^{k} \Gamma_{jk}^{k} \end{bmatrix}$$

is globally defined (0,2)-tensor on \mathcal{V} . The tensor g^H is called the horizontal lift of q.

Proof. It is enough to check the transformation rule. \Box

Theorem 2.8. The tensor q^H is unique on \mathcal{V} and satisfies

1) $g^{H}(v^{H}, w^{H}) = (g(v, w))^{H},$ 2) $g^{H}(\frac{\partial}{\partial x^{0}}, \frac{\partial}{\partial x^{0}}) = 1,$ 3) $g^{H}(\frac{\partial}{\partial x^{0}}, v^{H}) = 0.$

Proof. Conditions 1), 2), 3) follow from definitions and the uniqueness follows from Lemma 2.2.

For the tensors of type (2,0) we have

Theorem 2.9. Let $h = (h^{ij})$ be a tensor of type (2,0) on M. Then

(2.13)
$$h^{H} = \begin{bmatrix} h^{ij}\Gamma^{k}_{ik}\Gamma^{t}_{jt} & -h^{ij}\Gamma^{k}_{jk} \\ -h^{ij}\Gamma^{k}_{jk} & h^{ij} \end{bmatrix}$$

is globally defined (2,0)-tensor on \mathcal{V} . The tensor h^H is called the horizontal lift of h.

Theorem 2.10. The tensor h^H is the unique (2,0)-tensor on \mathcal{V} such that

- $\begin{aligned} 1) \quad h^{H}\left(\omega^{H},\varphi^{H}\right) &= \left(h(\omega,\varphi)\right)^{V}, \\ 2) \quad h^{H}(\eta,\eta) &= 0, \\ 3) \quad h^{H}\left(\omega^{H},\eta\right) &= h^{H}\left(\eta,\omega^{H}\right) = 0. \end{aligned}$

Theorem 2.11. Let g be a Riemannian metric on M. Then g^H is a Riemannian metric on \mathcal{V} and

(2.14)
$$(g^H)^{-1} = (g^{-1})^H + \frac{\partial}{\partial x^0} \otimes \frac{\partial}{\partial x^0}$$

Proof. Due to Theorem 2.8 we know that g^H is nonsingular and positively defined. By multiplication one can check directly that $(q^H)^{-1} \circ q^H = q^H \circ$ $(g^H)^{-1} = I_{\mathcal{V}}.$

We shall consider now the horizontal lift of the tensors of type (0, p) and (p, 0). Checking the transformation rule we have the following two theorems.

Theorem 2.12. Let $F = (f^{i_1 i_2 \dots i_p})$ be a tensor of type (p, 0) on M. Then $F^{H} = (h^{\alpha_{1}\alpha_{2}...\alpha_{p}}), \ \alpha_{i} \in \{0, 1, ..., n\}, \ where$

$$\begin{split} h^{00\dots0} &= f^{i_1 i_2\dots i_p} \Gamma_{i_1 t_1}^{t_1} \Gamma_{i_2 t_2}^{t_2} \dots \Gamma_{i_p t_p}^{t_p}, \\ h^{0\dots i_k\dots0} &= -f^{i_1\dots i_k\dots i_p} \Gamma_{i_1 t_1}^{t_1} \dots \Gamma_{i_{k-1} t_{k-1}}^{t_{k-1}} \Gamma_{i_{k+1} t_{k+1}}^{t_{k+1}} \dots \Gamma_{i_p t_p}^{t_p}, \\ h^{0\dots i_k\dots i_m\dots0} &= \\ &= f^{i_1\dots i_k\dots i_m\dots i_p} \Gamma_{i_1 t_1}^{t_1} \dots \Gamma_{i_{k-1} t_{k-1}}^{t_{k+1}} \Gamma_{i_{k+1} t_{k+1}}^{t_{k+1}} \dots \Gamma_{i_{m-1} t_{m-1}}^{t_{m+1}} \Gamma_{i_{m+1} t_{m+1}}^{t_{m+1}} \dots \Gamma_{i_p t_p}^{t_p}, \\ &\vdots \\ h^{i_1 i_2\dots i_p} &= (-1)^p f^{i_1 i_2\dots i_p} \end{split}$$

is a tensor of type (p, 0) on \mathcal{V} .

Theorem 2.13. Let $G = (g_{i_1 i_2 \dots i_p})$ be a tensor on M of type (0, p). Then $G^H = (h_{\alpha_1 \alpha_2 \dots \alpha_p})$, where

$$h_{00...0} = 1,$$

$$h_{0...i...0} = \Gamma_{ik}^{k},$$

$$h_{0...i...j...0} = \Gamma_{it}^{t}\Gamma_{jk}^{k},$$

$$\vdots$$

$$h_{i_{1}i_{2}...i_{p}} = g_{i_{1}i_{2}...i_{p}} + \Gamma_{i_{1}t_{1}}^{t_{1}}\Gamma_{i_{2}t_{2}}^{t_{2}}...\Gamma_{i_{p}t_{p}}^{t_{p}},$$

is a tensor of type (0, p) on \mathcal{V} .

References

- [Bou] Bouzon, J., Structures presque-cocomplexes, Rend. Sem. Mat. Univ. Politec. Torino 24 (1964/65), 53–123.
- [Dho] Dhooghe, P.F., The T. Y. Thomas Construction of Projectively Related Manifolds, Geom. Dedicata 55 (1995), 221–235.
- [DVV] Dhooghe, P.F., A. Van Vlierden, Projective Geometry on the Bundle of Volume Forms, J. Geom. 62 (1998), 66–83.
- [Kol] Kolář, I., On the natural operators transforming vector fields to the r-th tensor power, Rend. Circ. Mat. Palermo (2) Suppl. 32 (1993), 15–20.
- [Kur] Kurek, J., On a horizontal lift of a linear connection to the bundle of linear frames, Ann. Univ. Mariae Curie-Skłodowska Sect. A 41 (1987), 31–38.
- [Mi1] Mikulski, W., The natural affinors on generalized higher order tangent bundles, Rend. Math. Roma 21 (2001), 331–349.
- [Mi2] Mikulski, W., The natural operators lifting vector fields to generalized higher order tangent bundles, Arch. Math. (Brno) 36 (2000), 207–212.
- [Mos] Moser, J., On volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286–294.
- [Sas] Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structures, Tôhoku Math.J. 13 (1961), 281–294.
- [Sch] Schouten, J.A., *Ricci-calculus*, Grundlehren Math. Wiss., X, Springer-Verlag, Berlin, 1954.
- [YI] Yano, K., S. Ishihara, Tangent and cotangent bundles, Marcel Dekker, Inc., New York, 1973.

Institute of Mathematics Maria Curie-Skłodowska University pl. M. Curie-Skłodowskiej 1 20-031 Lublin, Poland e-mail: mierand@golem.umcs.lublin.pl e-mail: mozgawa@golem.umcs.lublin.pl

Received March 31, 2003